1
|
Qiao Y, Wang D, Yan G, Yang Z, Tang C. MiR-411-5p Promotes Vascular Smooth Muscle Cell Phenotype Switch by Inhibiting Expression of Calmodulin Regulated Spectrin-Associated Protein-1. Int Heart J 2024; 65:557-565. [PMID: 38825498 DOI: 10.1536/ihj.23-590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
When stimulated, vascular smooth muscle cells (VSMCs) change from a differentiated to a dedifferentiated phenotype. Dedifferentiated VSMCs have a key activity in cardiovascular diseases such as in-stent restenosis. MicroRNAs (miRNAs) have crucial functions in conversion of differentiated VSMCs to a dedifferentiated phenotype. We investigated the activity of miR-411-5p in the proliferation, migration, and phenotype switch of rat VSMCs.Based on a microRNA array assay, miR-411-5p expression was found to be significantly increased in cultured VSMCs stimulated by platelet-derived growth factor-BB (PDGF-BB). A CCK-8 assay, transwell assay, and scratch test were performed to measure the effect of miR-411-5p on the proliferation and migration of PDGF-BB-treated VSMCs. MiR-411-5p promoted expression of dedifferentiated phenotype markers such as osteopontin and tropomyosin 4 in PDGF-BB-treated VSMCs. Using mimics and inhibitors, we identified the target of miR-411-5p in PDGF-BB-treated VSMCs and found that calmodulin-regulated spectrin-associated protein-1 (CAMSAP1) was involved in the phenotypic switch mediated by PDGF-BB.By inhibiting expression of CAMSAP1, miR-411-5p enhanced the proliferation, migration, and phenotype switch of VSMCs.Blockade of miR-411-5p interaction with CAMSAP1 is a promising approach to treat in-stent restenosis.
Collapse
MESH Headings
- Animals
- Male
- Rats
- Becaplermin/pharmacology
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Osteopontin/metabolism
- Osteopontin/genetics
- Phenotype
- Rats, Sprague-Dawley
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
Collapse
Affiliation(s)
- Yong Qiao
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School
| | - Dong Wang
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School
| | - Gaoliang Yan
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School
| | | | - Chengchun Tang
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School
- Medical School of Southeast University
| |
Collapse
|
2
|
Carvalho D, Diaz-Amarilla P, Dapueto R, Santi MD, Duarte P, Savio E, Engler H, Abin-Carriquiry JA, Arredondo F. Transcriptomic Analyses of Neurotoxic Astrocytes Derived from Adult Triple Transgenic Alzheimer's Disease Mice. J Mol Neurosci 2023; 73:487-515. [PMID: 37318736 DOI: 10.1007/s12031-023-02105-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/03/2023] [Indexed: 06/16/2023]
Abstract
Neurodegenerative diseases such as Alzheimer's disease have been classically studied from a purely neuronocentric point of view. More recent evidences support the notion that other cell populations are involved in disease progression. In this sense, the possible pathogenic role of glial cells like astrocytes is increasingly being recognized. Once faced with tissue damage signals and other stimuli present in disease environments, astrocytes suffer many morphological and functional changes, a process referred as reactive astrogliosis. Studies from murine models and humans suggest that these complex and heterogeneous responses could manifest as disease-specific astrocyte phenotypes. Clear understanding of disease-associated astrocytes is a necessary step to fully disclose neurodegenerative processes, aiding in the design of new therapeutic and diagnostic strategies. In this work, we present the transcriptomics characterization of neurotoxic astrocytic cultures isolated from adult symptomatic animals of the triple transgenic mouse model of Alzheimer's disease (3xTg-AD). According to the observed profile, 3xTg-AD neurotoxic astrocytes show various reactivity features including alteration of the extracellular matrix and release of pro-inflammatory and proliferative factors that could result in harmful effects to neurons. Moreover, these alterations could be a consequence of stress responses at the endoplasmic reticulum and mitochondria as well as of concomitant metabolic adaptations. Present results support the hypothesis that adaptive changes of astrocytic function induced by a stressed microenvironment could later promote harmful astrocyte phenotypes and further accelerate or induce neurodegenerative processes.
Collapse
Affiliation(s)
- Diego Carvalho
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay
| | - Pablo Diaz-Amarilla
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - Rosina Dapueto
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - María Daniela Santi
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
- College of Dentistry, Bluestone Center for Clinical Research, New York University, New York, 10010, USA
| | - Pablo Duarte
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - Eduardo Savio
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - Henry Engler
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
- Facultad de Medicina, Universidad de la República, 1800, Montevideo, Uruguay
| | - Juan A Abin-Carriquiry
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay.
- Laboratorio de Biofármacos, Institut Pasteur de Montevideo, 11600, Montevideo, Uruguay.
| | - Florencia Arredondo
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay.
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay.
| |
Collapse
|
3
|
Khalaf-Nazzal R, Fasham J, Inskeep KA, Blizzard LE, Leslie JS, Wakeling MN, Ubeyratna N, Mitani T, Griffith JL, Baker W, Al-Hijawi F, Keough KC, Gezdirici A, Pena L, Spaeth CG, Turnpenny PD, Walsh JR, Ray R, Neilson A, Kouranova E, Cui X, Curiel DT, Pehlivan D, Akdemir ZC, Posey JE, Lupski JR, Dobyns WB, Stottmann RW, Crosby AH, Baple EL. Bi-allelic CAMSAP1 variants cause a clinically recognizable neuronal migration disorder. Am J Hum Genet 2022; 109:2068-2079. [PMID: 36283405 PMCID: PMC9674946 DOI: 10.1016/j.ajhg.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/27/2022] [Indexed: 01/26/2023] Open
Abstract
Non-centrosomal microtubules are essential cytoskeletal filaments that are important for neurite formation, axonal transport, and neuronal migration. They require stabilization by microtubule minus-end-targeting proteins including the CAMSAP family of molecules. Using exome sequencing on samples from five unrelated families, we show that bi-allelic CAMSAP1 loss-of-function variants cause a clinically recognizable, syndromic neuronal migration disorder. The cardinal clinical features of the syndrome include a characteristic craniofacial appearance, primary microcephaly, severe neurodevelopmental delay, cortical visual impairment, and seizures. The neuroradiological phenotype comprises a highly recognizable combination of classic lissencephaly with a posterior more severe than anterior gradient similar to PAFAH1B1(LIS1)-related lissencephaly and severe hypoplasia or absence of the corpus callosum; dysplasia of the basal ganglia, hippocampus, and midbrain; and cerebellar hypodysplasia, similar to the tubulinopathies, a group of monogenic tubulin-associated disorders of cortical dysgenesis. Neural cell rosette lineages derived from affected individuals displayed findings consistent with these phenotypes, including abnormal morphology, decreased cell proliferation, and neuronal differentiation. Camsap1-null mice displayed increased perinatal mortality, and RNAScope studies identified high expression levels in the brain throughout neurogenesis and in facial structures, consistent with the mouse and human neurodevelopmental and craniofacial phenotypes. Together our findings confirm a fundamental role of CAMSAP1 in neuronal migration and brain development and define bi-allelic variants as a cause of a clinically distinct neurodevelopmental disorder in humans and mice.
Collapse
Affiliation(s)
- Reham Khalaf-Nazzal
- Biomedical Sciences Department, Faculty of Medicine, Arab American University of Palestine, Jenin P227, Palestine
| | - James Fasham
- Department of Clinical and Biomedical Science, University of Exeter Faculty of Health and Life Science, RILD building, Barrack Road, Exeter EX2 5DW, UK; Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust (Heavitree Hospital), Gladstone Road, Exeter EX1 2ED, UK
| | - Katherine A Inskeep
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH 45229, USA; Institute for Genomic Medicine at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Lauren E Blizzard
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH 45229, USA
| | - Joseph S Leslie
- Department of Clinical and Biomedical Science, University of Exeter Faculty of Health and Life Science, RILD building, Barrack Road, Exeter EX2 5DW, UK
| | - Matthew N Wakeling
- Department of Clinical and Biomedical Science, University of Exeter Faculty of Health and Life Science, RILD building, Barrack Road, Exeter EX2 5DW, UK
| | - Nishanka Ubeyratna
- Department of Clinical and Biomedical Science, University of Exeter Faculty of Health and Life Science, RILD building, Barrack Road, Exeter EX2 5DW, UK
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer L Griffith
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wisam Baker
- Paediatrics Department, Dr. Khalil Suleiman Government Hospital, Jenin, Palestine
| | - Fida' Al-Hijawi
- Paediatrics Community Outpatient Clinics, Palestinian Ministry of Health, Jenin, Palestine
| | - Karen C Keough
- Department of Pediatrics, Dell Medical School, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA; Child Neurology Consultants of Austin, 7940 Shoal Creek Boulevard, Suite 100, Austin, TX 78757, USA
| | - Alper Gezdirici
- Department of Medical Genetics, Başakşehir Çam and Sakura City Hospital, 34480 Istanbul, Turkey
| | - Loren Pena
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Christine G Spaeth
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Peter D Turnpenny
- Department of Clinical and Biomedical Science, University of Exeter Faculty of Health and Life Science, RILD building, Barrack Road, Exeter EX2 5DW, UK; Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust (Heavitree Hospital), Gladstone Road, Exeter EX1 2ED, UK
| | - Joseph R Walsh
- Department of Neurological Surgery, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Randall Ray
- Departments of Pediatrics and Medical Genetics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Amber Neilson
- Genome Engineering & Stem Cell Center, Department of Genetics, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Evguenia Kouranova
- Genome Engineering & Stem Cell Center, Department of Genetics, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Xiaoxia Cui
- Genome Engineering & Stem Cell Center, Department of Genetics, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - David T Curiel
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA; Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA; Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - William B Dobyns
- Departments of Pediatrics and Genetics, University of Minnesota, Minneapolis, MN, USA
| | - Rolf W Stottmann
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH 45229, USA; Institute for Genomic Medicine at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH 43205, USA; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Andrew H Crosby
- Department of Clinical and Biomedical Science, University of Exeter Faculty of Health and Life Science, RILD building, Barrack Road, Exeter EX2 5DW, UK
| | - Emma L Baple
- Department of Clinical and Biomedical Science, University of Exeter Faculty of Health and Life Science, RILD building, Barrack Road, Exeter EX2 5DW, UK; Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust (Heavitree Hospital), Gladstone Road, Exeter EX1 2ED, UK.
| |
Collapse
|
4
|
Somaiya RD, Huebschman NA, Chaunsali L, Sabbagh U, Carrillo GL, Tewari BP, Fox MA. Development of astrocyte morphology and function in mouse visual thalamus. J Comp Neurol 2022; 530:945-962. [PMID: 34636034 PMCID: PMC8957486 DOI: 10.1002/cne.25261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 11/10/2022]
Abstract
The rodent visual thalamus has served as a powerful model to elucidate the cellular and molecular mechanisms that underlie sensory circuit formation and function. Despite significant advances in our understanding of the role of axon-target interactions and neural activity in orchestrating circuit formation in visual thalamus, the role of non-neuronal cells, such as astrocytes, is less clear. In fact, we know little about the transcriptional identity and development of astrocytes in mouse visual thalamus. To address this gap in knowledge, we studied the expression of canonical astrocyte molecules in visual thalamus using immunostaining, in situ hybridization, and reporter lines. While our data suggests some level of heterogeneity of astrocytes in different nuclei of the visual thalamus, the majority of thalamic astrocytes appeared to be labeled in Aldh1l1-EGFP mice. This led us to use this transgenic line to characterize the neonatal and postnatal development of these cells in visual thalamus. Our data show that not only have the entire cohort of astrocytes migrated into visual thalamus by eye-opening but they also have acquired their adult-like morphology, even while retinogeniculate synapses are still maturing. Furthermore, ultrastructural, immunohistochemical, and functional approaches revealed that by eye-opening, thalamic astrocytes ensheathe retinogeniculate synapses and are capable of efficient uptake of glutamate. Taken together, our results reveal that the morphological, anatomical, and functional development of astrocytes in visual thalamus occurs prior to eye-opening and the emergence of experience-dependent visual activity.
Collapse
Affiliation(s)
- Rachana D. Somaiya
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24016
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
| | - Natalie A. Huebschman
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- Neuroscience Department, Ohio Wesleyan University, Delaware, OH 43015
| | - Lata Chaunsali
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- School of Neuroscience Graduate Program, Virginia Tech, Blacksburg, VA 24061
| | - Ubadah Sabbagh
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24016
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
| | - Gabriela L. Carrillo
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24016
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
| | - Bhanu P. Tewari
- Neuroscience Department, School of Medicine, University of Virginia, Charlottesville, VA 22903
| | - Michael A. Fox
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24061
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061
- Department of Pediatrics, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016
| |
Collapse
|
5
|
Chen Z, Xu W, Zhang D, Chu J, Shen S, Ma Y, Wang Q, Liu G, Yao T, Huang Y, Ye H, Wang J, Ma J, Fan S. circCAMSAP1 promotes osteosarcoma progression and metastasis by sponging miR-145-5p and regulating FLI1 expression. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:1120-1135. [PMID: 33664993 PMCID: PMC7901030 DOI: 10.1016/j.omtn.2020.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022]
Abstract
Osteosarcoma is the most common primary malignant bone tumor in adolescents. While chemotherapy combined with surgery can improve the prognosis of some patients, chemo-resistance is still a huge obstacle in osteosarcoma treatment. Accumulating evidence demonstrates that circular RNAs (circRNAs) are involved in cancer progression and metastasis, but their specific role in osteosarcoma remains mostly undescribed. In this study, we performed circRNA deep sequencing and identified 88 distinct circRNAs from a human osteosarcoma cell lines group (143B, HOS, SJSA, and U2OS) and the human osteoblast hFOB 1.19 (control). We found that circCAMSAP1, also named hsa_circ_0004338, is significantly upregulated in human osteosarcoma tissues and cell lines, and it is positively correlated with osteosarcoma development. Silencing of circCAMSAP1 effectively suppresses osteosarcoma cell growth, apoptosis, migration, and invasion. Furthermore, we validated that circCAMSAP1 functions in osteosarcoma tumorigenesis through a circCAMSAP1/miR-145-5p/friend leukemia virus integration 1 (FLI1) pathway. FLI1 promotes osteosarcoma tumorigenesis and miR-145-5p suppresses FLI translation. circCAMSAP1 directly sequesters miR-145-5p in the cytoplasm and inhibits its activity to suppress osteosarcoma tumorigenesis. Moreover, the regulatory role of circCAMSAP1 upregulation was examined and validated in rats. In summary, our findings provide evidence that circCAMSAP1 act as a "microRNA sponge" and suggest a new therapeutic target of human osteosarcoma.
Collapse
Affiliation(s)
- Zizheng Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang Province, China.,Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Wenbin Xu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang Province, China
| | - Deguang Zhang
- Department of Head and Neck Surgery, Institution of Micro-Invasion Surgery of Zhejiang University, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, China
| | - Junjie Chu
- Department of Head and Neck Surgery, Institution of Micro-Invasion Surgery of Zhejiang University, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, China
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang Province, China
| | - Yan Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang Province, China
| | - Qingxin Wang
- Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Gang Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang Province, China
| | - Teng Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang Province, China
| | - Yizhen Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang Province, China.,Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Huali Ye
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang Province, China
| | - Jiying Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang Province, China
| | - Jianjun Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang Province, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang Province, China
| |
Collapse
|
6
|
Yoshioka N, Miyata S, Tamada A, Watanabe Y, Kawasaki A, Kitagawa H, Takao K, Miyakawa T, Takeuchi K, Igarashi M. Abnormalities in perineuronal nets and behavior in mice lacking CSGalNAcT1, a key enzyme in chondroitin sulfate synthesis. Mol Brain 2017; 10:47. [PMID: 28982363 PMCID: PMC5629790 DOI: 10.1186/s13041-017-0328-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/26/2017] [Indexed: 11/10/2022] Open
Abstract
Chondroitin sulfate (CS) is an important glycosaminoglycan and is mainly found in the extracellular matrix as CS proteoglycans. In the brain, CS proteoglycans are highly concentrated in perineuronal nets (PNNs), which surround synapses and modulate their functions. To investigate the importance of CS, we produced and precisely examined mice that were deficient in the CS synthesizing enzyme, CSGalNAcT1 (T1KO). Biochemical analysis of T1KO revealed that loss of this enzyme reduced the amount of CS by approximately 50% in various brain regions. The amount of CS in PNNs was also diminished in T1KO compared to wild-type mice, although the amount of a major CS proteoglycan core protein, aggrecan, was not changed. In T1KO, we observed abnormalities in several behavioral tests, including the open-field test, acoustic startle response, and social preference. These results suggest that T1 is important for plasticity, probably due to regulation of CS-dependent PNNs, and that T1KO is a good model for investigation of PNNs.
Collapse
Affiliation(s)
- Nozomu Yoshioka
- Department of Neurochemistry and Molecular Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan.,Transdiciplinary Research Program, Niigata University, Asahi-machi, Niigata, 951-8510, Japan.,Present address: Divisions of Neurobiology and Anatomy, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shinji Miyata
- Department of Biochemistry, Kobe Pharmaceutical University, Motoyamakita-machi, Kobe, 658-8558, Japan.,Institute for Advanced Research, Nagoya University, Furo-cho, Nagoya, 464-8601, Japan
| | - Atsushi Tamada
- Department of Neurochemistry and Molecular Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan.,Transdiciplinary Research Program, Niigata University, Asahi-machi, Niigata, 951-8510, Japan.,PRESTO, Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, 102-0075, Japan
| | - Yumi Watanabe
- Department of Neurochemistry and Molecular Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan.,Present address: Divisions of Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Asami Kawasaki
- Department of Neurochemistry and Molecular Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan.,Transdiciplinary Research Program, Niigata University, Asahi-machi, Niigata, 951-8510, Japan
| | - Hiroshi Kitagawa
- Department of Biochemistry, Kobe Pharmaceutical University, Motoyamakita-machi, Kobe, 658-8558, Japan
| | - Keizo Takao
- Section of Behavior Patterns, National Institute of Physiological Sciences, Okazaki, Aichi, 444-8787, Japan.,Division of Experimental Animal Resource and Development, Life Science Research Center, Toyama University, Toyama, 930-0194, Japan
| | - Tsuyoshi Miyakawa
- Section of Behavior Patterns, National Institute of Physiological Sciences, Okazaki, Aichi, 444-8787, Japan.,Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Kosei Takeuchi
- Department of Neurochemistry and Molecular Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan.,Department of Medical Biology, School of Medicine, Aichi Medical University, Nagakute, Aichi, 480-1103, Japan
| | - Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan. .,Transdiciplinary Research Program, Niigata University, Asahi-machi, Niigata, 951-8510, Japan.
| |
Collapse
|
7
|
Hao MM, Bergner AJ, Hirst CS, Stamp LA, Casagranda F, Bornstein JC, Boesmans W, Vanden Berghe P, Young HM. Spontaneous calcium waves in the developing enteric nervous system. Dev Biol 2017; 428:74-87. [PMID: 28528728 DOI: 10.1016/j.ydbio.2017.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 12/20/2022]
Abstract
The enteric nervous system (ENS) is an extensive network of neurons in the gut wall that arises from neural crest-derived cells. Like other populations of neural crest cells, it is known that enteric neural crest-derived cells (ENCCs) influence the behaviour of each other and therefore must communicate. However, little is known about how ENCCs communicate with each other. In this study, we used Ca2+ imaging to examine communication between ENCCs in the embryonic gut, using mice where ENCCs express a genetically-encoded calcium indicator. Spontaneous propagating calcium waves were observed between neighbouring ENCCs, through both neuronal and non-neuronal ENCCs. Pharmacological experiments showed wave propagation was not mediated by gap junctions, but by purinergic signalling via P2 receptors. The expression of several P2X and P2Y receptors was confirmed using RT-PCR. Furthermore, inhibition of P2 receptors altered the morphology of the ENCC network, without affecting neuronal differentiation or ENCC proliferation. It is well established that purines participate in synaptic transmission in the mature ENS. Our results describe, for the first time, purinergic signalling between ENCCs during pre-natal development, which plays roles in the propagation of Ca2+ waves between ENCCs and in ENCC network formation. One previous study has shown that calcium signalling plays a role in sympathetic ganglia formation; our results suggest that calcium waves are likely to be important for enteric ganglia development.
Collapse
Affiliation(s)
- Marlene M Hao
- Department of Anatomy and Neuroscience, University of Melbourne, Australia; Laboratory for Enteric Neuroscience, TARGID, University of Leuven, Belgium.
| | - Annette J Bergner
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| | - Caroline S Hirst
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| | - Lincon A Stamp
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| | - Franca Casagranda
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| | | | - Werend Boesmans
- Laboratory for Enteric Neuroscience, TARGID, University of Leuven, Belgium
| | | | - Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| |
Collapse
|
8
|
He J, Liu W, Wang S, Liu W, Liu H. The SREC-I and SREC-II associated with epidermal growth factor in scavenger receptor family are the potential regulative transmembrane receptors in Larimichthys crocea. FISH & SHELLFISH IMMUNOLOGY 2015; 47:182-195. [PMID: 26343178 DOI: 10.1016/j.fsi.2015.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/03/2015] [Accepted: 08/14/2015] [Indexed: 06/05/2023]
Abstract
In innate immunity, the regulation of the immunologic gene expression plays a vital role in defense against pathogenic threat. The class F scavenger receptors (SCARFs), a kind of crucial immunologic type I transmembrane receptors, mainly involve in the signal transmission and eliminating pathogens in host immune system. In this study, the SREC-I and SREC-II of SCARFs in Larimichthys crocea (designated as LycSREC1 and LycSREC2 respectively) were first identified, the potential genetic locus relationships with other species were depicted and the features of gene expression after Vibrio alginolyticus stimulation were tested. The results demonstrated that the complete ORF sequences of two candidates were 3024 bp and 2832 bp (KM884873 and KM884874) respectively including some important domains and motifs, such as EGF/EGF-like domains, TRAF2-binding consensus motif, generic motif and atipical motif. The gene location maps and genetic locus interpreted that the DNA sequences of LycSREC1 and LycSREC2 were 7603 bp and 4883 bp, and some locus had changed compared with human being, but three more crucial genetic locus were conservative among ten species. Furthermore, quantitative real-time PCR (qRT-PCR) analysis indicated that the highest mRNA expression of LycSREC1 and LycSREC2 were both in liver among eight detected tissues, and their expression were up-regulated by V. alginolyticus stimulation. All these findings would contribute to better understanding the biologic function of SCARFs in defending against pathogenic bacteria challenge and further exploring the innate immune of sciaenidae fish.
Collapse
Affiliation(s)
- Jianyu He
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Wei Liu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Shaoping Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Wan Liu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Huihui Liu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
9
|
Ottone C, Krusche B, Whitby A, Clements M, Quadrato G, Pitulescu ME, Adams RH, Parrinello S. Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells. Nat Cell Biol 2014; 16:1045-56. [PMID: 25283993 PMCID: PMC4298702 DOI: 10.1038/ncb3045] [Citation(s) in RCA: 258] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/28/2014] [Indexed: 02/07/2023]
Abstract
The vasculature is a prominent component of the subventricular zone neural stem cell niche. Although quiescent neural stem cells physically contact blood vessels at specialised endfeet, the significance of this interaction is not understood. In contrast, it is well established that vasculature-secreted soluble factors promote lineage progression of committed progenitors. Here we specifically investigated the role of cell-cell contact-dependent signalling in the vascular niche. Unexpectedly, we find that direct cell-cell interactions with endothelial cells enforces quiescence and promotes stem cell identity. Mechanistically, endothelial ephrinB2 and Jagged1 mediate these effects by suppressing cell-cycle entry downstream of mitogens and inducing stemness genes to jointly inhibit differentiation. In vivo, endothelial-specific ablation of either of the genes which encode these proteins, Efnb2 and Jag1 respectively, aberrantly activates quiescent stem cells, resulting in depletion. Thus, we identify the vasculature as a critical niche compartment for stem cell maintenance, furthering our understanding of how anchorage to the niche maintains stem cells within a pro-differentiative microenvironment.
Collapse
Affiliation(s)
- Cristina Ottone
- Cell Interactions and Cancer Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road London W12 0NN, UK
| | - Benjamin Krusche
- Cell Interactions and Cancer Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road London W12 0NN, UK
| | - Ariadne Whitby
- Cell Interactions and Cancer Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road London W12 0NN, UK
| | - Melanie Clements
- Cell Interactions and Cancer Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road London W12 0NN, UK
| | - Giorgia Quadrato
- Hertie Institute for Brain Research, University of Tuebingen, Tuebingen D-72076, Germany
| | - Mara E Pitulescu
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and Faculty of Medicine, University of Muenster, Muenster D-48149, Germany
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and Faculty of Medicine, University of Muenster, Muenster D-48149, Germany
| | - Simona Parrinello
- Cell Interactions and Cancer Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road London W12 0NN, UK
| |
Collapse
|
10
|
Li W, Peng H, Cao T, Sato R, McDaniels SJ, Kobori H, Navar LG, Feng Y. Brain-targeted (pro)renin receptor knockdown attenuates angiotensin II-dependent hypertension. Hypertension 2012; 59:1188-94. [PMID: 22526255 DOI: 10.1161/hypertensionaha.111.190108] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The (pro)renin receptor is a newly discovered member of the brain renin-angiotensin system. To investigate the role of brain (pro)renin receptor in hypertension, adeno-associated virus-mediated (pro)renin receptor short hairpin RNA was used to knockdown (pro)renin receptor expression in the brain of nontransgenic normotensive and human renin-angiotensinogen double-transgenic hypertensive mice. Blood pressure was monitored using implanted telemetric probes in conscious animals. Real-time PCR and immunostaining were performed to determine (pro)renin receptor, angiotensin II type 1 receptor, and vasopressin mRNA levels. Plasma vasopressin levels were determined by ELISA. Double-transgenic mice exhibited higher blood pressure, elevated cardiac and vascular sympathetic tone, and impaired spontaneous baroreflex sensitivity. Intracerebroventricular delivery of (pro)renin receptor short-hairpin RNA significantly reduced blood pressure, cardiac and vasomotor sympathetic tone, and improved baroreflex sensitivity compared with the control virus treatment in double-transgenic mice. (Pro)renin receptor knockdown significantly reduced angiotensin II type 1 receptor and vasopressin levels in double-transgenic mice. These data indicate that (pro)renin receptor knockdown in the brain attenuates angiotensin II-dependent hypertension and is associated with a decrease in sympathetic tone and an improvement of the baroreflex sensitivity. In addition, brain-targeted (pro)renin receptor knockdown is associated with downregulation of angiotensin II type 1 receptor and vasopressin levels. We conclude that central (pro)renin receptor contributes to the pathogenesis of hypertension in human renin-angiotensinogen transgenic mice.
Collapse
Affiliation(s)
- Wencheng Li
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Kawano H, Kimura-Kuroda J, Komuta Y, Yoshioka N, Li HP, Kawamura K, Li Y, Raisman G. Role of the lesion scar in the response to damage and repair of the central nervous system. Cell Tissue Res 2012; 349:169-80. [PMID: 22362507 PMCID: PMC3375417 DOI: 10.1007/s00441-012-1336-5] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 01/19/2012] [Indexed: 02/06/2023]
Abstract
Traumatic damage to the central nervous system (CNS) destroys the blood–brain barrier (BBB) and provokes the invasion of hematogenous cells into the neural tissue. Invading leukocytes, macrophages and lymphocytes secrete various cytokines that induce an inflammatory reaction in the injured CNS and result in local neural degeneration, formation of a cystic cavity and activation of glial cells around the lesion site. As a consequence of these processes, two types of scarring tissue are formed in the lesion site. One is a glial scar that consists in reactive astrocytes, reactive microglia and glial precursor cells. The other is a fibrotic scar formed by fibroblasts, which have invaded the lesion site from adjacent meningeal and perivascular cells. At the interface, the reactive astrocytes and the fibroblasts interact to form an organized tissue, the glia limitans. The astrocytic reaction has a protective role by reconstituting the BBB, preventing neuronal degeneration and limiting the spread of damage. While much attention has been paid to the inhibitory effects of the astrocytic component of the scars on axon regeneration, this review will cover a number of recent studies in which manipulations of the fibroblastic component of the scar by reagents, such as blockers of collagen synthesis have been found to be beneficial for axon regeneration. To what extent these changes in the fibroblasts act via subsequent downstream actions on the astrocytes remains for future investigation.
Collapse
Affiliation(s)
- Hitoshi Kawano
- Laboratory of Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya City, Tokyo 156-8506, Japan.
| | | | | | | | | | | | | | | |
Collapse
|