1
|
Watanabe H, Tateishi K. Parallel olfactory processing in a hemimetabolous insect. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101097. [PMID: 37541388 DOI: 10.1016/j.cois.2023.101097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
To represent specific olfactory cues from the highly complex and dynamic odor world in the brain, insects employ multiple parallel olfactory pathways that process odors with different coding strategies. Here, we summarize the anatomical and physiological features of parallel olfactory pathways in the hemimetabolous insect, the cockroach Periplaneta americana. The cockroach processes different aspects of odor stimuli, such as odor qualities, temporal information, and dynamics, through parallel olfactory pathways. These parallel pathways are anatomically segregated from the peripheral to higher brain centers, forming functional maps within the brain. In addition, the cockroach may possess parallel pathways that correspond to distinct types of olfactory receptors expressed in sensory neurons. Through comparisons with olfactory pathways in holometabolous insects, we aim to provide valuable insights into the organization, functionality, and evolution of insect olfaction.
Collapse
Affiliation(s)
- Hidehiro Watanabe
- Department of Earth System Science, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Fukuoka, Japan.
| | - Kosuke Tateishi
- Department of Earth System Science, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Fukuoka, Japan; School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda 669-1330, Hyogo, Japan
| |
Collapse
|
2
|
Kymre JH, Chu X, Ian E, Berg BG. Organization of the parallel antennal-lobe tracts in the moth. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:707-721. [PMID: 36112200 PMCID: PMC9734247 DOI: 10.1007/s00359-022-01566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 12/14/2022]
Abstract
The olfactory pathways of the insect brain have been studied comprehensively for more than 40 years, yet the last decade has included a particularly large accumulation of new information relating to this system's structure. In moths, sharp intracellular recording and staining has been used to elucidate the anatomy and physiology of output neurons from the primary olfactory center, the antennal lobe. This review concentrates on the connection patterns characterizing these projection neurons, which follow six separate antennal-lobe tracts. In addition to highlighting the connections between functionally distinct glomerular clusters and higher-order olfactory neuropils, we discuss how parallel tracts in the male convey distinct features of the social signals released by conspecific and heterospecific females. Finally, we consider the current state of knowledge regarding olfactory processing in the moth's protocerebrum and make suggestions as to how the information concerning antennal-lobe output may be used to design future studies.
Collapse
Affiliation(s)
- Jonas Hansen Kymre
- Chemosensory Lab, Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Xi Chu
- Chemosensory Lab, Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Elena Ian
- Chemosensory Lab, Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bente Gunnveig Berg
- Chemosensory Lab, Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
3
|
Farnworth MS, Bucher G, Hartenstein V. An atlas of the developing Tribolium castaneum brain reveals conservation in anatomy and divergence in timing to Drosophila melanogaster. J Comp Neurol 2022; 530:2335-2371. [PMID: 35535818 PMCID: PMC9646932 DOI: 10.1002/cne.25335] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/11/2022]
Abstract
Insect brains are formed by conserved sets of neural lineages whose fibers form cohesive bundles with characteristic projection patterns. Within the brain neuropil, these bundles establish a system of fascicles constituting the macrocircuitry of the brain. The overall architecture of the neuropils and the macrocircuitry appear to be conserved. However, variation is observed, for example, in size, shape, and timing of development. Unfortunately, the developmental and genetic basis of this variation is poorly understood, although the rise of new genetically tractable model organisms such as the red flour beetle Tribolium castaneum allows the possibility to gain mechanistic insights. To facilitate such work, we present an atlas of the developing brain of T. castaneum, covering the first larval instar, the prepupal stage, and the adult, by combining wholemount immunohistochemical labeling of fiber bundles (acetylated tubulin) and neuropils (synapsin) with digital 3D reconstruction using the TrakEM2 software package. Upon comparing this anatomical dataset with the published work in Drosophila melanogaster, we confirm an overall high degree of conservation. Fiber tracts and neuropil fascicles, which can be visualized by global neuronal antibodies like antiacetylated tubulin in all invertebrate brains, create a rich anatomical framework to which individual neurons or other regions of interest can be referred to. The framework of a largely conserved pattern allowed us to describe differences between the two species with respect to parameters such as timing of neuron proliferation and maturation. These features likely reflect adaptive changes in developmental timing that govern the change from larval to adult brain.
Collapse
Affiliation(s)
- Max S Farnworth
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
- Evolution of Brains and Behaviour lab, School of Biological Sciences, University of Bristol, Bristol, UK
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California/Los Angeles, Los Angeles, USA
| |
Collapse
|
4
|
Kymre JH, Berge CN, Chu X, Ian E, Berg BG. Antennal-lobe neurons in the moth Helicoverpa armigera: Morphological features of projection neurons, local interneurons, and centrifugal neurons. J Comp Neurol 2021; 529:1516-1540. [PMID: 32949023 PMCID: PMC8048870 DOI: 10.1002/cne.25034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 01/11/2023]
Abstract
The relatively large primary olfactory center of the insect brain, the antennal lobe (AL), contains several heterogeneous neuronal types. These include projection neurons (PNs), providing olfactory information to higher‐order neuropils via parallel pathways, and local interneurons (LNs), which provide lateral processing within the AL. In addition, various types of centrifugal neurons (CNs) offer top‐down modulation onto the other AL neurons. By performing iontophoretic intracellular staining, we collected a large number of AL neurons in the moth, Helicoverpa armigera, to examine the distinct morphological features of PNs, LNs, and CNs. We characterize 190 AL neurons. These were allocated to 25 distinct neuronal types or sub‐types, which were reconstructed and placed into a reference brain. In addition to six PN types comprising 15 sub‐types, three LN and seven CN types were identified. High‐resolution confocal images allowed us to analyze AL innervations of the various reported neurons, which demonstrated that all PNs innervating ventroposterior glomeruli contact a protocerebral neuropil rarely targeted by other PNs, that is the posteriorlateral protocerebrum. We also discuss the functional roles of the distinct CNs, which included several previously uncharacterized types, likely involved in computations spanning from multisensory processing to olfactory feedback signalization into the AL.
Collapse
Affiliation(s)
- Jonas Hansen Kymre
- Chemosensory lab, Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Christoffer Nerland Berge
- Chemosensory lab, Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway.,Laboratory for Neural Computation, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Xi Chu
- Chemosensory lab, Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Elena Ian
- Chemosensory lab, Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bente G Berg
- Chemosensory lab, Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
5
|
Morphology and physiology of olfactory neurons in the lateral protocerebrum of the silkmoth Bombyx mori. Sci Rep 2019; 9:16604. [PMID: 31719657 PMCID: PMC6851382 DOI: 10.1038/s41598-019-53318-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/26/2019] [Indexed: 12/04/2022] Open
Abstract
Insect olfaction is a suitable model to investigate sensory processing in the brain. Olfactory information is first processed in the antennal lobe and is then conveyed to two second-order centres—the mushroom body calyx and the lateral protocerebrum. Projection neurons processing sex pheromones and plant odours supply the delta area of the inferior lateral protocerebrum (∆ILPC) and lateral horn (LH), respectively. Here, we investigated the neurons arising from these regions in the brain of the silkmoth, Bombyx mori, using mass staining and intracellular recording with a sharp glass microelectrode. The output neurons from the ∆ILPC projected to the superior medial protocerebrum, whereas those from the LH projected to the superior lateral protocerebrum. The dendritic innervations of output neurons from the ∆ILPC formed a subdivision in the ∆ILPC. We discuss pathways for odour processing in higher order centres.
Collapse
|
6
|
Evolutionarily conserved anatomical and physiological properties of olfactory pathway through fourth-order neurons in a species of grasshopper (Hieroglyphus banian). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:813-838. [DOI: 10.1007/s00359-019-01369-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 08/08/2019] [Accepted: 09/04/2019] [Indexed: 01/18/2023]
|
7
|
The morphology of antennal lobe projection neurons is controlled by a POU-domain transcription factor Bmacj6 in the silkmoth Bombyx mori. Sci Rep 2017; 7:14050. [PMID: 29070905 PMCID: PMC5656611 DOI: 10.1038/s41598-017-14578-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/12/2017] [Indexed: 11/08/2022] Open
Abstract
How to wire a neural circuit is crucial for the functioning of the nervous system. Here, we describe the neuroanatomy of the olfactory neurons in the spli mutant strain of silkmoth (Bombyx mori) to investigate the function of a transcription factor involved in neuronal wiring in the central olfactory circuit. The genomic structure of the gene Bmacj6, which encodes a class IV POU domain transcription factor, is disrupted in the spli mutant. We report the neuroanatomical abnormality in the morphology of the antennal lobe projection neurons (PNs) that process the sex pheromone. In addition to the mis-targeting of dendrites and axons, we found axonal bifurcation within the PNs. These results indicate that the morphology of neurons in the pheromone processing pathway is modified by Bmacj6.
Collapse
|
8
|
Bywalez WG, Ona-Jodar T, Lukas M, Ninkovic J, Egger V. Dendritic Arborization Patterns of Small Juxtaglomerular Cell Subtypes within the Rodent Olfactory Bulb. Front Neuroanat 2017; 10:127. [PMID: 28163674 PMCID: PMC5247448 DOI: 10.3389/fnana.2016.00127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/19/2016] [Indexed: 01/27/2023] Open
Abstract
Within the glomerular layer of the rodent olfactory bulb, numerous subtypes of local interneurons contribute to early processing of incoming sensory information. Here we have investigated dopaminergic and other small local juxtaglomerular cells in rats and mice and characterized their dendritic arborization pattern with respect to individual glomeruli by fluorescent labeling via patching and reconstruction of dendrites and glomerular contours from two-photon imaging data. Dopaminergic neurons were identified in a transgenic mouse line where the expression of dopamine transporter (DAT) was labeled with GFP. Among the DAT+ cells we found a small short-axon cell (SAC) subtype featuring hitherto undescribed dendritic specializations. These densely ramifying structures clasped mostly around somata of other juxtaglomerular neurons, which were also small, non-dopaminergic and to a large extent non-GABAergic. Clasping SACs were observed also in wild-type mice and juvenile rats. In DAT+ SAC dendrites, single backpropagating action potentials evoked robust calcium entry throughout both clasping and non-clasping compartments. Besides clasping SACs, most other small neurons either corresponded to the classical periglomerular cell type (PGCs), which was never DAT+, or were undersized cells with a small dendritic tree and low excitability. Aside from the presence of clasps in SAC dendrites, many descriptors of dendritic morphology such as the number of dendrites and the extent of branching were not significantly different between clasping SACs and PGCs. However, a detailed morphometric analysis in relation to glomerular contours revealed that the dendrites of clasping SACs arborized mostly in the juxtaglomerular space and never entered more than one glomerulus (if at all), whereas most PGC dendrites were restricted to their parent glomerulus, similar to the apical tufts of mitral cells. These complementary arborization patterns might underlie a highly complementary functional connectivity. The morphometric approach may serve to differentiate also other subtypes of juxtaglomerular neurons, help to identify putative synaptic partners and thus to establish a more refined picture of glomerular network interactions during odor sensing.
Collapse
Affiliation(s)
- Wolfgang G Bywalez
- Systems Neurobiology, Department II of Biology, Ludwig-Maximilians-Universität MünchenMunich, Germany; Neurophysiology, Institute of Zoology, Universität RegensburgRegensburg, Germany
| | - Tiffany Ona-Jodar
- Neurophysiology, Institute of Zoology, Universität Regensburg Regensburg, Germany
| | - Michael Lukas
- Neurophysiology, Institute of Zoology, Universität Regensburg Regensburg, Germany
| | - Jovica Ninkovic
- Institute for Stem Cell Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH)Munich, Germany; Institute of Physiological Genomics, Ludwig-Maximilians-Universität MünchenMunich, Germany; Cluster for Systems Neurology and BioMedical Center, Ludwig-Maximilians-Universität MünchenMunich, Germany
| | - Veronica Egger
- Systems Neurobiology, Department II of Biology, Ludwig-Maximilians-Universität MünchenMunich, Germany; Neurophysiology, Institute of Zoology, Universität RegensburgRegensburg, Germany; Regensburg Center of Neuroscience, Universität RegensburgRegensburg, Germany
| |
Collapse
|
9
|
Ng J, Browning A, Lechner L, Terada M, Howard G, Jefferis GSXE. Genetically targeted 3D visualisation of Drosophila neurons under Electron Microscopy and X-Ray Microscopy using miniSOG. Sci Rep 2016; 6:38863. [PMID: 27958322 PMCID: PMC5153665 DOI: 10.1038/srep38863] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/11/2016] [Indexed: 11/23/2022] Open
Abstract
Large dimension, high-resolution imaging is important for neural circuit visualisation as neurons have both long- and short-range patterns: from axons and dendrites to the numerous synapses at terminal endings. Electron Microscopy (EM) is the favoured approach for synaptic resolution imaging but how such structures can be segmented from high-density images within large volume datasets remains challenging. Fluorescent probes are widely used to localise synapses, identify cell-types and in tracing studies. The equivalent EM approach would benefit visualising such labelled structures from within sub-cellular, cellular, tissue and neuroanatomical contexts. Here we developed genetically-encoded, electron-dense markers using miniSOG. We demonstrate their ability in 1) labelling cellular sub-compartments of genetically-targeted neurons, 2) generating contrast under different EM modalities, and 3) segmenting labelled structures from EM volumes using computer-assisted strategies. We also tested non-destructive X-ray imaging on whole Drosophila brains to evaluate contrast staining. This enabled us to target specific regions for EM volume acquisition.
Collapse
Affiliation(s)
- Julian Ng
- Department of Zoology, Downing Street, Cambridge, CB2 3EJ, United Kingdom.,Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, CB2 0QH, United Kingdom
| | - Alyssa Browning
- Carl Zeiss X-ray Microscopy Inc., 4385 Hopyard Rd., Suite 100, Pleasanton, CA 94588, USA
| | - Lorenz Lechner
- Carl Zeiss X-ray Microscopy Inc., 4385 Hopyard Rd., Suite 100, Pleasanton, CA 94588, USA
| | - Masako Terada
- Carl Zeiss X-ray Microscopy Inc., 4385 Hopyard Rd., Suite 100, Pleasanton, CA 94588, USA
| | - Gillian Howard
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, CB2 0QH, United Kingdom
| | - Gregory S X E Jefferis
- Department of Zoology, Downing Street, Cambridge, CB2 3EJ, United Kingdom.,Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, CB2 0QH, United Kingdom
| |
Collapse
|
10
|
Tabuchi M, Dong L, Inoue S, Namiki S, Sakurai T, Nakatani K, Kanzaki R. Two types of local interneurons are distinguished by morphology, intrinsic membrane properties, and functional connectivity in the moth antennal lobe. J Neurophysiol 2015; 114:3002-13. [PMID: 26378200 DOI: 10.1152/jn.00050.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 09/15/2015] [Indexed: 11/22/2022] Open
Abstract
Neurons in the silkmoth antennal lobe (AL) are well characterized in terms of their morphology and odor-evoked firing activity. However, their intrinsic electrical properties including voltage-gated ionic currents and synaptic connectivity remain unclear. To address this, whole cell current- and voltage-clamp recordings were made from second-order projection neurons (PNs) and two morphological types of local interneurons (LNs) in the silkmoth AL. The two morphological types of LNs exhibited distinct physiological properties. One morphological type of LN showed a spiking response with a voltage-gated sodium channel gene expression, whereas the other type of LN was nonspiking without a voltage-gated sodium channel gene expression. Voltage-clamp experiments also revealed that both of two types of LNs as well as PNs possessed two types of voltage-gated potassium channels and calcium channels. In dual whole cell recordings of spiking LNs and PNs, activation of the PN elicited depolarization responses in the paired spiking LN, whereas activation of the spiking LN induced no substantial responses in the paired PN. However, simultaneous recording of a nonspiking LN and a PN showed that activation of the nonspiking LN induced hyperpolarization responses in the PN. We also observed bidirectional synaptic transmission via both chemical and electrical coupling in the pairs of spiking LNs. Thus our results indicate that there were two distinct types of LNs in the silkmoth AL, and their functional connectivity to PNs was substantially different. We propose distinct functional roles for these two different types of LNs in shaping odor-evoked firing activity in PNs.
Collapse
Affiliation(s)
- Masashi Tabuchi
- Department of Advanced Interdisciplinary Studies, Graduate School of Engineering, The University of Tokyo, Meguro-ku, Tokyo, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Li Dong
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan; and
| | - Shigeki Inoue
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan; and
| | - Shigehiro Namiki
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Takeshi Sakurai
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Kei Nakatani
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan; and
| | - Ryohei Kanzaki
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan
| |
Collapse
|
11
|
Reisenman CE, Riffell JA. The neural bases of host plant selection in a Neuroecology framework. Front Physiol 2015; 6:229. [PMID: 26321961 PMCID: PMC4532911 DOI: 10.3389/fphys.2015.00229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/28/2015] [Indexed: 11/13/2022] Open
Abstract
Understanding how animals make use of environmental information to guide behavior is a fundamental problem in the field of neuroscience. Similarly, the field of ecology seeks to understand the role of behavior in shaping interactions between organisms at various levels of organization, including population-, community- and even ecosystem-level scales. Together, the newly emerged field of “Neuroecology” seeks to unravel this fundamental question by studying both the function of neurons at many levels of the sensory pathway and the interactions between organisms and their natural environment. The interactions between herbivorous insects and their host plants are ideal examples of Neuroecology given the strong ecological and evolutionary forces and the underlying physiological and behavioral mechanisms that shaped these interactions. In this review we focus on an exemplary herbivorous insect within the Lepidoptera, the giant sphinx moth Manduca sexta, as much is known about the natural behaviors related to host plant selection and the involved neurons at several level of the sensory pathway. We also discuss how herbivore-induced plant odorants and secondary metabolites in floral nectar in turn can affect moth behavior, and the underlying neural mechanisms.
Collapse
Affiliation(s)
- Carolina E Reisenman
- Department of Molecular and Cell Biology, University of California Berkeley, CA, USA
| | | |
Collapse
|
12
|
Information flow through neural circuits for pheromone orientation. Nat Commun 2014; 5:5919. [DOI: 10.1038/ncomms6919] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/20/2014] [Indexed: 11/08/2022] Open
|
13
|
Kiya T, Morishita K, Uchino K, Iwami M, Sezutsu H. Establishment of tools for neurogenetic analysis of sexual behavior in the silkmoth, Bombyx mori. PLoS One 2014; 9:e113156. [PMID: 25396742 PMCID: PMC4232604 DOI: 10.1371/journal.pone.0113156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/20/2014] [Indexed: 11/18/2022] Open
Abstract
Background Silkmoth, Bombyx mori, is an ideal model insect for investigating the neural mechanisms underlying sex pheromone-induced innate behavior. Although transgenic techniques and the GAL4/UAS system are well established in the silkmoth, genetic tools useful for investigating brain function at the neural circuit level have been lacking. Results In the present study, we established silkmoth strains in which we could visualize neural projections (UAS-mCD8GFP) and cell nucleus positions (UAS-GFP.nls), and manipulate neural excitability by thermal stimulation (UAS-dTrpA1). In these strains, neural projections and nucleus position were reliably labeled with green fluorescent protein in a GAL4-dependent manner. Further, the behavior of silkworm larvae and adults could be controlled by GAL4-dependent misexpression of dTrpA1. Ubiquitous dTrpA1 misexpression led both silkmoth larvae and adults to exhibit seizure-like phenotypes in a heat stimulation-dependent manner. Furthermore, dTrpA1 misexpression in the sex pheromone receptor neurons of male silkmoths allowed us to control male sexual behavior by changing the temperature. Thermally stimulated male silkmoths exhibited full sexual behavior, including wing-flapping, orientation, and attempted copulation, and precisely approached a thermal source in a manner similar to male silkmoths stimulated with the sex pheromone. Conclusion These findings indicate that a thermogenetic approach using dTrpA1 is feasible in Lepidopteran insects and thermogenetic analysis of innate behavior is applicable in the silkmoth. These tools are essential for elucidating the relationships between neural circuits and function using neurogenetic methods.
Collapse
Affiliation(s)
- Taketoshi Kiya
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, Japan
- * E-mail:
| | - Koudai Morishita
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Keiro Uchino
- Transgenic Silkworm Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Masafumi Iwami
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hideki Sezutsu
- Transgenic Silkworm Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| |
Collapse
|
14
|
Sakurai T, Namiki S, Kanzaki R. Molecular and neural mechanisms of sex pheromone reception and processing in the silkmoth Bombyx mori. Front Physiol 2014; 5:125. [PMID: 24744736 PMCID: PMC3978319 DOI: 10.3389/fphys.2014.00125] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/13/2014] [Indexed: 12/01/2022] Open
Abstract
Male moths locate their mates using species-specific sex pheromones emitted by conspecific females. One striking feature of sex pheromone recognition in males is the high degree of specificity and sensitivity at all levels, from the primary sensory processes to behavior. The silkmoth Bombyx mori is an excellent model insect in which to decipher the underlying mechanisms of sex pheromone recognition due to its simple sex pheromone communication system, where a single pheromone component, bombykol, elicits the full sexual behavior of male moths. Various technical advancements that cover all levels of analysis from molecular to behavioral also allow the systematic analysis of pheromone recognition mechanisms. Sex pheromone signals are detected by pheromone receptors expressed in olfactory receptor neurons in the pheromone-sensitive sensilla trichodea on male antennae. The signals are transmitted to the first olfactory processing center, the antennal lobe (AL), and then are processed further in the higher centers (mushroom body and lateral protocerebrum) to elicit orientation behavior toward females. In recent years, significant progress has been made elucidating the molecular mechanisms underlying the detection of sex pheromones. In addition, extensive studies of the AL and higher centers have provided insights into the neural basis of pheromone processing in the silkmoth brain. This review describes these latest advances, and discusses what these advances have revealed about the mechanisms underlying the specific and sensitive recognition of sex pheromones in the silkmoth.
Collapse
Affiliation(s)
- Takeshi Sakurai
- Intelligent Cooperative Systems, Research Center for Advanced Science and Technology, The University of Tokyo Meguro-ku, Japan
| | - Shigehiro Namiki
- Intelligent Cooperative Systems, Research Center for Advanced Science and Technology, The University of Tokyo Meguro-ku, Japan
| | - Ryohei Kanzaki
- Intelligent Cooperative Systems, Research Center for Advanced Science and Technology, The University of Tokyo Meguro-ku, Japan
| |
Collapse
|
15
|
|
16
|
Namiki S, Takaguchi M, Seki Y, Kazawa T, Fukushima R, Iwatsuki C, Kanzaki R. Concentric zones for pheromone components in the mushroom body calyx of the moth brain. J Comp Neurol 2013; 521:1073-92. [PMID: 22911613 DOI: 10.1002/cne.23219] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 05/26/2012] [Accepted: 08/17/2012] [Indexed: 12/15/2022]
Abstract
The spatial distribution of input and output neurons in the mushroom body (MB) calyx was investigated in the silkmoth Bombyx mori. In Lepidoptera, the brain has a specialized system for processing sex pheromones. How individual pheromone components are represented in the MB has not yet been elucidated. Toward this end, we first compared the distribution of the presynaptic boutons of antennal lobe projection neurons (PNs), which transfer odor information from the antennal lobe to the MB calyx. The axons of PNs that innervate pheromonal glomeruli were confined to a relatively small area within the calyx. In contrast, the axons of PNs that innervate nonpheromonal glomeruli were more widely distributed. PN axons for the minor pheromone component covered a larger area than those for the major pheromone component and partially overlapped with those innervating nonpheromonal glomeruli, suggesting the integration of the minor pheromone component with plant odors. Overall, we found that PN axons innervating pheromonal and nonpheromonal glomeruli were organized into concentric zones. We then analyzed the dendritic fields of Kenyon cells (KCs), which receive inputs from PNs. Despite the strong regional localization of axons of different PN classes, the dendrites of KCs were less well classified. Finally, we estimated the connectivity between PNs and KCs and suggest that the dendritic field may be organized to receive different amounts of pheromonal and nonpheromonal inputs. PNs for multiple pheromone components and plant odors enter the calyx in a concentric fashion, and they are read out by the elaborate dendritic field of KCs.
Collapse
Affiliation(s)
- Shigehiro Namiki
- Intelligent Cooperative Systems Laboratory, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Green WW, Basilious A, Dubuc R, Zielinski BS. The neuroanatomical organization of projection neurons associated with different olfactory bulb pathways in the sea lamprey, Petromyzon marinus. PLoS One 2013; 8:e69525. [PMID: 23922730 PMCID: PMC3726628 DOI: 10.1371/journal.pone.0069525] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/11/2013] [Indexed: 11/19/2022] Open
Abstract
Although there is abundant evidence for segregated processing in the olfactory system across vertebrate taxa, the spatial relationship between the second order projection neurons (PNs) of olfactory subsystems connecting sensory input to higher brain structures is less clear. In the sea lamprey, there is tight coupling between olfaction and locomotion via PNs extending to the posterior tuberculum from the medial region of the olfactory bulb. This medial region receives peripheral input predominantly from the accessory olfactory organ. However, the axons from olfactory sensory neurons residing in the main olfactory epithelium extend to non-medial regions of the olfactory bulb, and the non-medial bulbar PNs extend their axons to the lateral pallium. It is not known if the receptive fields of the PNs in the two output pathways overlap; nor has the morphology of these PNs been investigated. In this study, retrograde labelling was utilized to investigate the PNs belonging to medial and non-medial projections. The dendrites and somata of the medial PNs were confined to medial glomerular neuropil, and dendrites of non-medial PNs did not enter this territory. The cell bodies and dendrites of the non-medial PNs were predominantly located below the glomeruli (frequently deeper in the olfactory bulb). While PNs in both locations contained single or multiple primary dendrites, the somal size was greater for medial than for non-medial PNs. When considered with the evidence-to-date, this study shows different neuroanatomical organization for medial olfactory bulb PNs extending to locomotor control centers and non-medial PNs extending to the lateral pallium in this vertebrate.
Collapse
Affiliation(s)
- Warren W. Green
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Alfred Basilious
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Réjean Dubuc
- Groupe de Recherche sur le Système Nerveux Central, Département de Physiologie, Université de Montréal, Montréal, Québec, Canada
- Groupe de Recherche en Activité Physique Adaptée, Département de Kinanthropologie, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Barbara S. Zielinski
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| |
Collapse
|
18
|
Kanzaki R, Minegishi R, Namiki S, Ando N. Insect-machine hybrid system for understanding and evaluating sensory-motor control by sex pheromone in Bombyx mori. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:1037-52. [PMID: 23749329 DOI: 10.1007/s00359-013-0832-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/21/2013] [Accepted: 05/25/2013] [Indexed: 11/25/2022]
Abstract
To elucidate the dynamic information processing in a brain underlying adaptive behavior, it is necessary to understand the behavior and corresponding neural activities. This requires animals which have clear relationships between behavior and corresponding neural activities. Insects are precisely such animals and one of the adaptive behaviors of insects is high-accuracy odor source orientation. The most direct way to know the relationships between neural activity and behavior is by recording neural activities in a brain from freely behaving insects. There is also a method to give stimuli mimicking the natural environment to tethered insects allowing insects to walk or fly at the same position. In addition to these methods an 'insect-machine hybrid system' is proposed, which is another experimental system meeting the conditions necessary for approaching the dynamic processing in the brain of insects for generating adaptive behavior. This insect-machine hybrid system is an experimental system which has a mobile robot as its body. The robot is controlled by the insect through its behavior or the neural activities recorded from the brain. As we can arbitrarily control the motor output of the robot, we can intervene at the relationship between the insect and the environmental conditions.
Collapse
Affiliation(s)
- Ryohei Kanzaki
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Meguro-ku, Tokyo, 153-8904, Japan,
| | | | | | | |
Collapse
|
19
|
Kobayashi R, Namiki S, Kanzaki R, Kitano K, Nishikawa I, Lansky P. Population coding is essential for rapid information processing in the moth antennal lobe. Brain Res 2013; 1536:88-96. [PMID: 23684715 DOI: 10.1016/j.brainres.2013.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 05/02/2013] [Accepted: 05/02/2013] [Indexed: 10/26/2022]
Abstract
We investigated how odorant information is transmitted by neurons in the moth antennal lobe (AL). The neurons were repeatedly stimulated by three different odorants and their activity was intracellularly recorded. First, the response properties of single neurons were analyzed. The neurons exhibited highly reliable responses to the odorants and 43% of AL neurons responded to two or three odorants. The population distribution of firing rates in response to odorant stimulation was relatively broad in moth AL neurons, which is consistent across insects. Second, we attempted to decode the odorant identity from the activity of the recorded neurons using the maximum likelihood method. The decoding performance rapidly improves with increasing the number of neurons. Notably, an increase in the size of neural population results in faster transfer of information and increased the duration to retain odorant information. In conclusion, the AL neurons encode odorant information reliably and the population coding can transmit odorant information to olfactory centers. Population coding allows AL to encode and transmit olfactory information faster than the discrimination latency demonstrated in behavioral experiments. This article is part of a Special Issue entitled Neural Coding 2012.
Collapse
Affiliation(s)
- Ryota Kobayashi
- Department of Human and Computer Intelligence, Ritsumeikan University, Shiga 525-8577, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Løfaldli BB, Kvello P, Kirkerud N, Mustaparta H. Activity in Neurons of a Putative Protocerebral Circuit Representing Information about a 10 Component Plant Odor Blend in Heliothis virescens. Front Syst Neurosci 2012; 6:64. [PMID: 23060753 PMCID: PMC3461648 DOI: 10.3389/fnsys.2012.00064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 08/21/2012] [Indexed: 11/24/2022] Open
Abstract
The olfactory pathway in the insect brain is anatomically well described from the antennal lobe (AL) to the mushroom bodies and the lateral protocerebrum (LP) in several species. Less is known about the further connections of the olfactory network in protocerebrum and how information about relevant plant odorants and mixtures are represented in this network, resulting in output information mediated by descending neurons. In the present study we have recorded intracellularly followed by dye injections from neurons in the LP and superior protocerebrum (SP) of the moth, Heliothis virescens. As relevant stimuli, we have used selected primary plant odorants and mixtures of them. The results provide the morphology and physiological responses of neurons involved in a putative circuit connecting the mushroom body lobes, the SP, and the LP, as well as input to SP and LP by one multiglomerular AL neuron and output from the LP by one descending neuron. All neurons responded to a particular mixture of ten primary plant odorants, some of them also to single odorants of the mixture. Altogether, the physiological data indicate integration in protocerebral neurons of information from several of the receptor neuron types functionally described in this species.
Collapse
Affiliation(s)
- Bjarte Bye Løfaldli
- Neuroscience Unit, Department of Biology, Norwegian University of Science and Technology Trondheim, Norway
| | | | | | | |
Collapse
|
21
|
Nishino H, Iwasaki M, Kamimura I, Mizunami M. Divergent and convergent projections to the two parallel olfactory centers from two neighboring, pheromone-receptive glomeruli in the male American cockroach. J Comp Neurol 2012; 520:3428-45. [DOI: 10.1002/cne.23111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Takasaki T, Namiki S, Kanzaki R. Use of bilateral information to determine the walking direction during orientation to a pheromone source in the silkmoth Bombyx mori. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2012; 198:295-307. [PMID: 22227850 DOI: 10.1007/s00359-011-0708-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 12/04/2011] [Accepted: 12/13/2011] [Indexed: 11/26/2022]
Abstract
Odor source localization is an important animal behavior. Male moths locate mates by tracking sex pheromone emitted by conspecific females. During this type of behavior, males exhibit a combination of upwind surge and zigzagging flight. Similarly, the male walking moth Bombyx mori responds to transient pheromone exposure with a surge in movement, followed by sustained zigzagging walking. The initial surge direction is known to be influenced by the pheromone input pattern. Here, we identified the sensory input patterns that determine the initial walking direction of males. We first quantified the stimulus by measuring electroantennogram values, which were used as a reference for subsequent tests. We used a brief stimulus pulse to examine the relationship between sensory stimulus patterns and the turning direction of initial surge. We found that the difference in input timing and intensity between left and right antennae affected the walking direction, indicating that B. mori integrate bilateral pheromone information during orientation behavior. When we tested pheromone stimulation for longer periods, turning behavior was suppressed, which was induced by stimulus cessation. This study contributes toward understanding efficient strategies for odor-source localization that is utilized by walking insects.
Collapse
Affiliation(s)
- Tetsuya Takasaki
- Institute of Biological Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | | | | |
Collapse
|