1
|
Greig LC, Woodworth MB, Poulopoulos A, Lim S, Macklis JD. BEAM: A combinatorial recombinase toolbox for binary gene expression and mosaic genetic analysis. Cell Rep 2024; 43:114650. [PMID: 39159043 DOI: 10.1016/j.celrep.2024.114650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 05/25/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024] Open
Abstract
We describe a binary expression aleatory mosaic (BEAM) system, which relies on DNA delivery by transfection or viral transduction along with nested recombinase activity to generate two genetically distinct, non-overlapping populations of cells for comparative analysis. Control cells labeled with red fluorescent protein (RFP) can be directly compared with experimental cells manipulated by genetic gain or loss of function and labeled with GFP. Importantly, BEAM incorporates recombinase-dependent signal amplification and delayed reporter expression to enable sharper delineation of control and experimental cells and to improve reliability relative to existing methods. We applied BEAM to a variety of known phenotypes to illustrate its advantages for identifying temporally or spatially aberrant phenotypes, for revealing changes in cell proliferation or death, and for controlling for procedural variability. In addition, we used BEAM to test the cortical protomap hypothesis at the individual radial unit level, revealing that area identity is cell autonomously specified in adjacent radial units.
Collapse
Affiliation(s)
- Luciano C Greig
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Mollie B Woodworth
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Alexandros Poulopoulos
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Stephanie Lim
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Jeffrey D Macklis
- Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Greig LC, Woodworth MB, Poulopoulos A, Lim S, Macklis JD. BEAM: a combinatorial recombinase toolbox for binary gene expression and mosaic analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528875. [PMID: 36824714 PMCID: PMC9949094 DOI: 10.1101/2023.02.16.528875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Genetic mosaic analysis, in which mutant cells reside intermingled with wild-type cells, is a powerful experimental approach, but has not been widely used in mice because existing genome-based strategies require complicated and protracted breeding schemes. We have developed an alternative approach termed BEAM (for Binary Expression Aleatory Mosaic) that relies on sparse recombinase activation to generate two genetically distinct, non-overlapping populations of cells for comparative analysis. Following delivery of DNA constructs by transfection or viral transduction, combinatorial recombinase activity generates two distinct populations of cells labeled with either green or red fluorescent protein. Any gene of interest can be mis-expressed or deleted in one population for comparison with intermingled control cells. We have extensively optimized and characterized this system both in vitro and in vivo , and demonstrate its power for investigating cell autonomy, identifying temporally or spatially aberrant phenotypes, revealing changes in cell proliferation or death, and controlling for procedural variability.
Collapse
|
3
|
Nano PR, Bhaduri A. Evaluation of advances in cortical development using model systems. Dev Neurobiol 2022; 82:408-427. [PMID: 35644985 PMCID: PMC10924780 DOI: 10.1002/dneu.22879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 11/11/2022]
Abstract
Compared with that of even the closest primates, the human cortex displays a high degree of specialization and expansion that largely emerges developmentally. Although decades of research in the mouse and other model systems has revealed core tenets of cortical development that are well preserved across mammalian species, small deviations in transcription factor expression, novel cell types in primates and/or humans, and unique cortical architecture distinguish the human cortex. Importantly, many of the genes and signaling pathways thought to drive human-specific cortical expansion also leave the brain vulnerable to disease, as the misregulation of these factors is highly correlated with neurodevelopmental and neuropsychiatric disorders. However, creating a comprehensive understanding of human-specific cognition and disease remains challenging. Here, we review key stages of cortical development and highlight known or possible differences between model systems and the developing human brain. By identifying the developmental trajectories that may facilitate uniquely human traits, we highlight open questions in need of approaches to examine these processes in a human context and reveal translatable insights into human developmental disorders.
Collapse
Affiliation(s)
- Patricia R Nano
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Aparna Bhaduri
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
4
|
James SS, Krubitzer LA, Wilson SP. Modelling the emergence of whisker barrels. eLife 2020; 9:55588. [PMID: 32988453 PMCID: PMC7524548 DOI: 10.7554/elife.55588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/26/2020] [Indexed: 11/13/2022] Open
Abstract
Brain development relies on an interplay between genetic specification and self-organization. Striking examples of this relationship can be found in the somatosensory brainstem, thalamus, and cortex of rats and mice, where the arrangement of the facial whiskers is preserved in the arrangement of cell aggregates to form precise somatotopic maps. We show in simulation how realistic whisker maps can self-organize, by assuming that information is exchanged between adjacent cells only, under the guidance of gene expression gradients. The resulting model provides a simple account of how patterns of gene expression can constrain spontaneous pattern formation to faithfully reproduce functional maps in subsequent brain structures.
Collapse
Affiliation(s)
- Sebastian S James
- Department of Psychology, The University of Sheffield, Sheffield, United Kingdom
| | - Leah A Krubitzer
- Center for Neuroscience, The University of California, Davis, Davis, United States
| | - Stuart P Wilson
- Department of Psychology, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
5
|
Ye X, Qiu Y, Gao Y, Wan D, Zhu H. A Subtle Network Mediating Axon Guidance: Intrinsic Dynamic Structure of Growth Cone, Attractive and Repulsive Molecular Cues, and the Intermediate Role of Signaling Pathways. Neural Plast 2019; 2019:1719829. [PMID: 31097955 PMCID: PMC6487106 DOI: 10.1155/2019/1719829] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 01/01/2023] Open
Abstract
A fundamental feature of both early nervous system development and axon regeneration is the guidance of axonal projections to their targets in order to assemble neural circuits that control behavior. In the navigation process where the nerves grow toward their targets, the growth cones, which locate at the tips of axons, sense the environment surrounding them, including varies of attractive or repulsive molecular cues, then make directional decisions to adjust their navigation journey. The turning ability of a growth cone largely depends on its highly dynamic skeleton, where actin filaments and microtubules play a very important role in its motility. In this review, we summarize some possible mechanisms underlying growth cone motility, relevant molecular cues, and signaling pathways in axon guidance of previous studies and discuss some questions regarding directions for further studies.
Collapse
Affiliation(s)
- Xiyue Ye
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Yan Qiu
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Yuqing Gao
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Dong Wan
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Huifeng Zhu
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| |
Collapse
|
6
|
Kast RJ, Levitt P. Precision in the development of neocortical architecture: From progenitors to cortical networks. Prog Neurobiol 2019; 175:77-95. [PMID: 30677429 PMCID: PMC6402587 DOI: 10.1016/j.pneurobio.2019.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/02/2019] [Accepted: 01/21/2019] [Indexed: 02/07/2023]
Abstract
Of all brain regions, the 6-layered neocortex has undergone the most dramatic changes in size and complexity during mammalian brain evolution. These changes, occurring in the context of a conserved set of organizational features that emerge through stereotypical developmental processes, are considered responsible for the cognitive capacities and sensory specializations represented within the mammalian clade. The modern experimental era of developmental neurobiology, spanning 6 decades, has deciphered a number of mechanisms responsible for producing the diversity of cortical neuron types, their precise connectivity and the role of gene by environment interactions. Here, experiments providing insight into the development of cortical projection neuron differentiation and connectivity are reviewed. This current perspective integrates discussion of classic studies and new findings, based on recent technical advances, to highlight an improved understanding of the neuronal complexity and precise connectivity of cortical circuitry. These descriptive advances bring new opportunities for studies related to the developmental origins of cortical circuits that will, in turn, improve the prospects of identifying pathogenic targets of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ryan J Kast
- Department of Pediatrics and Program in Developmental Neuroscience and Developmental Neurogenetics, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
| | - Pat Levitt
- Department of Pediatrics and Program in Developmental Neuroscience and Developmental Neurogenetics, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA.
| |
Collapse
|
7
|
Transcriptional control of long-range cortical projections. Curr Opin Neurobiol 2018; 53:57-65. [DOI: 10.1016/j.conb.2018.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022]
|
8
|
Son AI, Hashimoto-Torii K, Rakic P, Levitt P, Torii M. EphA4 has distinct functionality from EphA7 in the corticothalamic system during mouse brain development. J Comp Neurol 2015; 524:2080-92. [PMID: 26587807 DOI: 10.1002/cne.23933] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/11/2015] [Accepted: 11/16/2015] [Indexed: 11/11/2022]
Abstract
Deciphering the molecular basis for guiding specific aspects of neocortical development remains a challenge because of the complexity of histogenic events and the vast array of protein interactions mediating these events. The Eph family of receptor tyrosine kinases is implicated in a number of neurodevelopmental activities. Eph receptors have been known to be capable of responding to several ephrin ligands within their subgroups, often eliciting similar downstream effects. However, several recent studies have indicated specificity between receptor-ligand pairs within each subfamily, the functional relevance of which is not defined. Here we show that a receptor of the EphA subfamily, EphA4, has effects distinct from those of its close relative, EphA7, in the developing brain. Both EphA4 and EphA7 interact similarly with corresponding ligands expressed in the developing neocortex. However, only EphA7 shows strong interaction with ligands in the somatosensory thalamic nuclei; EphA4 affects only cortical neuronal migration, with no visible effects on the guidance of corticothalamic (CT) axons, whereas EphA7 affects both cortical neuronal migration and CT axon guidance. Our data provide new evidence that Eph receptors in the same subfamily are not simply interchangeable but are functionally specified through selective interactions with distinct ligands in vivo. J. Comp. Neurol. 524:2080-2092, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alexander I Son
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, 20010
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, 20010.,Department of Pediatrics, Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20010
| | - Pasko Rakic
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, Connecticut, 06510
| | - Pat Levitt
- Department of Pediatrics, Children's Hospital Los Angeles and Keck School of Medicine of University of Southern California, Los Angeles, California, 90027
| | - Masaaki Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, 20010.,Department of Pediatrics, Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20010
| |
Collapse
|
9
|
Tinikul Y, Poljaroen J, Tinikul R, Chotwiwatthanakun C, Anuracpreeda P, Hanna PJ, Sobhon P. Alterations in the levels and distribution of octopamine in the central nervous system and ovary of the Pacific white shrimp, Litopenaeus vannamei, and its possible role in ovarian development. Gen Comp Endocrinol 2015; 210:12-22. [PMID: 25305581 DOI: 10.1016/j.ygcen.2014.09.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/24/2014] [Accepted: 09/30/2014] [Indexed: 11/21/2022]
Abstract
Octopamine (OA) is a major neurotransmitter that has not been studied in the Pacific white shrimp, Litopenaeus vannamei. Therefore, we investigated changes in OA levels, its distribution in regions of the central nervous system (CNS) and ovary during the ovarian maturation cycle, as well as its possible role in regulating ovarian maturation. OA exhibited the highest concentration in the brain and thoracic ganglia at ovarian stage II, and then declined to the lowest concentration at ovarian stages III and IV. In the cerebral ganglia, OA-immunoreactivity (OA-ir) was present in neurons of clusters 6, 17, the anterior and posterior medial protocerebral, olfactory, antenna II, and tegumentary neuropils. In the circumesophageal, subesophageal, thoracic ganglia and abdominal ganglia, OA-ir was detected in several neuropils, neurons and fibers. The high level of intensity in OA immunostaining was observed in early developmental stage of oocyte by comparison with low level of OA-ir in late stages of oocyte development. Functionally, OA-injected female shrimps at doses of 2.5×10(-7) and 2.5×10(-6)mol/shrimp, showed significantly decreased gonado-somatic indices, oocyte diameters, and hemolymph vitellogenin levels, compared with control groups. This study showed changes of OA in the CNS and ovary reaching the highest level in early ovarian stages and declining in late stages, and it decreased hemolymph vitellogenin levels, suggesting significant involvement of OA in female reproduction in this species.
Collapse
Affiliation(s)
- Yotsawan Tinikul
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Mahidol University, Nakhonsawan Campus, Nakhonsawan 60130, Thailand.
| | - Jaruwan Poljaroen
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Mahidol University, Nakhonsawan Campus, Nakhonsawan 60130, Thailand
| | - Ruchanok Tinikul
- Mahidol University, Nakhonsawan Campus, Nakhonsawan 60130, Thailand
| | - Charoonroj Chotwiwatthanakun
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Mahidol University, Nakhonsawan Campus, Nakhonsawan 60130, Thailand
| | - Panat Anuracpreeda
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Agricultural Science Division, Mahidol University, Kanchanaburi Campus, Saiyok, Kanchanaburi 71150, Thailand
| | - Peter J Hanna
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Pro Vice-Chancellor's Office, Faculty of Science and Technology, Deakin University, Locked Bay 20000, Geelong, VIC 3220, Australia
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
10
|
Turimella SL, Bedner P, Skubal M, Vangoor VR, Kaczmarczyk L, Karl K, Zoidl G, Gieselmann V, Seifert G, Steinhäuser C, Kandel E, Theis M. Characterization of cytoplasmic polyadenylation element binding 2 protein expression and its RNA binding activity. Hippocampus 2014; 25:630-42. [DOI: 10.1002/hipo.22399] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/30/2022]
Affiliation(s)
| | - Peter Bedner
- Institute of Cellular Neurosciences, University of Bonn; Bonn Germany
| | - Magdalena Skubal
- Institute of Cellular Neurosciences, University of Bonn; Bonn Germany
| | | | - Lech Kaczmarczyk
- Institute of Cellular Neurosciences, University of Bonn; Bonn Germany
| | - Kevin Karl
- HHMI; Center for Neurobiology and Behavior; Columbia University; New York New York
| | - Georg Zoidl
- Department of Psychology; Faculty of Health; York University; Toronto Canada
| | - Volkmar Gieselmann
- Institute of Biochemistry and Molecular Biology, University of Bonn; Bonn Germany
| | - Gerald Seifert
- Institute of Cellular Neurosciences, University of Bonn; Bonn Germany
| | | | - Eric Kandel
- HHMI; Center for Neurobiology and Behavior; Columbia University; New York New York
| | - Martin Theis
- Institute of Cellular Neurosciences, University of Bonn; Bonn Germany
- HHMI; Center for Neurobiology and Behavior; Columbia University; New York New York
| |
Collapse
|
11
|
Tai AX, Kromer LF. Corticofugal projections from medial primary somatosensory cortex avoid EphA7-expressing neurons in striatum and thalamus. Neuroscience 2014; 274:409-18. [PMID: 24909897 DOI: 10.1016/j.neuroscience.2014.05.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/08/2014] [Accepted: 05/21/2014] [Indexed: 10/25/2022]
Abstract
Within the first two postnatal weeks, corticostriatal axons from the primary somatosensory cortex (S1) form topographic projections that organize into characteristic bands of axon terminals in the dorsolateral striatum. Molecules regulating the development of these topographically organized projections are currently unknown. Thus, the present study investigated whether EphA receptor tyrosine kinases, which regulate axonal guidance in the visual system via axon repulsion, could participate in the formation of corticostriatal connections during development. Prior studies indicate that EphA7-expressing striatal neurons are organized into banded compartments resembling the matrisome innervation pattern formed by cortical afferents from the S1 cortex and that ephrin-A5, a known EphA7 ligand, is expressed in a medial (high) to lateral (low) gradient in S1. Thus, we hypothesized that the organization of EphA7-expressing striatal neurons in banded domains provides a repulsive barrier preventing corticostriatal axons containing EphA7-ligands from innervating inappropriate regions of the striatum. To evaluate this, we injected the anterograde tracer, biotinylated dextran amine (BDA), into two locations in medial areas of S1 (the anterior and posterior whisker fields), which are reported to express high levels of ephrin-A5 during development. Injections were made in mouse pups on postnatal day 9 (P9) and the animals were processed for immunohistochemistry on P12. Our data demonstrate that projections from both the forelimb/anterior whisker field and the posterior whisker field avoid EphA7-expressing neurons and terminate in a banded pattern in regions with very low EphA7-expression. We also determined that corticothalamic projections from medial S1 also exhibit a restricted distribution in the thalamus and avoid neurons expressing EphA7. Thus, our results support the hypothesis that the anatomical organization of striatal and thalamic neurons expressing EphA7 receptors restricts the topographic distribution of cortical afferents from medial regions of S1 which express high levels of ephrin-A5.
Collapse
Affiliation(s)
- A X Tai
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC 20007, USA.
| | - L F Kromer
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC 20007, USA; Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC 20007, USA.
| |
Collapse
|
12
|
Goldshmit Y, Homman-Ludiye J, Bourne JA. EphA4 is associated with multiple cell types in the marmoset primary visual cortex throughout the lifespan. Eur J Neurosci 2014; 39:1419-28. [DOI: 10.1111/ejn.12514] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/01/2014] [Accepted: 01/14/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Yona Goldshmit
- Australian Regenerative Medicine Institute; Monash University; Building 75 Clayton Vic. 3800 Australia
| | - Jihane Homman-Ludiye
- Australian Regenerative Medicine Institute; Monash University; Building 75 Clayton Vic. 3800 Australia
| | - James A. Bourne
- Australian Regenerative Medicine Institute; Monash University; Building 75 Clayton Vic. 3800 Australia
| |
Collapse
|
13
|
Tai AX, Cassidy RM, Kromer LF. EphA7 expression identifies a unique neuronal compartment in the rat striatum. J Comp Neurol 2014; 521:2663-79. [PMID: 23348681 DOI: 10.1002/cne.23308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 01/03/2013] [Accepted: 01/17/2013] [Indexed: 01/26/2023]
Abstract
Prior studies have identified two anatomically and neurochemically distinct cellular compartments within the mammalian striatum, termed striosomes and matrix, which express μ-opioid receptors (μOR) and EphA4, respectively. Here we identify and characterize an additional compartment in the rat striatum composed of neurons that express EphA7. In situ hybridization and immunohistochemical data indicate that neurons expressing EphA7 mRNA and protein are arranged in a banded "matrisome-like" pattern confined to the matrix in the dorsal striatum. Within the ventral striatum, EphA7-positive (+) neurons have a less organized mosaic pattern that partially overlaps areas expressing μOR. Immunolabeling data demonstrate that EphA7+ striatofugal axons form distinct fascicles leaving the striatum. Within the globus pallidus, EphA7+ axons terminate primarily within ventromedial areas of the nucleus and along its striatal border. EphA7+ axons avoid regions containing dopamine neurons within the substantia nigra and preferentially innervate areas near the rostral and caudal margins of the nucleus. Within both nuclei, EphA7+ axons have similar but more restricted terminal fields than the entire population of EphA4+ matrix axons, indicating that EphA7+ axons comprise a subpopulation of matrix axons. Ligand binding data demonstrate that ephrin-A5 selectively binds areas of the striatum, globus pallidus, and substantia nigra containing EphA7+ neurons and axons, but not areas expressing only EphA4. Our findings demonstrate that EphA7 expression identifies a novel "matrisome" compartment within the matrix that binds ephrin-A5 and possesses unique axonal projections. Our findings also suggest that EphA7 and ephrin-A5 may participate in the formation of this matrisome subcompartment and its striatofugal projections.
Collapse
Affiliation(s)
- Alexander X Tai
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | |
Collapse
|
14
|
Hu Y, Li S, Jiang H, Li MT, Zhou JW. Ephrin-B2/EphA4 forward signaling is required for regulation of radial migration of cortical neurons in the mouse. Neurosci Bull 2014; 30:425-32. [PMID: 24477991 DOI: 10.1007/s12264-013-1404-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/08/2013] [Indexed: 11/26/2022] Open
Abstract
Postmitotic neurons in the neocortex migrate to appropriate positions and form layered structures of nascent cortex during brain development. The migration of these neurons requires precise control and coordination of a large number of molecules such as axon guidance cues. The Eph-ephrin signaling pathway plays important roles in the development of the nervous system in a wide variety of ways, including cell segregation, axon pathfinding, and neuron migration. However, the role of ephrin-B2/EphA4 signaling in cortical neuron migration remains elusive. Here we demonstrated that ephrin-B2 and its receptor EphA4 were expressed in complementary and overlapping patterns in the developing neocortex. Deletion of the EphA4 gene in the embryonic cerebral cortex resulted in faster migration of cortical neurons, whereas knockdown or overexpression of ephrin-B2 did not alter the normal process of migration. These results suggest that ephrin-B2 forward signaling through EphA4 is required for the precise control of cortical neuron migration.
Collapse
Affiliation(s)
- Yan Hu
- Department of Pharmacology and Proteomics Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | | | | | | | | |
Collapse
|
15
|
Lehigh KM, Leonard CE, Baranoski J, Donoghue MJ. Parcellation of the thalamus into distinct nuclei reflects EphA expression and function. Gene Expr Patterns 2013; 13:454-63. [PMID: 24036135 PMCID: PMC3839050 DOI: 10.1016/j.gep.2013.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 01/09/2023]
Abstract
Intercellular signaling via the Eph receptor tyrosine kinases and their ligands, the ephrins, acts to shape many regions of the developing brain. One intriguing consequence of Eph signaling is the control of mixing between discrete cell populations in the developing hindbrain, contributing to the formation of segregated rhombomeres. Since the thalamus is also a parcellated structure comprised of discrete nuclei, might Eph signaling play a parallel role in cell segregation in this brain structure? Analyses of expression reveal that several Eph family members are expressed in the forming thalamus and that cells expressing particular receptors form cellular groupings as development proceeds. Specifically, expression of receptors EphA4 or EphA7 and ligand ephrin-A5 is localized to distinct thalamic domains. EphA4 and EphA7 are often coexpressed in regions of the forming thalamus, with each receptor marking discrete thalamic domains. In contrast, ephrin-A5 is expressed by a limited group of thalamic cells. Within the ventral thalamus, EphA4 is present broadly, occasionally overlapping with ephrin-A5 expression. EphA7 is more restricted in its expression and is largely nonoverlapping with ephrin-A5. In mutant mice lacking one or both receptors or ephrin-A5, the appearance of the venteroposterolateral (VPL) and venteroposteromedial (VPM) nuclear complex is altered compared to wild type mice. These in vivo results support a role for Eph family members in the definition of the thalamic nuclei. In parallel, in vitro analysis reveals a hierarchy of mixing among cells expressing ephrin-A5 with cells expressing EphA4 alone, EphA4 and EphA7 together, or EphA7 alone. Together, these data support a model in which EphA molecules promote the parcellation of discrete thalamic nuclei by limiting the extent of cell mixing.
Collapse
Affiliation(s)
- Kathryn M. Lehigh
- Department of Biology, Georgetown University, 410 Regents Hall, 37 and O St., NW, Washington, DC 20057
| | - Carrie E. Leonard
- Department of Biology, Georgetown University, 410 Regents Hall, 37 and O St., NW, Washington, DC 20057
- Interdisciplinary Program in Neuroscience, Georgetown University, 410 Regents Hall, 37 and O St., NW, Washington, DC 20057
| | - Jacob Baranoski
- Department of Biology, Georgetown University, 410 Regents Hall, 37 and O St., NW, Washington, DC 20057
| | - Maria J. Donoghue
- Department of Biology, Georgetown University, 410 Regents Hall, 37 and O St., NW, Washington, DC 20057
- Interdisciplinary Program in Neuroscience, Georgetown University, 410 Regents Hall, 37 and O St., NW, Washington, DC 20057
| |
Collapse
|
16
|
Abstract
Neurons in layer VI of visual cortex represent one of the largest sources of nonretinal input to the dorsal lateral geniculate nucleus (dLGN) and play a major role in modulating the gain of thalamic signal transmission. However, little is known about how and when these descending projections arrive and make functional connections with dLGN cells. Here we used a transgenic mouse to visualize corticogeniculate projections to examine the timing of cortical innervation in dLGN. Corticogeniculate innervation occurred at postnatal ages and was delayed compared with the arrival of retinal afferents. Cortical fibers began to enter dLGN at postnatal day 3 (P3) to P4, a time when retinogeniculate innervation is complete. However, cortical projections did not fully innervate dLGN until eye opening (P12), well after the time when retinal inputs from the two eyes segregate to form nonoverlapping eye-specific domains. In vitro thalamic slice recordings revealed that newly arriving cortical axons form functional connections with dLGN cells. However, adult-like responses that exhibited paired pulse facilitation did not fully emerge until 2 weeks of age. Finally, surgical or genetic elimination of retinal input greatly accelerated the rate of corticogeniculate innervation, with axons invading between P2 and P3 and fully innervating dLGN by P8 to P10. However, recordings in genetically deafferented mice showed that corticogeniculate synapses continued to mature at the same rate as controls. These studies suggest that retinal and cortical innervation of dLGN is highly coordinated and that input from retina plays an important role in regulating the rate of corticogeniculate innervation.
Collapse
|