1
|
Ogata G, Partida GJ, Fasoli A, Ishida AT. Calcium/calmodulin-dependent protein kinase II associates with the K + channel isoform Kv4.3 in adult rat optic nerve. Front Neuroanat 2022; 16:958986. [PMID: 36172564 PMCID: PMC9512010 DOI: 10.3389/fnana.2022.958986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
Spikes are said to exhibit "memory" in that they can be altered by spikes that precede them. In retinal ganglion cell axons, for example, rapid spiking can slow the propagation of subsequent spikes. This increases inter-spike interval and, thus, low-pass filters instantaneous spike frequency. Similarly, a K+ ion channel blocker (4-aminopyridine, 4AP) increases the time-to-peak of compound action potentials recorded from optic nerve, and we recently found that reducing autophosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII) does too. These results would be expected if CaMKII modulates spike propagation by regulating 4AP-sensitive K+ channels. As steps toward identifying a possible substrate, we test whether (i) 4AP alters optic nerve spike shape in ways consistent with reducing K+ current, (ii) 4AP alters spike propagation consistent with effects of reducing CaMKII activation, (iii) antibodies directed against 4AP-sensitive and CaMKII-regulated K+ channels bind to optic nerve axons, and (iv) optic nerve CaMKII co-immunoprecipitates with 4AP-sensitive K+ channels. We find that, in adult rat optic nerve, (i) 4AP selectively slows spike repolarization, (ii) 4AP slows spike propagation, (iii) immunogen-blockable staining is achieved with anti-Kv4.3 antibodies but not with antibodies directed against Kv1.4 or Kv4.2, and (iv) CaMKII associates with Kv4.3. Kv4.3 may thus be a substrate that underlies activity-dependent spike regulation in adult visual system pathways.
Collapse
Affiliation(s)
- Genki Ogata
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA, United States
| | - Gloria J. Partida
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA, United States
| | - Anna Fasoli
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA, United States
| | - Andrew T. Ishida
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA, United States
- Department of Ophthalmology and Vision Science, University of California, Sacramento, Sacramento, CA, United States
| |
Collapse
|
2
|
Chi G, Liang Q, Sridhar A, Cowgill JB, Sader K, Radjainia M, Qian P, Castro-Hartmann P, Venkaya S, Singh NK, McKinley G, Fernandez-Cid A, Mukhopadhyay SMM, Burgess-Brown NA, Delemotte L, Covarrubias M, Dürr KL. Cryo-EM structure of the human Kv3.1 channel reveals gating control by the cytoplasmic T1 domain. Nat Commun 2022; 13:4087. [PMID: 35840580 PMCID: PMC9287412 DOI: 10.1038/s41467-022-29594-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/24/2022] [Indexed: 11/26/2022] Open
Abstract
Kv3 channels have distinctive gating kinetics tailored for rapid repolarization in fast-spiking neurons. Malfunction of this process due to genetic variants in the KCNC1 gene causes severe epileptic disorders, yet the structural determinants for the unusual gating properties remain elusive. Here, we present cryo-electron microscopy structures of the human Kv3.1a channel, revealing a unique arrangement of the cytoplasmic tetramerization domain T1 which facilitates interactions with C-terminal axonal targeting motif and key components of the gating machinery. Additional interactions between S1/S2 linker and turret domain strengthen the interface between voltage sensor and pore domain. Supported by molecular dynamics simulations, electrophysiological and mutational analyses, we identify several residues in the S4/S5 linker which influence the gating kinetics and an electrostatic interaction between acidic residues in α6 of T1 and R449 in the pore-flanking S6T helices. These findings provide insights into gating control and disease mechanisms and may guide strategies for the design of pharmaceutical drugs targeting Kv3 channels.
Collapse
Affiliation(s)
- Gamma Chi
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Qiansheng Liang
- Department of Neuroscience and Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, 19107, UK
| | - Akshay Sridhar
- Department of Applied Physics, Science for Life Laboratory, KTH, Solna, Sweden
| | - John B Cowgill
- Department of Applied Physics, Science for Life Laboratory, KTH, Solna, Sweden
| | - Kasim Sader
- Materials and Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG, Eindhoven, Netherlands
| | - Mazdak Radjainia
- Materials and Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG, Eindhoven, Netherlands
| | - Pu Qian
- Materials and Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG, Eindhoven, Netherlands
| | - Pablo Castro-Hartmann
- Materials and Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG, Eindhoven, Netherlands
| | - Shayla Venkaya
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
- Exscientia Ltd., The Schrödinger Building, Heatley Road, The Oxford Science Park, Oxford, OX4 4GE, UK
| | - Nanki Kaur Singh
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Gavin McKinley
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Alejandra Fernandez-Cid
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
- Exact Sciences Ltd., The Sherard Building, Edmund Halley Road, The Oxford Science Park, Oxford, OX4 4DQ, UK
| | - Shubhashish M M Mukhopadhyay
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
- Exscientia Ltd., The Schrödinger Building, Heatley Road, The Oxford Science Park, Oxford, OX4 4GE, UK
| | - Nicola A Burgess-Brown
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
- Exact Sciences Ltd., The Sherard Building, Edmund Halley Road, The Oxford Science Park, Oxford, OX4 4DQ, UK
| | - Lucie Delemotte
- Department of Applied Physics, Science for Life Laboratory, KTH, Solna, Sweden
| | - Manuel Covarrubias
- Department of Neuroscience and Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, 19107, UK
| | - Katharina L Dürr
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK.
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK.
- OMass Therapeutics, Ltd., The Schrödinger Building, Heatley Road, The Oxford Science Park, Oxford, OX4 4GE, UK.
| |
Collapse
|
3
|
Application of piconewton forces to individual filopodia reveals mechanosensory role of L-type Ca 2+ channels. Biomaterials 2022; 284:121477. [PMID: 35395455 DOI: 10.1016/j.biomaterials.2022.121477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/18/2022] [Indexed: 11/02/2022]
Abstract
Filopodia are ubiquitous membrane projections that play crucial role in guiding cell migration on rigid substrates and through extracellular matrix by utilizing yet unknown mechanosensing molecular pathways. As recent studies show that Ca2+ channels localized to filopodia play an important role in regulation of their formation and since some Ca2+ channels are known to be mechanosensitive, force-dependent activity of filopodial Ca2+ channels might be linked to filopodia's mechanosensing function. We tested this hypothesis by monitoring changes in the intra-filopodial Ca2+ level in response to application of stretching force to individual filopodia of several cell types using optical tweezers. Results show that stretching forces of tens of pN strongly promote Ca2+ influx into filopodia, causing persistent Ca2+ oscillations that last for minutes even after the force is released. Several known mechanosensitive Ca2+ channels, such as Piezo 1, Piezo 2 and TRPV4, were found to be dispensable for the observed force-dependent Ca2+ influx, while L-type Ca2+ channels appear to be a key player in the discovered phenomenon. As previous studies have shown that intra-filopodial transient Ca2+ signals play an important role in guidance of cell migration, our results suggest that the force-dependent activation of L-type Ca2+ channels may contribute to this process. Overall, our study reveals an intricate interplay between mechanical forces and Ca2+ signaling in filopodia, providing novel mechanistic insights for the force-dependent filopodia functions in guidance of cell migration.
Collapse
|
4
|
Boscia F, Elkjaer ML, Illes Z, Kukley M. Altered Expression of Ion Channels in White Matter Lesions of Progressive Multiple Sclerosis: What Do We Know About Their Function? Front Cell Neurosci 2021; 15:685703. [PMID: 34276310 PMCID: PMC8282214 DOI: 10.3389/fncel.2021.685703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022] Open
Abstract
Despite significant advances in our understanding of the pathophysiology of multiple sclerosis (MS), knowledge about contribution of individual ion channels to axonal impairment and remyelination failure in progressive MS remains incomplete. Ion channel families play a fundamental role in maintaining white matter (WM) integrity and in regulating WM activities in axons, interstitial neurons, glia, and vascular cells. Recently, transcriptomic studies have considerably increased insight into the gene expression changes that occur in diverse WM lesions and the gene expression fingerprint of specific WM cells associated with secondary progressive MS. Here, we review the ion channel genes encoding K+, Ca2+, Na+, and Cl- channels; ryanodine receptors; TRP channels; and others that are significantly and uniquely dysregulated in active, chronic active, inactive, remyelinating WM lesions, and normal-appearing WM of secondary progressive MS brain, based on recently published bulk and single-nuclei RNA-sequencing datasets. We discuss the current state of knowledge about the corresponding ion channels and their implication in the MS brain or in experimental models of MS. This comprehensive review suggests that the intense upregulation of voltage-gated Na+ channel genes in WM lesions with ongoing tissue damage may reflect the imbalance of Na+ homeostasis that is observed in progressive MS brain, while the upregulation of a large number of voltage-gated K+ channel genes may be linked to a protective response to limit neuronal excitability. In addition, the altered chloride homeostasis, revealed by the significant downregulation of voltage-gated Cl- channels in MS lesions, may contribute to an altered inhibitory neurotransmission and increased excitability.
Collapse
Affiliation(s)
- Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Maria Louise Elkjaer
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Maria Kukley
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
5
|
Wu J, Kaczmarek LK. Modulation of Neuronal Potassium Channels During Auditory Processing. Front Neurosci 2021; 15:596478. [PMID: 33613177 PMCID: PMC7887315 DOI: 10.3389/fnins.2021.596478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/11/2021] [Indexed: 11/16/2022] Open
Abstract
The extraction and localization of an auditory stimulus of interest from among multiple other sounds, as in the ‘cocktail-party’ situation, requires neurons in auditory brainstem nuclei to encode the timing, frequency, and intensity of sounds with high fidelity, and to compare inputs coming from the two cochleae. Accurate localization of sounds requires certain neurons to fire at high rates with high temporal accuracy, a process that depends heavily on their intrinsic electrical properties. Studies have shown that the membrane properties of auditory brainstem neurons, particularly their potassium currents, are not fixed but are modulated in response to changes in the auditory environment. Here, we review work focusing on how such modulation of potassium channels is critical to shaping the firing pattern and accuracy of these neurons. We describe how insights into the role of specific channels have come from human gene mutations that impair localization of sounds in space. We also review how short-term and long-term modulation of these channels maximizes the extraction of auditory information, and how errors in the regulation of these channels contribute to deficits in decoding complex auditory information.
Collapse
Affiliation(s)
- Jing Wu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
6
|
Kaczmarek LK, Zhang Y. Kv3 Channels: Enablers of Rapid Firing, Neurotransmitter Release, and Neuronal Endurance. Physiol Rev 2017; 97:1431-1468. [PMID: 28904001 PMCID: PMC6151494 DOI: 10.1152/physrev.00002.2017] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/24/2017] [Accepted: 05/05/2017] [Indexed: 12/11/2022] Open
Abstract
The intrinsic electrical characteristics of different types of neurons are shaped by the K+ channels they express. From among the more than 70 different K+ channel genes expressed in neurons, Kv3 family voltage-dependent K+ channels are uniquely associated with the ability of certain neurons to fire action potentials and to release neurotransmitter at high rates of up to 1,000 Hz. In general, the four Kv3 channels Kv3.1-Kv3.4 share the property of activating and deactivating rapidly at potentials more positive than other channels. Each Kv3 channel gene can generate multiple protein isoforms, which contribute to the high-frequency firing of neurons such as auditory brain stem neurons, fast-spiking GABAergic interneurons, and Purkinje cells of the cerebellum, and to regulation of neurotransmitter release at the terminals of many neurons. The different Kv3 channels have unique expression patterns and biophysical properties and are regulated in different ways by protein kinases. In this review, we cover the function, localization, and modulation of Kv3 channels and describe how levels and properties of the channels are altered by changes in ongoing neuronal activity. We also cover how the protein-protein interaction of these channels with other proteins affects neuronal functions, and how mutations or abnormal regulation of Kv3 channels are associated with neurological disorders such as ataxias, epilepsies, schizophrenia, and Alzheimer's disease.
Collapse
Affiliation(s)
- Leonard K Kaczmarek
- Departments of Pharmacology and of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Yalan Zhang
- Departments of Pharmacology and of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
7
|
Kim SH, Park YR, Lee B, Choi B, Kim H, Kim CH. Reduction of Cav1.3 channels in dorsal hippocampus impairs the development of dentate gyrus newborn neurons and hippocampal-dependent memory tasks. PLoS One 2017; 12:e0181138. [PMID: 28715454 PMCID: PMC5513490 DOI: 10.1371/journal.pone.0181138] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022] Open
Abstract
Cav1.3 has been suggested to mediate hippocampal neurogenesis of adult mice and contribute to hippocampal-dependent learning and memory processes. However, the mechanism of Cav1.3 contribution in these processes is unclear. Here, roles of Cav1.3 of mouse dorsal hippocampus during newborn cell development were examined. We find that knock-out (KO) of Cav1.3 resulted in the reduction of survival of newborn neurons at 28 days old after mitosis. The retroviral eGFP expression showed that both dendritic complexity and the number and length of mossy fiber bouton (MFB) filopodia of newborn neurons at ≥ 14 days old were significantly reduced in KO mice. Both contextual fear conditioning (CFC) and object-location recognition tasks were impaired in recent (1 day) memory test while passive avoidance task was impaired only in remote (≥ 20 days) memory in KO mice. Results using adeno-associated virus (AAV)-mediated Cav1.3 knock-down (KD) or retrovirus-mediated KD in dorsal hippocampal DG area showed that the recent memory of CFC was impaired in both KD mice but the remote memory was impaired only in AAV KD mice, suggesting that Cav1.3 of mature neurons play important roles in both recent and remote CFC memory while Cav1.3 in newborn neurons is selectively involved in the recent CFC memory process. Meanwhile, AAV KD of Cav1.3 in ventral hippocampal area has no effect on the recent CFC memory. In conclusion, the results suggest that Cav1.3 in newborn neurons of dorsal hippocampus is involved in the survival of newborn neurons while mediating developments of dendritic and axonal processes of newborn cells and plays a role in the memory process differentially depending on the stage of maturation and the type of learning task.
Collapse
Affiliation(s)
- Su-Hyun Kim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, Korea
- Neuroscience Program, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, Korea
| | - Ye-Ryoung Park
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, Korea
- Neuroscience Program, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, Korea
| | - Boyoung Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Korea
| | - Byungil Choi
- Department of Anatomy and Division of Brain Korea 21 Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21 Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Chong-Hyun Kim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, Korea
- Neuroscience Program, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, Korea
- * E-mail:
| |
Collapse
|
8
|
K + Channel Kv3.4 Is Essential for Axon Growth by Limiting the Influx of Ca 2+ into Growth Cones. J Neurosci 2017; 37:4433-4449. [PMID: 28320840 DOI: 10.1523/jneurosci.1076-16.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 11/21/2022] Open
Abstract
Membrane excitability in the axonal growth cones of embryonic neurons influences axon growth. Voltage-gated K+ (Kv) channels are key factors in controlling membrane excitability, but whether they regulate axon growth remains unclear. Here, we report that Kv3.4 is expressed in the axonal growth cones of embryonic spinal commissural neurons, motoneurons, dorsal root ganglion neurons, retinal ganglion cells, and callosal projection neurons during axon growth. Our in vitro (cultured dorsal spinal neurons of chick embryos) and in vivo (developing chick spinal commissural axons and rat callosal axons) findings demonstrate that knockdown of Kv3.4 by a specific shRNA impedes axon initiation, elongation, pathfinding, and fasciculation. In cultured dorsal spinal neurons, blockade of Kv3.4 by blood depressing substance II suppresses axon growth via an increase in the amplitude and frequency of Ca2+ influx through T-type and L-type Ca2+ channels. Electrophysiological results show that Kv3.4, the major Kv channel in the axonal growth cones of embryonic dorsal spinal neurons, is activated at more hyperpolarized potentials and inactivated more slowly than it is in postnatal and adult neurons. The opening of Kv3.4 channels effectively reduces growth cone membrane excitability, thereby limiting excessive Ca2+ influx at subthreshold potentials or during Ca2+-dependent action potentials. Furthermore, excessive Ca2+ influx induced by an optogenetic approach also inhibits axon growth. Our findings suggest that Kv3.4 reduces growth cone membrane excitability and maintains [Ca2+]i at an optimal concentration for normal axon growth.SIGNIFICANCE STATEMENT Accumulating evidence supports the idea that impairments in axon growth contribute to many clinical disorders, such as autism spectrum disorders, corpus callosum agenesis, Joubert syndrome, Kallmann syndrome, and horizontal gaze palsy with progressive scoliosis. Membrane excitability in the growth cone, which is mainly controlled by voltage-gated Ca2+ (Cav) and K+ (Kv) channels, modulates axon growth. The role of Cav channels during axon growth is well understood, but it is unclear whether Kv channels control axon outgrowth by regulating Ca2+ influx. This report shows that Kv3.4, which is transiently expressed in the axonal growth cones of many types of embryonic neurons, acts to reduce excessive Ca2+ influx through Cav channels and thus permits normal axon outgrowth.
Collapse
|
9
|
Effect of Extremely Low Frequency Electromagnetic Field on MAP2 and Nestin Gene Expression of Hair Follicle Dermal Papilla Cells. Int J Artif Organs 2016; 39:294-9. [PMID: 27515859 DOI: 10.5301/ijao.5000512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2016] [Indexed: 12/19/2022]
Abstract
Introduction In recent years, the extremely low frequency electromagnetic field (ELF-EMF) has attracted a great deal of scientific interest. The ELF-EMF signal is able to control ion transport across ion channels and therefore induce cell differentiation. Aim The purpose of this study was to investigate the effect of ELF-EMF (50 Hz, 1 mT) on MAP2 and Nestin gene expression of dermal papilla mesenchymal cells (DPCs). Methods In order to examine the effect of chemical and electromagnetic factors on gene expression, 4 experimental groups, namely chemical (cell exposure to chemical signals), EMF (exposing cells to ELF-EMF), chemical-EMF (subjecting cells to chemical signals and ELF-EMF) and control (with no treatment) groups, were prepared, treated for 5 days, and studied. To assess the effect of extended test time on the expression of neural differentiation markers (Nestin and MAP2), an EMF group was prepared and treated for a period of 14 consecutive days. The beneficial role of EMF in inducing neural differentiation was shown by real-time PCR analysis. Results The higher expression of MAP2 after 14 days compared to that after 5 days and decrease of cell proliferation on days 5 to 20 were indicative of the positive effect of extending treatment time on neural differentiation by evaluation of gene expression in EMF group.
Collapse
|
10
|
Zhang Y, Zhang XF, Fleming MR, Amiri A, El-Hassar L, Surguchev AA, Hyland C, Jenkins DP, Desai R, Brown MR, Gazula VR, Waters MF, Large CH, Horvath TL, Navaratnam D, Vaccarino FM, Forscher P, Kaczmarek LK. Kv3.3 Channels Bind Hax-1 and Arp2/3 to Assemble a Stable Local Actin Network that Regulates Channel Gating. Cell 2016; 165:434-448. [PMID: 26997484 PMCID: PMC4826296 DOI: 10.1016/j.cell.2016.02.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 11/13/2015] [Accepted: 02/03/2016] [Indexed: 10/22/2022]
Abstract
Mutations in the Kv3.3 potassium channel (KCNC3) cause cerebellar neurodegeneration and impair auditory processing. The cytoplasmic C terminus of Kv3.3 contains a proline-rich domain conserved in proteins that activate actin nucleation through Arp2/3. We found that Kv3.3 recruits Arp2/3 to the plasma membrane, resulting in formation of a relatively stable cortical actin filament network resistant to cytochalasin D that inhibits fast barbed end actin assembly. These Kv3.3-associated actin structures are required to prevent very rapid N-type channel inactivation during short depolarizations of the plasma membrane. The effects of Kv3.3 on the actin cytoskeleton are mediated by the binding of the cytoplasmic C terminus of Kv3.3 to Hax-1, an anti-apoptotic protein that regulates actin nucleation through Arp2/3. A human Kv3.3 mutation within a conserved proline-rich domain produces channels that bind Hax-1 but are impaired in recruiting Arp2/3 to the plasma membrane, resulting in growth cones with deficient actin veils in stem cell-derived neurons.
Collapse
Affiliation(s)
- Yalan Zhang
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - Xiao-Feng Zhang
- Department of Molecular, Cellular and Developmental Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - Matthew R. Fleming
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - Anahita Amiri
- Department of Child Study Center and Neurobiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - Lynda El-Hassar
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - Alexei A. Surguchev
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - Callen Hyland
- Department of Molecular, Cellular and Developmental Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - David P. Jenkins
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - Rooma Desai
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - Maile R. Brown
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - Valeswara-Rao Gazula
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - Michael F. Waters
- Department of Neurology, University of Florida College of Medicine, HSC Box 100236, Gainesville, FL 32610-0236
| | - Charles H. Large
- Autifony Therapeutics Limited, Imperial College Incubator, Level 1 Bessemer Building, London, SW7 2AZ UK
| | - Tamas L. Horvath
- Department of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - Dhasakumar Navaratnam
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - Flora M. Vaccarino
- Department of Child Study Center and Neurobiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - Paul Forscher
- Department of Molecular, Cellular and Developmental Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - Leonard K. Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| |
Collapse
|
11
|
Hirst CS, Foong JPP, Stamp LA, Fegan E, Dent S, Cooper EC, Lomax AE, Anderson CR, Bornstein JC, Young HM, McKeown SJ. Ion channel expression in the developing enteric nervous system. PLoS One 2015; 10:e0123436. [PMID: 25798587 PMCID: PMC4370736 DOI: 10.1371/journal.pone.0123436] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/03/2015] [Indexed: 12/21/2022] Open
Abstract
The enteric nervous system arises from neural crest-derived cells (ENCCs) that migrate caudally along the embryonic gut. The expression of ion channels by ENCCs in embryonic mice was investigated using a PCR-based array, RT-PCR and immunohistochemistry. Many ion channels, including chloride, calcium, potassium and sodium channels were already expressed by ENCCs at E11.5. There was an increase in the expression of numerous ion channel genes between E11.5 and E14.5, which coincides with ENCC migration and the first extension of neurites by enteric neurons. Previous studies have shown that a variety of ion channels regulates neurite extension and migration of many cell types. Pharmacological inhibition of a range of chloride or calcium channels had no effect on ENCC migration in cultured explants or neuritogenesis in vitro. The non-selective potassium channel inhibitors, TEA and 4-AP, retarded ENCC migration and neuritogenesis, but only at concentrations that also resulted in cell death. In summary, a large range of ion channels is expressed while ENCCs are colonizing the gut, but we found no evidence that ENCC migration or neuritogenesis requires chloride, calcium or potassium channel activity. Many of the ion channels are likely to be involved in the development of electrical excitability of enteric neurons.
Collapse
Affiliation(s)
- Caroline S. Hirst
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Jaime P. P. Foong
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, Australia
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Lincon A. Stamp
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Emily Fegan
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Stephan Dent
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Edward C. Cooper
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alan E. Lomax
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Colin R. Anderson
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Joel C. Bornstein
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Heather M. Young
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| | - Sonja J. McKeown
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
12
|
Lewis BB, Miller LE, Herbst WA, Saha MS. The role of voltage-gated calcium channels in neurotransmitter phenotype specification: Coexpression and functional analysis in Xenopus laevis. J Comp Neurol 2014; 522:2518-31. [PMID: 24477801 PMCID: PMC4043876 DOI: 10.1002/cne.23547] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/22/2014] [Accepted: 01/22/2014] [Indexed: 12/20/2022]
Abstract
Calcium activity has been implicated in many neurodevelopmental events, including the specification of neurotransmitter phenotypes. Higher levels of calcium activity lead to an increased number of inhibitory neural phenotypes, whereas lower levels of calcium activity lead to excitatory neural phenotypes. Voltage-gated calcium channels (VGCCs) allow for rapid calcium entry and are expressed during early neural stages, making them likely regulators of activity-dependent neurotransmitter phenotype specification. To test this hypothesis, multiplex fluorescent in situ hybridization was used to characterize the coexpression of eight VGCC α1 subunits with the excitatory and inhibitory neural markers xVGlut1 and xVIAAT in Xenopus laevis embryos. VGCC coexpression was higher with xVGlut1 than xVIAAT, especially in the hindbrain, spinal cord, and cranial nerves. Calcium activity was also analyzed on a single-cell level, and spike frequency was correlated with the expression of VGCC α1 subunits in cell culture. Cells expressing Cav2.1 and Cav2.2 displayed increased calcium spiking compared with cells not expressing this marker. The VGCC antagonist diltiazem and agonist (−)BayK 8644 were used to manipulate calcium activity. Diltiazem exposure increased the number of glutamatergic cells and decreased the number of γ-aminobutyric acid (GABA)ergic cells, whereas (−)BayK 8644 exposure decreased the number of glutamatergic cells without having an effect on the number of GABAergic cells. Given that the expression and functional manipulation of VGCCs are correlated with neurotransmitter phenotype in some, but not all, experiments, VGCCs likely act in combination with a variety of other signaling factors to determine neuronal phenotype specification. J. Comp. Neurol. 522:2518–2531, 2014.
Collapse
Affiliation(s)
- Brittany B Lewis
- Department of Biology, College of William and Mary, Williamsburg, Virginia, 23185
| | | | | | | |
Collapse
|