1
|
Cassaday HJ, Muir C, Stevenson CW, Bonardi C, Hock R, Waite L. From safety to frustration: The neural substrates of inhibitory learning in aversive and appetitive conditioning procedures. Neurobiol Learn Mem 2023; 202:107757. [PMID: 37044368 DOI: 10.1016/j.nlm.2023.107757] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/20/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Inhibitory associative learning counters the effects of excitatory learning, whether appetitively or aversively motivated. Moreover, the affective responses accompanying the inhibitory associations are of opponent valence to the excitatory conditioned responses. Inhibitors for negative aversive outcomes (e.g. shock) signal safety, while inhibitors for appetitive outcomes (e.g. food reward) elicit frustration and/or disappointment. This raises the question as to whether studies using appetitive and aversive conditioning procedures should demonstrate the same neural substrates for inhibitory learning. We review the neural substrates of appetitive and aversive inhibitory learning as measured in different procedural variants and in the context of the underpinning excitatory conditioning on which it depends. The mesocorticolimbic dopamine pathways, retrosplenial cortex and hippocampus are consistently implicated in inhibitory learning. Further neural substrates identified in some procedural variants may be related to the specific motivation of the learning task and modalities of the learning cues. Finally, we consider the translational implications of our understanding of the neural substrates of inhibitory learning, for obesity and addictions as well as for anxiety disorders.
Collapse
Affiliation(s)
| | - C Muir
- School of Psychology, University of Nottingham; School of Physiology, Pharmacology, and Neuroscience, University of Bristol
| | | | - C Bonardi
- School of Psychology, University of Nottingham
| | - R Hock
- School of Psychology, University of Nottingham
| | - L Waite
- School of Psychology, University of Nottingham
| |
Collapse
|
2
|
KASAI H. Unraveling the mysteries of dendritic spine dynamics: Five key principles shaping memory and cognition. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2023; 99:254-305. [PMID: 37821392 PMCID: PMC10749395 DOI: 10.2183/pjab.99.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/11/2023] [Indexed: 10/13/2023]
Abstract
Recent research extends our understanding of brain processes beyond just action potentials and chemical transmissions within neural circuits, emphasizing the mechanical forces generated by excitatory synapses on dendritic spines to modulate presynaptic function. From in vivo and in vitro studies, we outline five central principles of synaptic mechanics in brain function: P1: Stability - Underpinning the integral relationship between the structure and function of the spine synapses. P2: Extrinsic dynamics - Highlighting synapse-selective structural plasticity which plays a crucial role in Hebbian associative learning, distinct from pathway-selective long-term potentiation (LTP) and depression (LTD). P3: Neuromodulation - Analyzing the role of G-protein-coupled receptors, particularly dopamine receptors, in time-sensitive modulation of associative learning frameworks such as Pavlovian classical conditioning and Thorndike's reinforcement learning (RL). P4: Instability - Addressing the intrinsic dynamics crucial to memory management during continual learning, spotlighting their role in "spine dysgenesis" associated with mental disorders. P5: Mechanics - Exploring how synaptic mechanics influence both sides of synapses to establish structural traces of short- and long-term memory, thereby aiding the integration of mental functions. We also delve into the historical background and foresee impending challenges.
Collapse
Affiliation(s)
- Haruo KASAI
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
3
|
Triantopoulou N, Vidaki M. Local mRNA translation and cytoskeletal reorganization: Mechanisms that tune neuronal responses. Front Mol Neurosci 2022; 15:949096. [PMID: 35979146 PMCID: PMC9376447 DOI: 10.3389/fnmol.2022.949096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/07/2022] [Indexed: 12/31/2022] Open
Abstract
Neurons are highly polarized cells with significantly long axonal and dendritic extensions that can reach distances up to hundreds of centimeters away from the cell bodies in higher vertebrates. Their successful formation, maintenance, and proper function highly depend on the coordination of intricate molecular networks that allow axons and dendrites to quickly process information, and respond to a continuous and diverse cascade of environmental stimuli, often without enough time for communication with the soma. Two seemingly unrelated processes, essential for these rapid responses, and thus neuronal homeostasis and plasticity, are local mRNA translation and cytoskeletal reorganization. The axonal cytoskeleton is characterized by high stability and great plasticity; two contradictory attributes that emerge from the powerful cytoskeletal rearrangement dynamics. Cytoskeletal reorganization is crucial during nervous system development and in adulthood, ensuring the establishment of proper neuronal shape and polarity, as well as regulating intracellular transport and synaptic functions. Local mRNA translation is another mechanism with a well-established role in the developing and adult nervous system. It is pivotal for axonal guidance and arborization, synaptic formation, and function and seems to be a key player in processes activated after neuronal damage. Perturbations in the regulatory pathways of local translation and cytoskeletal reorganization contribute to various pathologies with diverse clinical manifestations, ranging from intellectual disabilities (ID) to autism spectrum disorders (ASD) and schizophrenia (SCZ). Despite the fact that both processes are essential for the orchestration of pathways critical for proper axonal and dendritic function, the interplay between them remains elusive. Here we review our current knowledge on the molecular mechanisms and specific interaction networks that regulate and potentially coordinate these interconnected processes.
Collapse
Affiliation(s)
- Nikoletta Triantopoulou
- Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
| | - Marina Vidaki
- Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
- *Correspondence: Marina Vidaki,
| |
Collapse
|
4
|
Ostroff LE, Cain CK. Persistent up-regulation of polyribosomes at synapses during long-term memory, reconsolidation, and extinction of associative memory. LEARNING & MEMORY (COLD SPRING HARBOR, N.Y.) 2022; 29:192-202. [PMID: 35882501 PMCID: PMC9374273 DOI: 10.1101/lm.053577.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022]
Abstract
Local protein synthesis at synapses can provide a rapid supply of proteins to support synaptic changes during consolidation of new memories, but its role in the maintenance or updating of established memories is unknown. Consolidation requires new protein synthesis in the period immediately following learning, whereas established memories are resistant to protein synthesis inhibitors. We have previously reported that polyribosomes are up-regulated in the lateral amygdala (LA) during consolidation of aversive-cued Pavlovian conditioning. In this study, we used serial section electron microscopy reconstructions to determine whether the distribution of dendritic polyribosomes returns to baseline during the long-term memory phase. Relative to control groups, long-term memory was associated with up-regulation of polyribosomes throughout dendrites, including in dendritic spines of all sizes. Retrieval of a consolidated memory by presentation of a small number of cues induces a new, transient requirement for protein synthesis to maintain the memory, while presentation of a large number of cues results in extinction learning, forming a new memory. One hour after retrieval or extinction training, the distribution of dendritic polyribosomes was similar except in the smallest spines, which had more polyribosomes in the extinction group. Our results demonstrate that the effects of learning on dendritic polyribosomes are not restricted to the transient translation-dependent phase of memory formation. Cued Pavlovian conditioning induces persistent synapse strengthening in the LA that is not reversed by retrieval or extinction, and dendritic polyribosomes may therefore correlate generally with synapse strength as opposed to recent activity or transient translational processes.
Collapse
Affiliation(s)
- Linnaea E Ostroff
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269, USA.,Connecticut Institute for the Brain and Cognitive Science, University of Connecticut, Storrs, Connecticut 06269, USA.,Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Christopher K Cain
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York 10962, USA.,Child and Adolescent Psychiatry, New York University Langone Health, New York, New York 10016, USA
| |
Collapse
|
5
|
Minehart JA, Speer CM. A Picture Worth a Thousand Molecules-Integrative Technologies for Mapping Subcellular Molecular Organization and Plasticity in Developing Circuits. Front Synaptic Neurosci 2021; 12:615059. [PMID: 33469427 PMCID: PMC7813761 DOI: 10.3389/fnsyn.2020.615059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022] Open
Abstract
A key challenge in developmental neuroscience is identifying the local regulatory mechanisms that control neurite and synaptic refinement over large brain volumes. Innovative molecular techniques and high-resolution imaging tools are beginning to reshape our view of how local protein translation in subcellular compartments drives axonal, dendritic, and synaptic development and plasticity. Here we review recent progress in three areas of neurite and synaptic study in situ-compartment-specific transcriptomics/translatomics, targeted proteomics, and super-resolution imaging analysis of synaptic organization and development. We discuss synergies between sequencing and imaging techniques for the discovery and validation of local molecular signaling mechanisms regulating synaptic development, plasticity, and maintenance in circuits.
Collapse
Affiliation(s)
| | - Colenso M. Speer
- Department of Biology, University of Maryland, College Park, MD, United States
| |
Collapse
|
6
|
Neural correlates of safety learning. Behav Brain Res 2020; 396:112884. [PMID: 32871228 DOI: 10.1016/j.bbr.2020.112884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/24/2020] [Accepted: 08/21/2020] [Indexed: 02/01/2023]
Abstract
Accurate discrimination between safe and dangerous stimuli is essential for survival. Prior research has begun to uncover the neural structures that are necessary for learning this discrimination, but exploration of brain regions involved in this learning process has been mostly limited to males. Recent findings show sex differences in discrimination learning, with reduced fear expression to safe cues in females compared to males. Here, we used male and female Sprague Dawley rats to explore neural activation, as measured by Fos expression, in fear and safety learning related brain regions. Neural activation after fear discrimination (Discrimination) was compared between males and females, as well as with fear conditioned (Fear Only) and stimulus presented (Control) conditions. Correlations of discrimination ability and neural activation were also calculated. We uncovered a correlation between central amygdala (CeA) activation and discrimination abilities in males and females. Anterior medial bed nucleus of the stria terminalis (BNST) was the only region where sex differences in Fos counts were observed in the Discrimination condition, and the only region where neural activation significantly differed between Fear Only and Discrimination conditions. Together, these findings indicate the importance of fear expression circuitry in mediating discrimination responses and generate important questions for future investigation.
Collapse
|
7
|
Ostroff LE, Santini E, Sears R, Deane Z, Kanadia RN, LeDoux JE, Lhakhang T, Tsirigos A, Heguy A, Klann E. Axon TRAP reveals learning-associated alterations in cortical axonal mRNAs in the lateral amgydala. eLife 2019; 8:e51607. [PMID: 31825308 PMCID: PMC6924958 DOI: 10.7554/elife.51607] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Local translation can support memory consolidation by supplying new proteins to synapses undergoing plasticity. Translation in adult forebrain dendrites is an established mechanism of synaptic plasticity and is regulated by learning, yet there is no evidence for learning-regulated protein synthesis in adult forebrain axons, which have traditionally been believed to be incapable of translation. Here, we show that axons in the adult rat amygdala contain translation machinery, and use translating ribosome affinity purification (TRAP) with RNASeq to identify mRNAs in cortical axons projecting to the amygdala, over 1200 of which were regulated during consolidation of associative memory. Mitochondrial and translation-related genes were upregulated, whereas synaptic, cytoskeletal, and myelin-related genes were downregulated; the opposite effects were observed in the cortex. Our results demonstrate that axonal translation occurs in the adult forebrain and is altered after learning, supporting the likelihood that local translation is more a rule than an exception in neuronal processes.
Collapse
Affiliation(s)
- Linnaea E Ostroff
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsUnited States
| | | | - Robert Sears
- Center for Neural ScienceNew York UniversityNew YorkUnited States
- Emotional Brain InstituteNathan Kline Institute for Psychiatry ResearchOrangeburgUnited States
- Department of Child and Adolescent PsychiatryNew York University School of MedicineNew YorkUnited States
| | - Zachary Deane
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsUnited States
| | - Rahul N Kanadia
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsUnited States
| | - Joseph E LeDoux
- Center for Neural ScienceNew York UniversityNew YorkUnited States
- Emotional Brain InstituteNathan Kline Institute for Psychiatry ResearchOrangeburgUnited States
| | - Tenzin Lhakhang
- Applied Bioinformatics LaboratoriesNew York University School of MedicineNew YorkUnited States
| | - Aristotelis Tsirigos
- Applied Bioinformatics LaboratoriesNew York University School of MedicineNew YorkUnited States
- Department of PathologyNew York University School of MedicineNew YorkUnited States
| | - Adriana Heguy
- Department of PathologyNew York University School of MedicineNew YorkUnited States
- Genome Technology CenterNew York University School of MedicineNew YorkUnited States
| | - Eric Klann
- Center for Neural ScienceNew York UniversityNew YorkUnited States
| |
Collapse
|
8
|
Kasugai Y, Vogel E, Hörtnagl H, Schönherr S, Paradiso E, Hauschild M, Göbel G, Milenkovic I, Peterschmitt Y, Tasan R, Sperk G, Shigemoto R, Sieghart W, Singewald N, Lüthi A, Ferraguti F. Structural and Functional Remodeling of Amygdala GABAergic Synapses in Associative Fear Learning. Neuron 2019; 104:781-794.e4. [PMID: 31543297 DOI: 10.1016/j.neuron.2019.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/09/2019] [Accepted: 08/07/2019] [Indexed: 01/12/2023]
Abstract
Associative learning is thought to involve different forms of activity-dependent synaptic plasticity. Although previous studies have mostly focused on learning-related changes occurring at excitatory glutamatergic synapses, we found that associative learning, such as fear conditioning, also entails long-lasting functional and structural plasticity of GABAergic synapses onto pyramidal neurons of the murine basal amygdala. Fear conditioning-mediated structural remodeling of GABAergic synapses was associated with a change in mIPSC kinetics and an increase in the fraction of synaptic benzodiazepine-sensitive (BZD) GABAA receptors containing the α2 subunit without altering the intrasynaptic distribution and overall amount of BZD-GABAA receptors. These structural and functional synaptic changes were partly reversed by extinction training. These findings provide evidence that associative learning, such as Pavlovian fear conditioning and extinction, sculpts inhibitory synapses to regulate inhibition of active neuronal networks, a process that may tune amygdala circuit responses to threats.
Collapse
Affiliation(s)
- Yu Kasugai
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Elisabeth Vogel
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Heide Hörtnagl
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Sabine Schönherr
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Enrica Paradiso
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Markus Hauschild
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, University of Innsbruck, Innsbruck 6020, Austria
| | - Georg Göbel
- Department of Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Ivan Milenkovic
- Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna 1090, Austria
| | - Yvan Peterschmitt
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck 6020, Austria; Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna 1090, Austria
| | - Ramon Tasan
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Günther Sperk
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | - Werner Sieghart
- Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna 1090, Austria
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, University of Innsbruck, Innsbruck 6020, Austria
| | - Andreas Lüthi
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland; University of Basel, Basel, Switzerland
| | - Francesco Ferraguti
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck 6020, Austria.
| |
Collapse
|
9
|
Handy G, Lawley SD, Borisyuk A. Role of trap recharge time on the statistics of captured particles. Phys Rev E 2019; 99:022420. [PMID: 30934303 DOI: 10.1103/physreve.99.022420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Indexed: 11/07/2022]
Abstract
We consider n particles diffusing freely in a domain. The boundary contains absorbing escape regions, where the particles can escape, and traps, where the particles can be captured. Modeled after biological examples such as receptors in the synaptic cleft and ambush predators waiting for prey, these traps, or capture regions, must recharge between captures. We are interested in characterizing the time courses of the number of particles remaining in the domain, the number of cumulative captures, and the number of available capture regions. We find that under certain conditions, the number of cumulative captures increases linearly in time with a slope and duration determined explicitly by the recharge rate of the capture regions. This recharge rate also determines the mean and variance of the clearance time, defined as the time it takes for all particles to leave the domain. Further, we find that while a finite recharge rate will always result in a lower number of captured particles when compared to instantaneous recharging, it can either increase or decrease the amount of variability. Lastly, we extend the model to partially absorbing traps in order to investigate the dynamics of receptor activation within an idealized synaptic cleft. We find that the width of the domain controls the amount of time that these receptors are activated, while the number of receptors controls the amplitude of activation. Our mathematical results are derived from considering this system in several ways: as a full spatial diffusion process with recharging traps, as a continuous-time Markov process on a discrete state space, and as a system of ordinary differential equations in a mean-field approximation.
Collapse
Affiliation(s)
- Gregory Handy
- Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Sean D Lawley
- Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Alla Borisyuk
- Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
10
|
Biever A, Donlin-Asp PG, Schuman EM. Local translation in neuronal processes. Curr Opin Neurobiol 2019; 57:141-148. [PMID: 30861464 DOI: 10.1016/j.conb.2019.02.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/07/2019] [Indexed: 12/19/2022]
Abstract
Neurons exhibit a unique degree of spatial compartmentalization and are able to maintain and remodel their proteomes independently from the cell body. While much effort has been devoted to understanding the capacity and role for local protein synthesis in dendrites and spines, local mRNA translation in mature axons, projecting over distances up to a meter, has received much less attention. Also, little is known about the spatio-temporal dynamics of axonal and dendritic gene expression as function of mRNA abundance, protein synthesis and degradation. Here, we summarize key recent findings that have shaped our knowledge of the precise location of local protein production and discuss unique strategies used by neurons to shape presynaptic and postsynaptic proteomes.
Collapse
Affiliation(s)
- Anne Biever
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | | | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany.
| |
Collapse
|
11
|
Monday HR, Castillo PE. Closing the gap: long-term presynaptic plasticity in brain function and disease. Curr Opin Neurobiol 2017; 45:106-112. [PMID: 28570863 DOI: 10.1016/j.conb.2017.05.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/10/2017] [Accepted: 05/15/2017] [Indexed: 11/28/2022]
Abstract
Synaptic plasticity is critical for experience-dependent adjustments of brain function. While most research has focused on the mechanisms that underlie postsynaptic forms of plasticity, comparatively little is known about how neurotransmitter release is altered in a long-term manner. Emerging research suggests that many of the features of canonical 'postsynaptic' plasticity, such as associativity, structural changes and bidirectionality, also characterize long-term presynaptic plasticity. Recent studies demonstrate that presynaptic plasticity is a potent regulator of circuit output and function. Moreover, aberrant presynaptic plasticity is a convergent factor of synaptopathies like schizophrenia, addiction, and Autism Spectrum Disorders, and may be a potential target for treatment.
Collapse
Affiliation(s)
- Hannah R Monday
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| |
Collapse
|
12
|
Smith HL, Bourne JN, Cao G, Chirillo MA, Ostroff LE, Watson DJ, Harris KM. Mitochondrial support of persistent presynaptic vesicle mobilization with age-dependent synaptic growth after LTP. eLife 2016; 5. [PMID: 27991850 PMCID: PMC5235352 DOI: 10.7554/elife.15275] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 12/16/2016] [Indexed: 12/22/2022] Open
Abstract
Mitochondria support synaptic transmission through production of ATP, sequestration of calcium, synthesis of glutamate, and other vital functions. Surprisingly, less than 50% of hippocampal CA1 presynaptic boutons contain mitochondria, raising the question of whether synapses without mitochondria can sustain changes in efficacy. To address this question, we analyzed synapses from postnatal day 15 (P15) and adult rat hippocampus that had undergone theta-burst stimulation to produce long-term potentiation (TBS-LTP) and compared them to control or no stimulation. At 30 and 120 min after TBS-LTP, vesicles were decreased only in presynaptic boutons that contained mitochondria at P15, and vesicle decrement was greatest in adult boutons containing mitochondria. Presynaptic mitochondrial cristae were widened, suggesting a sustained energy demand. Thus, mitochondrial proximity reflected enhanced vesicle mobilization well after potentiation reached asymptote, in parallel with the apparently silent addition of new dendritic spines at P15 or the silent enlargement of synapses in adults. DOI:http://dx.doi.org/10.7554/eLife.15275.001
Collapse
Affiliation(s)
- Heather L Smith
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, United States
| | - Jennifer N Bourne
- Department of Cell and Developmental Biology, University of Colorado Denver - Anschutz Medical Campus, Aurora, United States
| | - Guan Cao
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, United States
| | - Michael A Chirillo
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, United States
| | - Linnaea E Ostroff
- Center for Neural Science, New York University, Washington, New York
| | - Deborah J Watson
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, United States
| | - Kristen M Harris
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, United States
| |
Collapse
|
13
|
Linking Mitochondria to Synapses: New Insights for Stress-Related Neuropsychiatric Disorders. Neural Plast 2016; 2016:3985063. [PMID: 26885402 PMCID: PMC4738951 DOI: 10.1155/2016/3985063] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/09/2015] [Indexed: 12/31/2022] Open
Abstract
The brain evolved cellular mechanisms for adapting synaptic function to energy supply. This is particularly evident when homeostasis is challenged by stress. Signaling loops between the mitochondria and synapses scale neuronal connectivity with bioenergetics capacity. A biphasic “inverted U shape” response to the stress hormone glucocorticoids is demonstrated in mitochondria and at synapses, modulating neural plasticity and physiological responses. Low dose enhances neurotransmission, synaptic growth, mitochondrial functions, learning, and memory whereas chronic, higher doses produce inhibition of these functions. The range of physiological effects by stress and glucocorticoid depends on the dose, duration, and context at exposure. These criteria are met by neuronal activity and the circadian, stress-sensitive and ultradian, stress-insensitive modes of glucocorticoid secretion. A major hallmark of stress-related neuropsychiatric disorders is the disrupted glucocorticoid rhythms and tissue resistance to signaling with the glucocorticoid receptor (GR). GR resistance could result from the loss of context-dependent glucocorticoid signaling mediated by the downregulation of the activity-dependent neurotrophin BDNF. The coincidence of BDNF and GR signaling changes glucocorticoid signaling output with consequences on mitochondrial respiration efficiency, synaptic plasticity, and adaptive trajectories.
Collapse
|
14
|
Post-extinction selective persistence of large dendritic spines in fear remodeled circuits may serve to reactivate fear. Curr Opin Neurobiol 2015; 35:1-5. [DOI: 10.1016/j.conb.2015.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/15/2015] [Accepted: 04/15/2015] [Indexed: 12/18/2022]
|
15
|
Castro-Gomes V, Bergstrom HC, McGuire JL, Parker CC, Coyner J, Landeira-Fernandez J, Ursano RJ, Palmer AA, Johnson LR. A dendritic organization of lateral amygdala neurons in fear susceptible and resistant mice. Neurobiol Learn Mem 2015; 127:64-71. [PMID: 26642919 DOI: 10.1016/j.nlm.2015.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 11/17/2015] [Accepted: 11/21/2015] [Indexed: 01/05/2023]
Abstract
Subtle differences in neuronal microanatomy may be coded in individuals with genetic susceptibility for neuropsychiatric disorders. Genetic susceptibility is a significant risk factor in the development of anxiety disorders, including post-traumatic stress disorder (PTSD). Pavlovian fear conditioning has been proposed to model key aspects of PTSD. According to this theory, PTSD begins with the formation of a traumatic memory which connects relevant environmental stimuli to significant threats to life. The lateral amygdala (LA) is considered to be a key network hub for the establishment of Pavlovian fear conditioning. Substantial research has also linked the LA to PTSD. Here we used a genetic mouse model of fear susceptibility (F-S) and resistance (F-R) to investigate the dendritic and spine structure of principal neurons located in the LA. F-S and F-R lines were bi-directionally selected based on divergent levels of contextual and cued conditioned freezing in response to fear-evoking footshocks. We examined LA principal neuron dendritic and spine morphology in the offspring of experimentally naive F-S and F-R mice. We found differences in the spatial distribution of dendritic branch points across the length of the dendrite tree, with a significant increase in branch points at more distal locations in the F-S compared with F-R line. These results suggest a genetic predisposition toward differences in fear memory strength associated with a dendritic branch point organization of principal neurons in the LA. These micro-anatomical differences in neuron structure in a genetic mouse model of fear susceptibility and resistance provide important insights into the cellular mechanisms of pathophysiology underlying genetic predispositions to anxiety and PTSD.
Collapse
Affiliation(s)
- Vitor Castro-Gomes
- Program in Neuroscience and Department of Psychiatry, Uniformed Services University (USU), School of Medicine, Bethesda, MD 20814, USA; Department of Biosystems Engineering, Federal University of São João del Rei (UFSJ), São João del Rei, MG 36307-352, Brazil
| | - Hadley C Bergstrom
- Program in Neuroscience and Department of Psychiatry, Uniformed Services University (USU), School of Medicine, Bethesda, MD 20814, USA; Department of Psychology and Neuroscience and Behavior Program, Vassar College, Poughkeepsie, NY 12603, USA
| | - Jennifer L McGuire
- Program in Neuroscience and Department of Psychiatry, Uniformed Services University (USU), School of Medicine, Bethesda, MD 20814, USA
| | - Clarissa C Parker
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, VT 05753, USA
| | - Jennifer Coyner
- Program in Neuroscience and Department of Psychiatry, Uniformed Services University (USU), School of Medicine, Bethesda, MD 20814, USA
| | - J Landeira-Fernandez
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ 22451-900, Brazil
| | - Robert J Ursano
- Program in Neuroscience and Department of Psychiatry, Uniformed Services University (USU), School of Medicine, Bethesda, MD 20814, USA; Center for the Study of Traumatic Stress (CSTS), Bethesda, MD 20814, USA
| | - Abraham A Palmer
- Department of Human Genetics, University of Chicago, IL 60637, USA; Department of Psychiatry and Behavioral Neuroscience, University of Chicago, IL 60637, USA
| | - Luke R Johnson
- Program in Neuroscience and Department of Psychiatry, Uniformed Services University (USU), School of Medicine, Bethesda, MD 20814, USA; Center for the Study of Traumatic Stress (CSTS), Bethesda, MD 20814, USA; School of Psychology and Counseling, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; Translational Research Institute (TRI), Brisbane, QLD 4102, Australia.
| |
Collapse
|
16
|
Harris KM, Spacek J, Bell ME, Parker PH, Lindsey LF, Baden AD, Vogelstein JT, Burns R. A resource from 3D electron microscopy of hippocampal neuropil for user training and tool development. Sci Data 2015; 2:150046. [PMID: 26347348 PMCID: PMC4555877 DOI: 10.1038/sdata.2015.46] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/12/2015] [Indexed: 12/29/2022] Open
Abstract
Resurgent interest in synaptic circuitry and plasticity has emphasized the importance of 3D reconstruction from serial section electron microscopy (3DEM). Three volumes of hippocampal CA1 neuropil from adult rat were imaged at X-Y resolution of ~2 nm on serial sections of ~50-60 nm thickness. These are the first densely reconstructed hippocampal volumes. All axons, dendrites, glia, and synapses were reconstructed in a cube (~10 μm(3)) surrounding a large dendritic spine, a cylinder (~43 μm(3)) surrounding an oblique dendritic segment (3.4 μm long), and a parallelepiped (~178 μm(3)) surrounding an apical dendritic segment (4.9 μm long). The data provide standards for identifying ultrastructural objects in 3DEM, realistic reconstructions for modeling biophysical properties of synaptic transmission, and a test bed for enhancing reconstruction tools. Representative synapses are quantified from varying section planes, and microtubules, polyribosomes, smooth endoplasmic reticulum, and endosomes are identified and reconstructed in a subset of dendrites. The original images, traces, and Reconstruct software and files are freely available and visualized at the Open Connectome Project (Data Citation 1).
Collapse
Affiliation(s)
- Kristen M Harris
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, 1 University Station C7000 , Austin, Texas 78712, USA
| | - Josef Spacek
- Department of Pathology, Charles University at Prague, Faculty of Medicine , 500 35 Hradec Kralove, Czech Republic
| | - Maria Elizabeth Bell
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, 1 University Station C7000 , Austin, Texas 78712, USA
| | - Patrick H Parker
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, 1 University Station C7000 , Austin, Texas 78712, USA
| | - Laurence F Lindsey
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, 1 University Station C7000 , Austin, Texas 78712, USA
| | - Alexander D Baden
- Department of Computer Science, Institute for Data Intensive Science and Engineering, Johns Hopkins University, 160 Malone Hall, 3400 N. Charles St. , Baltimore, Maryland 21218, USA
| | - Joshua T Vogelstein
- Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Clark Hall Room 317C, 3400 N. Charles St. , Baltimore, Maryland 21218, USA
| | - Randal Burns
- Department of Computer Science, Institute for Data Intensive Science and Engineering, Johns Hopkins University, 160 Malone Hall, 3400 N. Charles St. , Baltimore, Maryland 21218, USA
| |
Collapse
|
17
|
Diversity of glutamatergic synaptic strength in lateral prefrontal versus primary visual cortices in the rhesus monkey. J Neurosci 2015; 35:112-27. [PMID: 25568107 DOI: 10.1523/jneurosci.3426-14.2015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Understanding commonalities and differences in glutamatergic synaptic signaling is essential for understanding cortical functional diversity, especially in the highly complex primate brain. Previously, we have shown that spontaneous EPSCs differed markedly in layer 3 pyramidal neurons of two specialized cortical areas in the rhesus monkey, the high-order lateral prefrontal cortex (LPFC) and the primary visual cortex (V1). Here, we used patch-clamp recordings and confocal and electron microscopy to determine whether these distinct synaptic responses are due to differences in firing rates of presynaptic neurons and/or in the features of presynaptic or postsynaptic entities. As with spontaneous EPSCs, TTX-insensitive (action potential-independent) miniature EPSCs exhibited significantly higher frequency, greater amplitude, and slower kinetics in LPFC compared with V1 neurons. Consistent with these physiological differences, LPFC neurons possessed higher densities of spines, and the mean width of large spines was greater compared with those on V1 neurons. Axospinous synapses in layers 2-3 of LPFC had larger postsynaptic density surface areas and a higher proportion of large perforated synapses compared with V1. Axonal boutons in LPFC were also larger in volume and contained ∼ 1.6× more vesicles than did those in V1. Further, LPFC had a higher density of AMPA GluR2 receptor labeling than V1. The properties of spines and synaptic currents of individual layer 3 pyramidal neurons measured here were significantly correlated, consistent with the idea that significantly more frequent and larger synaptic currents are likely due to more numerous, larger, and more powerful synapses in LPFC compared with V1.
Collapse
|
18
|
Ostroff LE, Manzur MK, Cain CK, Ledoux JE. Synapses lacking astrocyte appear in the amygdala during consolidation of Pavlovian threat conditioning. J Comp Neurol 2015; 522:2152-63. [PMID: 24338694 DOI: 10.1002/cne.23523] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/29/2013] [Accepted: 12/09/2013] [Indexed: 01/02/2023]
Abstract
There is growing evidence that astrocytes, long held to merely provide metabolic support in the adult brain, participate in both synaptic plasticity and learning and memory. Astrocytic processes are sometimes present at the synaptic cleft, suggesting that they might act directly at individual synapses. Associative learning induces synaptic plasticity and morphological changes at synapses in the lateral amygdala (LA). To determine whether astrocytic contacts are involved in these changes, we examined LA synapses after either threat conditioning (also called fear conditioning) or conditioned inhibition in adult rats by using serial section transmission electron microscopy (ssTEM) reconstructions. There was a transient increase in the density of synapses with no astrocytic contact after threat conditioning, especially on enlarged spines containing both polyribosomes and a spine apparatus. In contrast, synapses with astrocytic contacts were smaller after conditioned inhibition. This suggests that during memory consolidation astrocytic processes are absent if synapses are enlarging but present if they are shrinking. We measured the perimeter of each synapse and its degree of astrocyte coverage, and found that only about 20-30% of each synapse was ensheathed. The amount of synapse perimeter surrounded by astrocyte did not scale with synapse size, giving large synapses a disproportionately long astrocyte-free perimeter and resulting in a net increase in astrocyte-free perimeter after threat conditioning. Thus astrocytic processes do not mechanically isolate LA synapses, but may instead interact through local signaling, possibly via cell-surface receptors. Our results suggest that contact with astrocytic processes opposes synapse growth during memory consolidation.
Collapse
Affiliation(s)
- Linnaea E Ostroff
- Center for Neural Science, New York University, New York, New York, 10003
| | | | | | | |
Collapse
|
19
|
Nava N, Chen F, Wegener G, Popoli M, Nyengaard JR. A new efficient method for synaptic vesicle quantification reveals differences between medial prefrontal cortex perforated and nonperforated synapses. J Comp Neurol 2014; 522:284-97. [PMID: 24127135 DOI: 10.1002/cne.23482] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 12/27/2022]
Abstract
Communication between neurons is mediated by the release of neurotransmitter-containing vesicles from presynaptic terminals. Quantitative characterization of synaptic vesicles can be highly valuable for understanding mechanisms underlying synaptic function and plasticity. We performed a quantitative ultrastructural analysis of cortical excitatory synapses by mean of a new, efficient method, as an alternative to three-dimensional (3D) reconstruction. Based on a hierarchical sampling strategy and unequivocal identification of the region of interest, serial sections from excitatory synapses of medial prefrontal cortex (mPFC) of six Sprague-Dawley rats were acquired with a transmission electron microscope. Unbiased estimates of total 3D volume of synaptic terminals were obtained through the Cavalieri estimator, and adequate correction factors for vesicle profile number estimation were applied for final vesicle quantification. Our analysis was based on 79 excitatory synapses, nonperforated (NPSs) and perforated (PSs) subtypes. We found that total number of docked and reserve-pool vesicles in PSs significantly exceeded that in NPSs (by, respectively, 77% and 78%). These differences were found to be related to changes in size between the two subtypes (active zone area by 86%; bouton volume by 105%) rather than to postsynaptic density shape. Positive significant correlations were found between number of docked and reserve-pool vesicles, active zone area and docked vesicles, and bouton volume and reserve pool vesicles. Our method confirmed the large size of mPFC PSs and a linear correlation between presynaptic features of typical hippocampal synapses. Moreover, a greater number of docked vesicles in PSs may promote a high synaptic strength of these synapses.
Collapse
Affiliation(s)
- Nicoletta Nava
- Stereology and Electron Microscopy Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, 8000, Aarhus C, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8240, Risskov, Denmark
| | | | | | | | | |
Collapse
|
20
|
de Vivo L, Faraguna U, Nelson AB, Pfister-Genskow M, Klapperich ME, Tononi G, Cirelli C. Developmental patterns of sleep slow wave activity and synaptic density in adolescent mice. Sleep 2014; 37:689-700, 700A-700B. [PMID: 24744454 DOI: 10.5665/sleep.3570] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
STUDY OBJECTIVE In humans sleep slow wave activity (SWA) declines during adolescence. It has been suggested that this decline reflects the elimination of cortical synapses, but this hypothesis has never been tested directly. DESIGN We focused on mouse frontal cortex and collected data from early adolescence (∼postnatal day 20, P20) to adulthood (P60) of (1) SWA; (2) expression of synapsin I, a presynaptic marker; and (3) number of dendritic spines in layers I-II. SETTING Basic sleep research laboratory. PATIENTS OR PARTICIPANTS YFP-line H mice (n = 70; P15-87, all males) and GFP-line S mice (n = 14; P17-60, 8 females) were used for EEG recording. Forty-five YFP mice (P19-119, 12 females) and 42 GFP-S mice (P20-60, 14 females) were used for in vivo 2-photon imaging and ex vivo confocal microscopy, respectively. Other YGP mice (n = 57, P10-77) were used for western blot analysis of synapsin I. INTERVENTIONS N/A. MEASUREMENTS AND RESULTS As in humans, SWA in mice declined from early adolescence to adulthood. Synapsin I levels increased from P10 to P24, with little change afterwards. Mean spine density in apical dendrites of layer V pyramidal neurons (YFP-H) showed no change from P20 to P60. Spine number in layers I-II apical dendrites, belonging to layer III and V pyramidal neurons (GFP-S), increased slightly from P20 to P30 and decreased from P30 to P60; smaller spines decreased in number from P20 to P60, while bigger spines increased. CONCLUSIONS In mice, it is unlikely that the developmental decrease in SWA can be accounted for by a net pruning of cortical synapses.
Collapse
Affiliation(s)
- Luisa de Vivo
- Department of Psychiatry, University of Wisconsin/Madison, WI
| | - Ugo Faraguna
- Department of Psychiatry, University of Wisconsin/Madison, WI
| | - Aaron B Nelson
- Department of Psychiatry, University of Wisconsin/Madison, WI ; Neuroscience Training Program, University of Wisconsin-Madison, WI
| | | | | | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin/Madison, WI
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin/Madison, WI
| |
Collapse
|
21
|
Pignataro A, Middei S, Borreca A, Ammassari-Teule M. Indistinguishable pattern of amygdala and hippocampus rewiring following tone or contextual fear conditioning in C57BL/6 mice. Front Behav Neurosci 2013; 7:156. [PMID: 24194705 PMCID: PMC3810790 DOI: 10.3389/fnbeh.2013.00156] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/14/2013] [Indexed: 01/06/2023] Open
Abstract
Changes in neuronal connectivity occurring upon the formation of aversive memory were examined in C57BL/6 (C57) mice 24 h after they were trained for tone fear conditioning (TFC) and contextual fear conditioning (CFC). Although TFC and CFC are amenable to distinct learning systems each involving a specific neural substrate, we found that mice trained in the two protocols showed the same increase in spine density and spine size in class I basolateral amygdala (BLA) and in dorsal hippocampus CA1 pyramidal neurons. Our findings suggest that, because of their remarkably functional hippocampus, C57 mice might engage this region in any fear situation they face. These observations raise a point relevant to aversive memory studies, i.e., how the peculiarity of memory in certain individuals impacts on the components of the fear circuitry. It is suggested that enhanced connectivity in brain regions dispensable for specific forms of learning could considerably increase the resistance of aversive memory traces to treatments aimed at disrupting them.
Collapse
Affiliation(s)
- Annabella Pignataro
- 1Department of Experimental Neurology, Laboratory of Psicobiology, Santa Lucia Foundation Rome, Italy
| | | | | | | |
Collapse
|
22
|
Abstract
Safety signals are learned cues that predict the nonoccurrence of an aversive event. As such, safety signals are potent inhibitors of fear and stress responses. Investigations of safety signal learning have increased over the last few years due in part to the finding that traumatized persons are unable to use safety cues to inhibit fear, making it a clinically relevant phenotype. The goal of this review is to present recent advances relating to the neural and behavioral mechanisms of safety learning, and expression in rodents, nonhuman primates, and humans.
Collapse
|
23
|
Ratnayaka A, Marra V, Bush D, Burden JJ, Branco T, Staras K. Recruitment of resting vesicles into recycling pools supports NMDA receptor-dependent synaptic potentiation in cultured hippocampal neurons. J Physiol 2012; 590:1585-97. [PMID: 22271866 PMCID: PMC3413500 DOI: 10.1113/jphysiol.2011.226688] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Most presynaptic terminals in the central nervous system are characterized by two functionally distinct vesicle populations: a recycling pool, which supports action potential-driven neurotransmitter release via vesicle exocytosis, and a resting pool. The relative proportions of these two pools are highly variable between individual synapses, prompting speculation on their specific relationship, and on the possible functions of the resting pool. Using fluorescence imaging of FM-styryl dyes and synaptophysinI-pHluorin (sypHy) as well as correlative electron microscopy approaches, we show here that Hebbian plasticity-dependent changes in synaptic strength in rat hippocampal neurons can increase the recycling pool fraction at the expense of the resting pool in individual synaptic terminals. This recruitment process depends on NMDA-receptor activation, nitric oxide signalling and calcineurin and is accompanied by an increase in the probability of neurotransmitter release at individual terminals. Blockade of actin-mediated intersynaptic vesicle exchange does not prevent recycling pool expansion demonstrating that vesicle recruitment is intrasynaptic. We propose that the conversion of resting pool vesicles to the functionally recycling pool provides a rapid mechanism to implement long-lasting changes in presynaptic efficacy.
Collapse
Affiliation(s)
- Arjuna Ratnayaka
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | | | | | | | | | | |
Collapse
|
24
|
Bourne JN, Harris KM. Nanoscale analysis of structural synaptic plasticity. Curr Opin Neurobiol 2011; 22:372-82. [PMID: 22088391 DOI: 10.1016/j.conb.2011.10.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 10/20/2011] [Indexed: 01/07/2023]
Abstract
Structural plasticity of dendritic spines and synapses is an essential mechanism to sustain long lasting changes in the brain with learning and experience. The use of electron microscopy over the last several decades has advanced our understanding of the magnitude and extent of structural plasticity at a nanoscale resolution. In particular, serial section electron microscopy (ssEM) provides accurate measurements of plasticity-related changes in synaptic size and density and distribution of key cellular resources such as polyribosomes, smooth endoplasmic reticulum, and synaptic vesicles. Careful attention to experimental and analytical approaches ensures correct interpretation of ultrastructural data and has begun to reveal the degree to which synapses undergo structural remodeling in response to physiological plasticity.
Collapse
Affiliation(s)
- Jennifer N Bourne
- Center for Learning and Memory, Department of Neurobiology, University of Texas, Austin, TX 78712-0805, USA
| | | |
Collapse
|
25
|
Reul JMHM. On the role of corticotropin-releasing hormone receptors in anxiety and depression. DIALOGUES IN CLINICAL NEUROSCIENCE 2002; 4:31-46. [PMID: 22033745 PMCID: PMC3181666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
On the basis of extensive basic and clinical studies, corticotropin-releasing hormone (CRH) and its related family members are considered to play a pivotal role in stress-related disorders, such as anxiety and depression. CRH is regarded as the principal mediator in the brain of the stress response, as it mediates neuroendocrine, autonomic, and behavioral responses to stressful challenges. Recently, this neuropeptide family has expanded due to the discovery of two new members, urocortin II (also termed stresscopin-related peptide) and urocortin III (also termed stresscopin), which are selective agonists for the CRH receptor type 2. They show a discrete neuroanatomical localization and are involved in stress-coping responses, such as anxiolysis. Here, on the basis of recent developments, we suggest that CRH, the urocortins, and their receptors form a complex system in the brain, which is recruited during both the acute and the recovery phases of the stress response.
Collapse
|