1
|
Okkels N, Horsager J, Fedorova TD, Knudsen K, Skjærbæk C, Andersen KB, Labrador-Espinosa M, Vestergaard K, Mortensen JK, Klit H, Møller M, Danielsen EH, Johnsen EL, Bekan G, Hansen KV, Munk OL, Damholdt MF, Kjeldsen PL, Hansen AK, Gottrup H, Grothe MJ, Borghammer P. Impaired cholinergic integrity of the colon and pancreas in dementia with Lewy bodies. Brain 2024; 147:255-266. [PMID: 37975822 DOI: 10.1093/brain/awad391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/20/2023] [Accepted: 10/28/2023] [Indexed: 11/19/2023] Open
Abstract
Dementia with Lewy bodies is characterized by a high burden of autonomic dysfunction and Lewy pathology in peripheral organs and components of the sympathetic and parasympathetic nervous system. Parasympathetic terminals may be quantified with 18F-fluoroetoxybenzovesamicol, a PET tracer that binds to the vesicular acetylcholine transporter in cholinergic presynaptic terminals. Parasympathetic imaging may be useful for diagnostics, improving our understanding of autonomic dysfunction and for clarifying the spatiotemporal relationship of neuronal degeneration in prodromal disease. Therefore, we aimed to investigate the cholinergic parasympathetic integrity in peripheral organs and central autonomic regions of subjects with dementia with Lewy bodies and its association with subjective and objective measures of autonomic dysfunction. We hypothesized that organs with known parasympathetic innervation, especially the pancreas and colon, would have impaired cholinergic integrity. To achieve these aims, we conducted a cross-sectional comparison study including 23 newly diagnosed non-diabetic subjects with dementia with Lewy bodies (74 ± 6 years, 83% male) and 21 elderly control subjects (74 ± 6 years, 67% male). We obtained whole-body images to quantify PET uptake in peripheral organs and brain images to quantify PET uptake in regions of the brainstem and hypothalamus. Autonomic dysfunction was assessed with questionnaires and measurements of orthostatic blood pressure. Subjects with dementia with Lewy bodies displayed reduced cholinergic tracer uptake in the pancreas (32% reduction, P = 0.0003) and colon (19% reduction, P = 0.0048), but not in organs with little or no parasympathetic innervation. Tracer uptake in a region of the medulla oblongata overlapping the dorsal motor nucleus of the vagus correlated with autonomic symptoms (rs = -0.54, P = 0.0077) and changes in orthostatic blood pressure (rs = 0.76, P < 0.0001). Tracer uptake in the pedunculopontine region correlated with autonomic symptoms (rs = -0.52, P = 0.0104) and a measure of non-motor symptoms (rs = -0.47, P = 0.0230). In conclusion, our findings provide the first imaging-based evidence of impaired cholinergic integrity of the pancreas and colon in dementia with Lewy bodies. The observed changes may reflect parasympathetic denervation, implying that this process is initiated well before the point of diagnosis. The findings also support that cholinergic denervation in the brainstem contributes to dysautonomia.
Collapse
Affiliation(s)
- Niels Okkels
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Jacob Horsager
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Tatyana D Fedorova
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Casper Skjærbæk
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Katrine B Andersen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Miguel Labrador-Espinosa
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Janne K Mortensen
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Henriette Klit
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Mette Møller
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Erik H Danielsen
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Erik L Johnsen
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Goran Bekan
- Department of Neurology, Regionshospitalet Gødstrup, 7400 Herning, Denmark
| | - Kim V Hansen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Ole L Munk
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Malene F Damholdt
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Pernille L Kjeldsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
- Department of Neurology, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Allan K Hansen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Nuclear Medicine, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Hanne Gottrup
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
2
|
Horsager J, Okkels N, Fedorova TD, Knudsen K, Skjærbæk C, Van Den Berge N, Jacobsen J, Munk OL, Danielsen EH, Bender D, Brooks DJ, Borghammer P. [ 18F]FEOBV positron emission tomography may not be a suitable method to measure parasympathetic denervation in patients with Parkinson's disease. Parkinsonism Relat Disord 2022; 104:21-25. [PMID: 36198248 DOI: 10.1016/j.parkreldis.2022.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 01/09/2023]
Abstract
INTRODUCTION The peripheral autonomic nervous system may be involved years before onset of motor symptoms in some patients with Parkinson's disease (PD). Specific imaging techniques to quantify the cholinergic nervous system in peripheral organs are an unmet need. We tested the hypothesis that patients with PD display decreased [18F]FEOBV uptake in peripheral organs - a sign of parasympathetic denervation. METHODS We included 15 PD patients and 15 age- and sex matched healthy controls for a 70 min whole-body dynamic positron emission tomography (PET) acquisition. Compartmental modelling was used for tracer kinetic analyses of adrenal gland, pancreas, myocardium, spleen, renal cortex, muscle and colon. Standard uptake values (SUV) at 60-70 min post injection were also extracted for these organs. Additionally, SUVs were also determined in the total colon, prostate, parotid and submandibular glands. RESULTS We found no statistically significant difference of [18F]FEOBV binding parameters in any organs between patients with PD and healthy controls, although trends were observed. The pancreas SUV showed a 14% reduction in patients (P = 0.021, not statistically significant after multiple comparison correction). We observed a trend towards lower SUVs in the pancreas, colon, adrenal gland, and myocardium of PD patients with versus without probable REM sleep behavior disorder. CONCLUSION [18F]FEOBV PET may not be a sensitive marker for parasympathetic degeneration in patients with PD.
Collapse
Affiliation(s)
- Jacob Horsager
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Niels Okkels
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Tatyana D Fedorova
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Casper Skjærbæk
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Nathalie Van Den Berge
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jan Jacobsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Lajord Munk
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | | | - Dirk Bender
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - David J Brooks
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Institute of Translational and Clinical Research, University of Newcastle Upon Tyne, UK
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Yang R, Gao G, Yang H. The Pathological Mechanism Between the Intestine and Brain in the Early Stage of Parkinson's Disease. Front Aging Neurosci 2022; 14:861035. [PMID: 35813958 PMCID: PMC9263383 DOI: 10.3389/fnagi.2022.861035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is the second most common chronic progressive neurodegenerative disease. The main pathological features are progressive degeneration of neurons and abnormal accumulation of α-synuclein. At present, the pathogenesis of PD is not completely clear, and many changes in the intestinal tract may be the early pathogenic factors of PD. These changes affect the central nervous system (CNS) through both nervous and humoral pathways. α-Synuclein deposited in the intestinal nerve migrates upward along the vagus nerve to the brain. Inflammation and immune regulation mediated by intestinal immune cells may be involved, affecting the CNS through local blood circulation. In addition, microorganisms and their metabolites may also affect the progression of PD. Therefore, paying attention to the multiple changes in the intestinal tract may provide new insight for the early diagnosis and treatment of PD.
Collapse
|
4
|
Gray-Rodriguez S, Jensen MP, Otero-Jimenez M, Hanley B, Swann OC, Ward PA, Salguero FJ, Querido N, Farkas I, Velentza-Almpani E, Weir J, Barclay WS, Carroll MW, Jaunmuktane Z, Brandner S, Pohl U, Allinson K, Thom M, Troakes C, Al-Sarraj S, Sastre M, Gveric D, Gentleman S, Roufosse C, Osborn M, Alegre-Abarrategui J. Multisystem screening reveals SARS-CoV-2 in neurons of the myenteric plexus and in megakaryocytes. J Pathol 2022; 257:198-217. [PMID: 35107828 PMCID: PMC9325073 DOI: 10.1002/path.5878] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/12/2021] [Accepted: 01/29/2022] [Indexed: 11/30/2022]
Abstract
SARS‐CoV‐2, the causative agent of COVID‐19, typically manifests as a respiratory illness, although extrapulmonary involvement, such as in the gastrointestinal tract and nervous system, as well as frequent thrombotic events, are increasingly recognised. How this maps onto SARS‐CoV‐2 organ tropism at the histological level, however, remains unclear. Here, we perform a comprehensive validation of a monoclonal antibody against the SARS‐CoV‐2 nucleocapsid protein (NP) followed by systematic multisystem organ immunohistochemistry analysis of the viral cellular tropism in tissue from 36 patients, 16 postmortem cases and 16 biopsies with polymerase chain reaction (PCR)‐confirmed SARS‐CoV‐2 status from the peaks of the pandemic in 2020 and four pre‐COVID postmortem controls. SARS‐CoV‐2 anti‐NP staining in the postmortem cases revealed broad multiorgan involvement of the respiratory, digestive, haematopoietic, genitourinary and nervous systems, with a typical pattern of staining characterised by punctate paranuclear and apical cytoplasmic labelling. The average time from symptom onset to time of death was shorter in positively versus negatively stained postmortem cases (mean = 10.3 days versus mean = 20.3 days, p = 0.0416, with no cases showing definitive staining if the interval exceeded 15 days). One striking finding was the widespread presence of SARS‐CoV‐2 NP in neurons of the myenteric plexus, a site of high ACE2 expression, the entry receptor for SARS‐CoV‐2, and one of the earliest affected cells in Parkinson's disease. In the bone marrow, we observed viral SARS‐CoV‐2 NP within megakaryocytes, key cells in platelet production and thrombus formation. In 15 tracheal biopsies performed in patients requiring ventilation, there was a near complete concordance between immunohistochemistry and PCR swab results. Going forward, our findings have relevance to correlating clinical symptoms with the organ tropism of SARS‐CoV‐2 in contemporary cases as well as providing insights into potential long‐term complications of COVID‐19. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Sandra Gray-Rodriguez
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Melanie P Jensen
- Department of Cellular Pathology, Northwest London Pathology, Charing Cross Hospital Campus, London, UK
| | - Maria Otero-Jimenez
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Brian Hanley
- Department of Cellular Pathology, Northwest London Pathology, Charing Cross Hospital Campus, London, UK.,Department of Immunology and Inflammation, Imperial College London, London, W12 0NN, UK
| | - Olivia C Swann
- Department of Infectious Disease, Imperial College London, London, UK
| | - Patrick A Ward
- Chelsea and Westminster NHS Foundation Trust, London, UK
| | - Francisco J Salguero
- National Infection Service, United Kingdom Health Security Agency, Porton Down, Salisbury, UK
| | - Nadira Querido
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Ildiko Farkas
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | | | - Justin Weir
- Department of Cellular Pathology, Northwest London Pathology, Charing Cross Hospital Campus, London, UK
| | - Wendy S Barclay
- Department of Infectious Disease, Imperial College London, London, UK
| | - Miles W Carroll
- National Infection Service, United Kingdom Health Security Agency, Porton Down, Salisbury, UK.,Pandemic Sciences Centre, Nuffield Department of Medicine, Oxford University, OX3 7BN, UK
| | - Zane Jaunmuktane
- Department of Neuropathology, UCL Queen Square Institute of Neurology, London, UK
| | - Sebastian Brandner
- Department of Neuropathology, UCL Queen Square Institute of Neurology, London, UK
| | - Ute Pohl
- Department of Cellular Pathology, Queen Elizabeth Hospital Birmingham/University Hospitals Birmingham, Birmingham, UK
| | - Kieren Allinson
- Department of Neuropathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Maria Thom
- Department of Neuropathology, UCL Queen Square Institute of Neurology, London, UK
| | - Claire Troakes
- Basic and Clinical Neuroscience Department, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Safa Al-Sarraj
- Basic and Clinical Neuroscience Department, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Djordje Gveric
- Multiple Sclerosis and Parkinson's Tissue Bank, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Steve Gentleman
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK.,Multiple Sclerosis and Parkinson's Tissue Bank, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Candice Roufosse
- Department of Cellular Pathology, Northwest London Pathology, Charing Cross Hospital Campus, London, UK.,Department of Immunology and Inflammation, Imperial College London, London, W12 0NN, UK
| | - Michael Osborn
- Department of Cellular Pathology, Northwest London Pathology, Charing Cross Hospital Campus, London, UK
| | - Javier Alegre-Abarrategui
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK.,Department of Cellular Pathology, Northwest London Pathology, Charing Cross Hospital Campus, London, UK.,Multiple Sclerosis and Parkinson's Tissue Bank, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| |
Collapse
|
5
|
Zhang XL, Zhang XH, Yu X, Zheng LF, Feng XY, Liu CZ, Quan ZS, Zhang Y, Zhu JX. Enhanced Contractive Tension and Upregulated Muscarinic Receptor 2/3 in Colorectum Contribute to Constipation in 6-Hydroxydopamine-Induced Parkinson's Disease Rats. Front Aging Neurosci 2022; 13:770841. [PMID: 35002677 PMCID: PMC8733788 DOI: 10.3389/fnagi.2021.770841] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/02/2021] [Indexed: 11/30/2022] Open
Abstract
Constipation and defecatory dysfunctions are frequent symptoms in patients with Parkinson’s disease (PD). The pathology of Lewy bodies in colonic and rectal cholinergic neurons suggests that cholinergic pathways are involved in colorectal dysmotility in PD. However, the underlying mechanism is unclear. The aim of the present study is to examine the effect of central dopaminergic denervation in rats, induced by injection 6-hydroxydopamine into the bilateral substania nigra (6-OHDA rats), on colorectal contractive activity, content of acetylcholine (ACh), vasoactive intestinal peptide (VIP) and expression of neural nitric oxide synthase (nNOS) and muscarinic receptor (MR). Strain gauge force transducers combined with electrical field stimulation (EFS), gut transit time, immunohistochemistry, ELISA, western blot and ultraperformance liquid chromatography tandem mass spectrometry were used in this study. The 6-OHDA rats exhibited outlet obstruction constipation characterized by prolonged transit time, enhanced contractive tension and fecal retention in colorectum. Pretreatment with tetrodotoxin significantly increased the colorectal motility. EFS-induced cholinergic contractions were diminished in the colorectum. Bethanechol chloride promoted colorectal motility in a dose-dependent manner, and much stronger reactivity of bethanechol chloride was observed in 6-OHDA rats. The ACh, VIP and protein expression of nNOS was decreased, but M2R and M3R were notably upregulated in colorectal muscularis externa. Moreover, the number of cholinergic neurons was reduced in sacral parasympathetic nucleus (SPN) of 6-OHDA rats. In conclusion, central nigrostriatal dopaminergic denervation is associated with decreased cholinergic neurons in SPN, decreased ACh, VIP content, and nNOS expression and upregulated M2R and M3R in colorectum, resulting in colorectal dysmotility, which contributes to outlet obstruction constipation. The study provides new insights into the mechanism of constipation and potential therapeutic targets for constipation in PD patients.
Collapse
Affiliation(s)
- Xiao-Li Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiao-Hui Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Artificial Liver Treatment Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiao Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Li-Fei Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiao-Yan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chen-Zhe Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhu-Sheng Quan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yue Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jin-Xia Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Van Den Berge N, Ferreira N, Mikkelsen TW, Alstrup AKO, Tamgüney G, Karlsson P, Terkelsen AJ, Nyengaard JR, Jensen PH, Borghammer P. Ageing promotes pathological alpha-synuclein propagation and autonomic dysfunction in wild-type rats. Brain 2021; 144:1853-1868. [PMID: 33880502 PMCID: PMC8320301 DOI: 10.1093/brain/awab061] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/13/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022] Open
Abstract
Neuronal aggregates of misfolded alpha-synuclein protein are found in the brain and periphery of patients with Parkinson's disease. Braak and colleagues have hypothesized that the initial formation of misfolded alpha-synuclein may start in the gut, and then spread to the brain via peripheral autonomic nerves hereby affecting several organs, including the heart and intestine. Age is considered the greatest risk factor for Parkinson's disease, but the effect of age on the formation of pathology and its propagation has not been studied in detail. We aimed to investigate whether propagation of alpha-synuclein pathology from the gut to the brain is more efficient in old versus young wild-type rats, upon gastrointestinal injection of aggregated alpha-synuclein. Our results demonstrate a robust age-dependent gut-to-brain and brain-to-gut spread of alpha-synuclein pathology along the sympathetic and parasympathetic nerves, resulting in age-dependent dysfunction of the heart and stomach, as observed in patients with Parkinson's disease. Moreover, alpha-synuclein pathology is more densely packed and resistant to enzymatic digestion in old rats, indicating an age-dependent maturation of alpha-synuclein aggregates. Our study is the first to provide a detailed investigation of alpha-synuclein pathology in several organs within one animal model, including the brain, skin, heart, intestine, spinal cord and autonomic ganglia. Taken together, our findings suggest that age is a crucial factor for alpha-synuclein aggregation and complete propagation to heart, stomach and skin, similar to patients. Given that age is the greatest risk factor for human Parkinson's disease, it seems likely that older experimental animals will yield the most relevant and reliable findings. These results have important implications for future research to optimize diagnostics and therapeutics in Parkinson's disease and other age-associated synucleinopathies. Increased emphasis should be placed on using aged animals in preclinical studies and to elucidate the nature of age-dependent interactions.
Collapse
Affiliation(s)
- Nathalie Van Den Berge
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Nelson Ferreira
- DANDRITE-Danish Research Institute of Translational Neuroscience and Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Aage Kristian Olsen Alstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Gültekin Tamgüney
- Institute of Physical Biology, Heinrich-Heine-University, Düsseldorf, Germany
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich, Germany
| | - Páll Karlsson
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, The Danish Pain Research Center, Aarhus University, Aarhus, Denmark
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Astrid Juhl Terkelsen
- Department of Clinical Medicine, The Danish Pain Research Center, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Randel Nyengaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Center for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark
| | - Poul Henning Jensen
- DANDRITE-Danish Research Institute of Translational Neuroscience and Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Per Borghammer
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
7
|
Derkinderen P, Rolli-Derkinderen M, Chapelet G, Neunlist M, Noble W. Tau in the gut, does it really matter? J Neurochem 2021; 158:94-104. [PMID: 33569813 DOI: 10.1111/jnc.15320] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022]
Abstract
The enteric nervous system plays a critical role in the regulation of gastrointestinal tract functions and is often referred to as the 'second brain' because it shares many features with the central nervous system. These similarities include among others a large panel of neurotransmitters, a large population of glial cells and a susceptibility to neurodegeneration. This close homology between the central and enteric nervous systems suggests that a disease process affecting the central nervous system could also involve its enteric counterpart. This was already documented in Parkinson's disease, the most common synucleinopathy, in which alpha-synuclein deposits are reported in the enteric nervous system in the vast majority of patients. Tau is another key protein involved in neurodegenerative disorders of the brain. Whether changes in tau also occur in the enteric nervous system during gut or brain disorders has just begun to be explored. The scope of the present article is therefore to review existing studies on the expression and phosphorylation pattern of tau in the enteric nervous system under physiological and pathological conditions and to discuss the possible occurrence of 'enteric tauopathies'.
Collapse
Affiliation(s)
- Pascal Derkinderen
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France.,Department of Neurology, CHU Nantes, Nantes, France
| | - Malvyne Rolli-Derkinderen
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Guillaume Chapelet
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France.,Clinical Gerontology Department, CHU Nantes, Nantes, France
| | - Michel Neunlist
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Wendy Noble
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| |
Collapse
|
8
|
Zeng H, Yu BF, Liu N, Yang YY, Xing HY, Liu XX, Zhou MW. Transcriptomic analysis of α-synuclein knockdown after T3 spinal cord injury in rats. BMC Genomics 2019; 20:851. [PMID: 31726970 PMCID: PMC6854783 DOI: 10.1186/s12864-019-6244-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022] Open
Abstract
Background Endogenous α-synuclein (α-Syn) is involved in many pathophysiological processes in the secondary injury stage after acute spinal cord injury (SCI), and the mechanism governing these functions has not been thoroughly elucidated to date. This research aims to characterize the effect of α-Syn knockdown on transcriptional levels after SCI and to determine the mechanisms underlying α-Syn activity based on RNA-seq. Result The establishment of a rat model of lentiviral vector-mediated knockdown of α-Syn in Sprague-Dawley rats with T3 spinal cord contusion (LV_SCI group). The results of the RNA-seq analysis showed that there were 337 differentially expressed genes (DEGs) between the SCI group and the LV_SCI group, and 153 DEGs specific to LV_SCI between the (SCI vs LV_SCI) and (SCI vs CON) comparisons. The top 20 biological transition terms were identified by Gene ontology (GO) analysis. The Kyoto Gene and Genomic Encyclopedia (KEGG) analysis showed that the LV_SCI group significantly upregulated the cholinergic synaptic & nicotine addiction and the neuroactive ligand receptor interaction signaling pathway. Enriched chord analysis analyzes key genes. Further cluster analysis, gene and protein interaction network analysis and RT-qPCR results showed that Chrm2 and Chrnb2 together significantly in both pathways. The proliferation of muscarinic cholinergic receptor subtype 2 (Chrm2) and nicotinic cholinergic receptor subtype β2 (Chrnb2), and the neurogenesis were elevated in the injury site of LV_SCI group by immunofluorescence. Further by subcellular localization, the LV_SCI group enhanced the expression of Chrnb2 at the cell membrane. Conclusion Knockdown of α-Syn after SCI enhance motor function and promote neurogenesis probably through enhancing cholinergic signaling pathways and neuroreceptor interactions. This study not only further clarifies the understanding of the mechanism of knockdown of α-Syn on SCI but also helps to guide the treatment strategy for SCI.
Collapse
Affiliation(s)
- Hong Zeng
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Bao-Fu Yu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Nan Liu
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Yan-Yan Yang
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Hua-Yi Xing
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Xiao-Xie Liu
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Mou-Wang Zhou
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China.
| |
Collapse
|
9
|
Swaminathan M, Fung C, Finkelstein DI, Bornstein JC, Foong JPP. α-Synuclein Regulates Development and Function of Cholinergic Enteric Neurons in the Mouse Colon. Neuroscience 2019; 423:76-85. [PMID: 31705886 DOI: 10.1016/j.neuroscience.2019.10.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
Abstract
Alpha-Synuclein (α-Syn) is expressed in the central nervous system and the nervous system of the gut (enteric nervous system, ENS), and is well known to be the major constituent of Lewy bodies which are the hallmark of Parkinson's disease. Gastrointestinal disorders frequently manifest several years before motor deficits develop in Parkinson's patients. Despite extensive research on pathological rodent models, the physiological role of α-Syn in the normal ENS is unclear hampering analysis of its neuropathology. We compared the ENS in colons of α-Syn-knockout (α-Syn KO) and wild-type mice using immunohistochemistry and calcium-imaging of responses to synaptic input. We found that α-Syn is predominantly expressed in cholinergic varicosities, which contain vesicular acetylcholine transporter. α-Syn KO mice had higher enteric neuron density and a larger proportion of cholinergic neurons, notably those containing calretinin, demonstrating a role for α-Syn in regulating development of these neurons. Moreover, α-Syn deletion enhanced the amplitude of synaptically activated [Ca2+]i transients that are primarily mediated by acetylcholine activating nicotinic receptors suggesting that α-Syn modulates the availability of acetylcholine in enteric nerve terminals.
Collapse
Affiliation(s)
- M Swaminathan
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - C Fung
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - D I Finkelstein
- The Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, The University of Melbourne, Parkville, VIC, Australia
| | - J C Bornstein
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - J P P Foong
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
10
|
Evidence for bidirectional and trans-synaptic parasympathetic and sympathetic propagation of alpha-synuclein in rats. Acta Neuropathol 2019; 138:535-550. [PMID: 31254094 PMCID: PMC6778265 DOI: 10.1007/s00401-019-02040-w] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 01/06/2023]
Abstract
The conversion of endogenous alpha-synuclein (asyn) to pathological asyn-enriched aggregates is a hallmark of Parkinson’s disease (PD). These inclusions can be detected in the central and enteric nervous system (ENS). Moreover, gastrointestinal symptoms can appear up to 20 years before the diagnosis of PD. The dual-hit hypothesis posits that pathological asyn aggregation starts in the ENS, and retrogradely spreads to the brain. In this study, we tested this hypothesis by directly injecting preformed asyn fibrils into the duodenum wall of wild-type rats and transgenic rats with excess levels of human asyn. We provide a meticulous characterization of the bacterial artificial chromosome (BAC) transgenic rat model with respect to initial propagation of pathological asyn along the parasympathetic and sympathetic pathways to the brainstem, by performing immunohistochemistry at early time points post-injection. Induced pathology was observed in all key structures along the sympathetic and parasympathetic pathways (ENS, autonomic ganglia, intermediolateral nucleus of the spinal cord (IML), heart, dorsal motor nucleus of the vagus, and locus coeruleus (LC)) and persisted for at least 4 months post-injection. In contrast, asyn propagation was not detected in wild-type rats, nor in vehicle-injected BAC rats. The presence of pathology in the IML, LC, and heart indicate trans-synaptic spread of the pathology. Additionally, the observed asyn inclusions in the stomach and heart may indicate secondary anterograde propagation after initial retrograde spreading. In summary, trans-synaptic propagation of asyn in the BAC rat model is fully compatible with the “body-first hypothesis” of PD etiopathogenesis. To our knowledge, this is the first animal model evidence of asyn propagation to the heart, and the first indication of bidirectional asyn propagation via the vagus nerve, i.e., duodenum-to-brainstem-to-stomach. The BAC rat model could be very valuable for detailed mechanistic studies of the dual-hit hypothesis, and for studies of disease modifying therapies targeting early pathology in the gastrointestinal tract.
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Patients with Parkinson's disease (PD) often display gastrointestinal and genitourinary autonomic symptoms years or even decades prior to diagnosis. These symptoms are thought to be caused in part by pathological α-synuclein inclusions in the peripheral autonomic and enteric nervous systems. It has been proposed that the initial α-synuclein aggregation may in some PD patients originate in peripheral nerve terminals and then spread centripetally to the spinal cord and brainstem. In vivo imaging methods can directly quantify the degeneration of the autonomic nervous system as well as the functional consequences such as perturbed motility. Here, we review the methodological principles of these imaging techniques and the major findings in patients with PD and atypical parkinsonism. RECENT FINDINGS Loss of sympathetic and parasympathetic nerve terminals in PD can be visualized using radiotracer imaging, including 123I-MIBG scintigraphy, and 18F-dopamine and 11C-donepezil PET. Recently, ultrasonographical studies disclosed reduced diameter of the vagal nerves in PD patients. Radiological and radioisotope techniques have demonstrated dysmotility and prolonged transit time throughout all subdivisions of the gastrointestinal tract in PD. The prevalence of objective dysfunction as measured with these imaging methods is often considerably higher compared to the prevalence of subjective symptoms experienced by the patients. Degeneration of the autonomic nervous system may play a key role in the pathogenesis of PD. In vivo imaging techniques provide powerful and noninvasive tools to quantify the degree and extent of this degeneration and its functional consequences.
Collapse
Affiliation(s)
- Karoline Knudsen
- Department of Nuclear Medicine and PET Centre Aarhus University Hospital, Institute of Clinical Medicine Aarhus University, Norrebrogade 44, Building 10, 8000, Aarhus C, Denmark
| | - Per Borghammer
- Department of Nuclear Medicine and PET Centre Aarhus University Hospital, Institute of Clinical Medicine Aarhus University, Norrebrogade 44, Building 10, 8000, Aarhus C, Denmark.
| |
Collapse
|
12
|
Jin H, Yue X, Liu H, Han J, Flores H, Su Y, Parsons SM, Perlmutter JS, Tu Z. Kinetic modeling of [ 18 F]VAT, a novel radioligand for positron emission tomography imaging vesicular acetylcholine transporter in non-human primate brain. J Neurochem 2018; 144:791-804. [PMID: 29315563 DOI: 10.1111/jnc.14291] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/16/2017] [Accepted: 12/19/2017] [Indexed: 01/06/2023]
Abstract
Molecular imaging of vesicular acetylcholine transporter (VAChT) in the brain provides an important cholinergic biomarker for the pathophysiology and treatment of dementias including Alzheimer's disease. In this study, kinetics modeling methods were applied and compared for quantifying regional brain uptake of the VAChT-specific positron emission tomography radiotracer, ((-)-(1-(-8-(2-fluoroethoxy)-3-hydroxy-1,2,3,4-tetrahydronaphthalen-2-yl)piperidin-4-yl)(4-fluorophenyl)-methanone) ([18 F]VAT) in macaques. Total volume distribution (VT ) estimates were compared for one-tissue compartment model (1TCM), two-tissue compartment model (2TCM), Logan graphic analysis (LoganAIF) and multiple linear analysis (MA1) with arterial blood input function using data from three macaques. Using the cerebellum-hemispheres as the reference region with data from seven macaques, three additional models were compared: reference tissue model (RTM), simplified RTM (SRTM), and Logan graphic analysis (LoganREF). Model selection criterion indicated that a) 2TCM and SRTM were the most appropriate kinetics models for [18 F]VAT; and b) SRTM was strongly correlated with 2TCM (Pearson's coefficients r > 0.93, p < 0.05). Test-retest studies demonstrated that [18 F]VAT has good reproducibility and reliability (TRV < 10%, ICC > 0.72). These studies demonstrate [18 F]VAT is a promising VAChT positron emission tomography tracer for quantitative assessment of VAChT levels in the brain of living subjects.
Collapse
Affiliation(s)
- Hongjun Jin
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xuyi Yue
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hui Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Junbin Han
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hubert Flores
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yi Su
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stanley M Parsons
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, USA
| | - Joel S Perlmutter
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Neuroscience, Physical Therapy and Occupational Therapy, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
13
|
Leclair-Visonneau L, Clairembault T, Coron E, Le Dily S, Vavasseur F, Dalichampt M, Péréon Y, Neunlist M, Derkinderen P. REM sleep behavior disorder is related to enteric neuropathology in Parkinson disease. Neurology 2017; 89:1612-1618. [PMID: 28887374 DOI: 10.1212/wnl.0000000000004496] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/17/2017] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To determine whether REM sleep behavior disorder (RBD) in Parkinson disease (PD) is associated with lesions and dysfunctions of the autonomic nervous system by evaluating enteric phosphorylated α-synuclein histopathology (PASH) and permeability. METHODS A total of 45 patients with PD were included in this cross-sectional study. RBD was diagnosed on the basis of a standardized clinical interview and confirmed by polysomnography. For each patient, 5 biopsies were taken at the junction between the sigmoid and descending colon during the course of a rectosigmoidoscopy. For the detection of enteric PASH, 2 colonic biopsies were analyzed by immunohistochemistry with antibodies against phosphorylated α-synuclein and PGP9.5 in 43 patients (2 patients were excluded because only 1 biopsy was available). The paracellular permeability and transcellular permeability were evaluated by measuring sulfonic acid and horseradish peroxidase flux, respectively, in the 3 remaining biopsies mounted in Ussing chambers. RESULTS Enteric PASH was more frequent in the subgroup of patients with PD with RBD compared to patients without RBD (18 of 28, 64.3%, vs 2 of 15, 13.3%, respectively, p < 0.01). No differences were observed in intestinal permeability between patients with PD with and without RBD. CONCLUSIONS Patients with PD and RBD have a greater frequency of synuclein pathology in the enteric nervous system, suggesting that RBD is associated with widespread synuclein neuropathology.
Collapse
Affiliation(s)
- Laurène Leclair-Visonneau
- From Inserm (L.L.-V., T.C., E.C., M.N., P.D.), U1235, Nantes; University Nantes (L.L.-V., T.C., E.C., Y.P., M.N., P.D.); Inserm (L.L.-V., E.C., S.L.D., F.V., P.D.), CIC-04; CHU Nantes (L.L.-V., Y.P.), Department of Clinical Neurophysiology; CHU Nantes (T.C., E.C., F.V., M.N.), Institut des Maladies de l'Appareil Digestif; CHU Nantes (M.D.), Plateforme de Biométrie, Département Promotion DRCI; and CHU Nantes (P.D.), Department of Neurology, France.
| | - Thomas Clairembault
- From Inserm (L.L.-V., T.C., E.C., M.N., P.D.), U1235, Nantes; University Nantes (L.L.-V., T.C., E.C., Y.P., M.N., P.D.); Inserm (L.L.-V., E.C., S.L.D., F.V., P.D.), CIC-04; CHU Nantes (L.L.-V., Y.P.), Department of Clinical Neurophysiology; CHU Nantes (T.C., E.C., F.V., M.N.), Institut des Maladies de l'Appareil Digestif; CHU Nantes (M.D.), Plateforme de Biométrie, Département Promotion DRCI; and CHU Nantes (P.D.), Department of Neurology, France
| | - Emmanuel Coron
- From Inserm (L.L.-V., T.C., E.C., M.N., P.D.), U1235, Nantes; University Nantes (L.L.-V., T.C., E.C., Y.P., M.N., P.D.); Inserm (L.L.-V., E.C., S.L.D., F.V., P.D.), CIC-04; CHU Nantes (L.L.-V., Y.P.), Department of Clinical Neurophysiology; CHU Nantes (T.C., E.C., F.V., M.N.), Institut des Maladies de l'Appareil Digestif; CHU Nantes (M.D.), Plateforme de Biométrie, Département Promotion DRCI; and CHU Nantes (P.D.), Department of Neurology, France
| | - Séverine Le Dily
- From Inserm (L.L.-V., T.C., E.C., M.N., P.D.), U1235, Nantes; University Nantes (L.L.-V., T.C., E.C., Y.P., M.N., P.D.); Inserm (L.L.-V., E.C., S.L.D., F.V., P.D.), CIC-04; CHU Nantes (L.L.-V., Y.P.), Department of Clinical Neurophysiology; CHU Nantes (T.C., E.C., F.V., M.N.), Institut des Maladies de l'Appareil Digestif; CHU Nantes (M.D.), Plateforme de Biométrie, Département Promotion DRCI; and CHU Nantes (P.D.), Department of Neurology, France
| | - Fabienne Vavasseur
- From Inserm (L.L.-V., T.C., E.C., M.N., P.D.), U1235, Nantes; University Nantes (L.L.-V., T.C., E.C., Y.P., M.N., P.D.); Inserm (L.L.-V., E.C., S.L.D., F.V., P.D.), CIC-04; CHU Nantes (L.L.-V., Y.P.), Department of Clinical Neurophysiology; CHU Nantes (T.C., E.C., F.V., M.N.), Institut des Maladies de l'Appareil Digestif; CHU Nantes (M.D.), Plateforme de Biométrie, Département Promotion DRCI; and CHU Nantes (P.D.), Department of Neurology, France
| | - Marie Dalichampt
- From Inserm (L.L.-V., T.C., E.C., M.N., P.D.), U1235, Nantes; University Nantes (L.L.-V., T.C., E.C., Y.P., M.N., P.D.); Inserm (L.L.-V., E.C., S.L.D., F.V., P.D.), CIC-04; CHU Nantes (L.L.-V., Y.P.), Department of Clinical Neurophysiology; CHU Nantes (T.C., E.C., F.V., M.N.), Institut des Maladies de l'Appareil Digestif; CHU Nantes (M.D.), Plateforme de Biométrie, Département Promotion DRCI; and CHU Nantes (P.D.), Department of Neurology, France
| | - Yann Péréon
- From Inserm (L.L.-V., T.C., E.C., M.N., P.D.), U1235, Nantes; University Nantes (L.L.-V., T.C., E.C., Y.P., M.N., P.D.); Inserm (L.L.-V., E.C., S.L.D., F.V., P.D.), CIC-04; CHU Nantes (L.L.-V., Y.P.), Department of Clinical Neurophysiology; CHU Nantes (T.C., E.C., F.V., M.N.), Institut des Maladies de l'Appareil Digestif; CHU Nantes (M.D.), Plateforme de Biométrie, Département Promotion DRCI; and CHU Nantes (P.D.), Department of Neurology, France
| | - Michel Neunlist
- From Inserm (L.L.-V., T.C., E.C., M.N., P.D.), U1235, Nantes; University Nantes (L.L.-V., T.C., E.C., Y.P., M.N., P.D.); Inserm (L.L.-V., E.C., S.L.D., F.V., P.D.), CIC-04; CHU Nantes (L.L.-V., Y.P.), Department of Clinical Neurophysiology; CHU Nantes (T.C., E.C., F.V., M.N.), Institut des Maladies de l'Appareil Digestif; CHU Nantes (M.D.), Plateforme de Biométrie, Département Promotion DRCI; and CHU Nantes (P.D.), Department of Neurology, France
| | - Pascal Derkinderen
- From Inserm (L.L.-V., T.C., E.C., M.N., P.D.), U1235, Nantes; University Nantes (L.L.-V., T.C., E.C., Y.P., M.N., P.D.); Inserm (L.L.-V., E.C., S.L.D., F.V., P.D.), CIC-04; CHU Nantes (L.L.-V., Y.P.), Department of Clinical Neurophysiology; CHU Nantes (T.C., E.C., F.V., M.N.), Institut des Maladies de l'Appareil Digestif; CHU Nantes (M.D.), Plateforme de Biométrie, Département Promotion DRCI; and CHU Nantes (P.D.), Department of Neurology, France
| |
Collapse
|
14
|
Sharrad DF, Chen BN, Gai WP, Vaikath N, El-Agnaf OM, Brookes SJH. Rotenone and elevated extracellular potassium concentration induce cell-specific fibrillation of α-synuclein in axons of cholinergic enteric neurons in the guinea-pig ileum. Neurogastroenterol Motil 2017; 29. [PMID: 27997067 DOI: 10.1111/nmo.12985] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 10/03/2016] [Accepted: 10/03/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Parkinson's disease is a progressive neurodegenerative disorder that results in the widespread loss of select classes of neurons throughout the nervous system. The pathological hallmarks of Parkinson's disease are Lewy bodies and neurites, of which α-synuclein fibrils are the major component. α-Synuclein aggregation has been reported in the gut of Parkinson's disease patients, even up to a decade before motor symptoms, and similar observations have been made in animal models of disease. However, unlike the central nervous system, the nature of α-synuclein species that form these aggregates and the classes of neurons affected in the gut are unclear. We have previously reported selective expression of α-synuclein in cholinergic neurons in the gut (J Comp Neurol. 2013; 521:657), suggesting they may be particularly vulnerable to degeneration in Parkinson's disease. METHODS In this study, we used immunohistochemistry to detect α-synuclein oligomers and fibrils via conformation-specific antibodies after rotenone treatment or prolonged exposure to high [K+ ] in ex vivo segments of guinea-pig ileum maintained in organotypic culture. KEY RESULTS Rotenone and prolonged raising of [K+ ] caused accumulation of α-synuclein fibrils in the axons of cholinergic enteric neurons. This took place in a time- and, in the case of rotenone, concentration-dependent manner. Rotenone also caused selective necrosis, indicated by increased cellular autofluorescence, of cholinergic enteric neurons, labeled by ChAT-immunoreactivity, also in a concentration-dependent manner. CONCLUSIONS & INFERENCES To our knowledge, this is the first report of rotenone causing selective loss of a neurochemical class in the enteric nervous system. Cholinergic enteric neurons may be particularly susceptible to Lewy pathology and degeneration in Parkinson's disease.
Collapse
Affiliation(s)
- D F Sharrad
- Discipline of Human Physiology, FMST, School of Medicine, Flinders University, Bedford Park, SA, Australia
| | - B N Chen
- Discipline of Human Physiology, FMST, School of Medicine, Flinders University, Bedford Park, SA, Australia
| | - W P Gai
- Discipline of Human Physiology, FMST, School of Medicine, Flinders University, Bedford Park, SA, Australia
| | - N Vaikath
- Neurological Disorders Center, Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, Doha, Qatar
| | - O M El-Agnaf
- Neurological Disorders Center, Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, Doha, Qatar
| | - S J H Brookes
- Discipline of Human Physiology, FMST, School of Medicine, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
15
|
Karimi M, Tu Z, Yue X, Zhang X, Jin H, Perlmutter JS, Laforest R. Radiation dosimetry of [(18)F]VAT in nonhuman primates. EJNMMI Res 2015; 5:73. [PMID: 26660544 PMCID: PMC4675760 DOI: 10.1186/s13550-015-0149-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 11/26/2015] [Indexed: 11/16/2022] Open
Abstract
Background The objective of this study is to determine the radiation dosimetry of a novel radiotracer for vesicular acetylcholine transporter (−)-(1-((2R,3R)-8-(2-[18F]fluoro-ethoxy)-3-hydroxy-1,2,3,4-tetrahydronaphthalen-2-yl)piperidin-4-yl)(4-fluorophenyl)-methanone ([18F]VAT) based on PET imaging in nonhuman primates. [18F]VAT has potential for investigation of neurological disorders including Alzheimer’s disease, Parkinson’s disease, and dystonia. Methods Three macaque fascicularis (two males, one female) received 185.4–198.3 MBq [18F]VAT prior to whole-body imaging in a MicroPET-F220 scanner. Time activity curves (TACs) were created from regions of interest (ROIs) that encompassed the entire small organs or samples with the highest activity within large organs. Organ residence times were calculated based on the TACs. We then used OLINDA/EXM 1.1 to calculate human radiation dose estimates based on scaled organ residence times. Results Measurements from directly sampled arterial blood yielded a residence time of 0.30 h in agreement with the residence time of 0.39 h calculated from a PET-generated time activity curve measured in the left ventricle. Organ dosimetry revealed the liver as the critical organ (51.1 and 65.4 μGy/MBq) and an effective dose of 16 and 19 μSv/MBq for male and female, respectively. Conclusions The macaque biodistribution data showed high retention of [18F]VAT in the liver consistent with hepatobiliary clearance. These dosimetry data support that relatively safe doses of [18F]VAT can be administered to obtain imaging in humans.
Collapse
Affiliation(s)
- Morvarid Karimi
- Department of Neurology, Washington University Medical School, St. Louis, MO, 63110, USA.
| | - Zhude Tu
- Mallinckrodt Institute of Radiology, Washington University Medical School, St. Louis, MO, USA.
| | - Xuyi Yue
- Mallinckrodt Institute of Radiology, Washington University Medical School, St. Louis, MO, USA.
| | - Xiang Zhang
- Mallinckrodt Institute of Radiology, Washington University Medical School, St. Louis, MO, USA.
| | - Hongjun Jin
- Mallinckrodt Institute of Radiology, Washington University Medical School, St. Louis, MO, USA.
| | - Joel S Perlmutter
- Department of Neurology, Washington University Medical School, St. Louis, MO, 63110, USA. .,Mallinckrodt Institute of Radiology, Washington University Medical School, St. Louis, MO, USA. .,Department of Neurobiology, Washington University Medical School, St. Louis, MO, USA. .,Department of Physical Therapy, Washington University Medical School, St. Louis, MO, USA. .,Department of Occupational Therapy, Washington University Medical School, St. Louis, MO, USA.
| | - Richard Laforest
- Mallinckrodt Institute of Radiology, Washington University Medical School, St. Louis, MO, USA.
| |
Collapse
|
16
|
Fornai M, Pellegrini C, Antonioli L, Segnani C, Ippolito C, Barocelli E, Ballabeni V, Vegezzi G, Al Harraq Z, Blandini F, Levandis G, Cerri S, Blandizzi C, Bernardini N, Colucci R. Enteric Dysfunctions in Experimental Parkinson's Disease: Alterations of Excitatory Cholinergic Neurotransmission Regulating Colonic Motility in Rats. J Pharmacol Exp Ther 2015; 356:434-44. [PMID: 26582732 DOI: 10.1124/jpet.115.228510] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/17/2015] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease is frequently associated with gastrointestinal symptoms, mostly represented by constipation and defecatory dysfunctions. This study examined the impact of central dopaminergic denervation, induced by injection of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle, on distal colonic excitatory cholinergic neuromotor activity in rats. Animals were euthanized 4 and 8 weeks after 6-OHDA injection. In vivo colonic transit was evaluated by radiologic assay. Electrically induced and carbachol-induced cholinergic contractions were recorded in vitro from longitudinal and circular muscle colonic preparations, whereas acetylcholine levels were assayed in the incubation media. Choline acetyltransferase (ChAT), HuC/D (pan-neuronal marker), muscarinic M2 and M3 receptors were assessed by immunohistochemistry or western blot assay. As compared with control rats, at week 4, 6-OHDA-treated animals displayed the following changes: decreased in vivo colonic transit rate, impaired electrically evoked neurogenic cholinergic contractions, enhanced carbachol-induced contractions, decreased basal and electrically stimulated acetylcholine release from colonic tissues, decreased ChAT immunopositivity in the neuromuscular layer, unchanged density of HuC/D immunoreactive myenteric neurons, and increased expression of colonic muscarinic M2 and M3 receptors. The majority of such alterations were also detected at week 8 post 6-OHDA injection. These findings indicate that central nigrostriatal dopaminergic denervation is associated with an impaired excitatory neurotransmission characterized by a loss of myenteric neuronal ChAT positivity and decrease in acetylcholine release, resulting in a dysregulated smooth muscle motor activity, which likely contributes to the concomitant decrease in colonic transit rate.
Collapse
Affiliation(s)
- Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (M.F., C.P., L.A., C.S., C.I., C.B., N.B.); Department of Pharmacy, University of Parma, Parma, Italy (E.B., V.B., G.V., Z.A.H.); Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, "C. Mondino" National Neurologic Institute, Pavia, Italy (F.B., G.L., S.C.); and Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy (R.C.)
| | - Carolina Pellegrini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (M.F., C.P., L.A., C.S., C.I., C.B., N.B.); Department of Pharmacy, University of Parma, Parma, Italy (E.B., V.B., G.V., Z.A.H.); Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, "C. Mondino" National Neurologic Institute, Pavia, Italy (F.B., G.L., S.C.); and Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy (R.C.)
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (M.F., C.P., L.A., C.S., C.I., C.B., N.B.); Department of Pharmacy, University of Parma, Parma, Italy (E.B., V.B., G.V., Z.A.H.); Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, "C. Mondino" National Neurologic Institute, Pavia, Italy (F.B., G.L., S.C.); and Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy (R.C.)
| | - Cristina Segnani
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (M.F., C.P., L.A., C.S., C.I., C.B., N.B.); Department of Pharmacy, University of Parma, Parma, Italy (E.B., V.B., G.V., Z.A.H.); Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, "C. Mondino" National Neurologic Institute, Pavia, Italy (F.B., G.L., S.C.); and Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy (R.C.)
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (M.F., C.P., L.A., C.S., C.I., C.B., N.B.); Department of Pharmacy, University of Parma, Parma, Italy (E.B., V.B., G.V., Z.A.H.); Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, "C. Mondino" National Neurologic Institute, Pavia, Italy (F.B., G.L., S.C.); and Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy (R.C.)
| | - Elisabetta Barocelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (M.F., C.P., L.A., C.S., C.I., C.B., N.B.); Department of Pharmacy, University of Parma, Parma, Italy (E.B., V.B., G.V., Z.A.H.); Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, "C. Mondino" National Neurologic Institute, Pavia, Italy (F.B., G.L., S.C.); and Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy (R.C.)
| | - Vigilio Ballabeni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (M.F., C.P., L.A., C.S., C.I., C.B., N.B.); Department of Pharmacy, University of Parma, Parma, Italy (E.B., V.B., G.V., Z.A.H.); Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, "C. Mondino" National Neurologic Institute, Pavia, Italy (F.B., G.L., S.C.); and Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy (R.C.)
| | - Gaia Vegezzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (M.F., C.P., L.A., C.S., C.I., C.B., N.B.); Department of Pharmacy, University of Parma, Parma, Italy (E.B., V.B., G.V., Z.A.H.); Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, "C. Mondino" National Neurologic Institute, Pavia, Italy (F.B., G.L., S.C.); and Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy (R.C.)
| | - Zainab Al Harraq
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (M.F., C.P., L.A., C.S., C.I., C.B., N.B.); Department of Pharmacy, University of Parma, Parma, Italy (E.B., V.B., G.V., Z.A.H.); Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, "C. Mondino" National Neurologic Institute, Pavia, Italy (F.B., G.L., S.C.); and Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy (R.C.)
| | - Fabio Blandini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (M.F., C.P., L.A., C.S., C.I., C.B., N.B.); Department of Pharmacy, University of Parma, Parma, Italy (E.B., V.B., G.V., Z.A.H.); Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, "C. Mondino" National Neurologic Institute, Pavia, Italy (F.B., G.L., S.C.); and Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy (R.C.)
| | - Giovanna Levandis
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (M.F., C.P., L.A., C.S., C.I., C.B., N.B.); Department of Pharmacy, University of Parma, Parma, Italy (E.B., V.B., G.V., Z.A.H.); Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, "C. Mondino" National Neurologic Institute, Pavia, Italy (F.B., G.L., S.C.); and Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy (R.C.)
| | - Silvia Cerri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (M.F., C.P., L.A., C.S., C.I., C.B., N.B.); Department of Pharmacy, University of Parma, Parma, Italy (E.B., V.B., G.V., Z.A.H.); Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, "C. Mondino" National Neurologic Institute, Pavia, Italy (F.B., G.L., S.C.); and Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy (R.C.)
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (M.F., C.P., L.A., C.S., C.I., C.B., N.B.); Department of Pharmacy, University of Parma, Parma, Italy (E.B., V.B., G.V., Z.A.H.); Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, "C. Mondino" National Neurologic Institute, Pavia, Italy (F.B., G.L., S.C.); and Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy (R.C.)
| | - Nunzia Bernardini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (M.F., C.P., L.A., C.S., C.I., C.B., N.B.); Department of Pharmacy, University of Parma, Parma, Italy (E.B., V.B., G.V., Z.A.H.); Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, "C. Mondino" National Neurologic Institute, Pavia, Italy (F.B., G.L., S.C.); and Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy (R.C.)
| | - Rocchina Colucci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (M.F., C.P., L.A., C.S., C.I., C.B., N.B.); Department of Pharmacy, University of Parma, Parma, Italy (E.B., V.B., G.V., Z.A.H.); Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, "C. Mondino" National Neurologic Institute, Pavia, Italy (F.B., G.L., S.C.); and Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy (R.C.)
| |
Collapse
|
17
|
Quantitative immunohistochemical co-localization of TRPV1 and CGRP in varicose axons of the murine oesophagus, stomach and colorectum. Neurosci Lett 2015; 599:164-71. [DOI: 10.1016/j.neulet.2015.05.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/14/2015] [Accepted: 05/10/2015] [Indexed: 12/31/2022]
|
18
|
Côté M, Poirier AA, Aubé B, Jobin C, Lacroix S, Soulet D. Partial depletion of the proinflammatory monocyte population is neuroprotective in the myenteric plexus but not in the basal ganglia in a MPTP mouse model of Parkinson's disease. Brain Behav Immun 2015; 46:154-67. [PMID: 25637482 DOI: 10.1016/j.bbi.2015.01.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 01/14/2015] [Accepted: 01/20/2015] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) patients often suffer from gastrointestinal (GI) impairments that are associated with the alteration of dopaminergic (DAergic) neurons in the myenteric nervous system. Growing evidence suggests that inflammation originating from the gut may have a major impact in both the initiation and progression of PD. Here, we investigated the role of the innate immune response in neurodegeneration occurring in central nervous system (CNS) and enteric nervous system (ENS) in response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a neurotoxin that produces Parkinsonism in both humans and animal models. We found a strong immune response in the gut of mice treated with MPTP, as demonstrated by the prominent presence of macrophages derived from CD115(+) CD11b(+) Ly6C(Hi) monocytes, known as M1 monocytes, and increased production of IL-1β and IL-6. Partial depletion of proinflammatory M1 monocytes through intravenous injections of clodronate-encapsulated liposome protects against MPTP-induced reduction of tyrosine hydroxylase (TH) expression in the ENS. In contrast, loss of striatal TH expression in the CNS after MPTP intoxication occurs regardless of partial monocyte depletion. Examination of brain tissue revealed that microglial activation, comprising the majority of the immune response in the CNS after MPTP injections is unaffected by M1 depletion. In vitro experiments revealed that MPTP and MPP(+) act directly on monocytes to elicit a proinflammatory response that is, in part, dependent on the MyD88/NF-κB signaling pathway resulting in nitrite and proinflammatory cytokine production. Taken together, our results demonstrate a critical role for proinflammatory M1 monocytes/macrophages in DAergic alterations occurring in the GI, but not in the brain, in the MPTP model of PD.
Collapse
Affiliation(s)
- M Côté
- Centre de recherche du CHU de Québec, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada
| | - A-A Poirier
- Centre de recherche du CHU de Québec, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada
| | - B Aubé
- Centre de recherche du CHU de Québec, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada
| | - C Jobin
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Florida, FL, USA
| | - S Lacroix
- Centre de recherche du CHU de Québec, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada; Faculté de médecine, Département de Médecine Moléculaire, Université Laval, Québec, QC G1K 0A6, Canada
| | - D Soulet
- Centre de recherche du CHU de Québec, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada; Faculté de médecine, Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada.
| |
Collapse
|
19
|
Chen BN, Sharrad DF, Hibberd TJ, Zagorodnyuk VP, Costa M, Brookes SJ. Neurochemical characterization of extrinsic nerves in myenteric ganglia of the guinea pig distal colon. J Comp Neurol 2014; 523:742-56. [DOI: 10.1002/cne.23704] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/24/2014] [Accepted: 10/29/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Bao Nan Chen
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| | - Dale F. Sharrad
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| | - Timothy J. Hibberd
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| | - Vladimir P. Zagorodnyuk
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| | - Marcello Costa
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| | - Simon J.H. Brookes
- Department of Human Physiology and Centre for Neuroscience; Flinders Medical Science and Technology, School of Medicine, Flinders University; Bedford Park South Australia Australia
| |
Collapse
|
20
|
|
21
|
de Fontgalland D, Brookes SJ, Gibbins I, Sia TC, Wattchow DA. The neurochemical changes in the innervation of human colonic mesenteric and submucosal blood vessels in ulcerative colitis and Crohn's disease. Neurogastroenterol Motil 2014; 26:731-44. [PMID: 24597665 DOI: 10.1111/nmo.12327] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 02/07/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND Neurogenic inflammation involves vasodilation, oedema and sensory nerve hypersensitivity. Extrinsic sensory nerves to the intestinal wall mediate these effects and functional subsets of these extrinsic nerves can be characterized by immunohistochemical profiles. In this study such profiles were examined in samples from patients with inflammatory bowel disease (IBD), in particular ulcerative colitis (UC) and Crohn's disease (CD). METHODS Healthy margins from cancer patients were compared to specimens from IBD patients. All nerve fibres were labelled by PGP 9.5. Double and triple labelling with TH, NPY, SP, SOM, NOS, VIP, VAChT, CGRP, TRPv1 were performed. Perivascular nerve fibres in the mesentery, and submucosa, were examined. The percentage of all labelled nerve fibres was calculated with a transect method. KEY RESULTS Total number of varicosities on mesenteric vessels increased in IBD but decreased around submucosal vessels. The percentage of nerve fibres around submucosal arteries labelled by SP increased from 11% in controls to 20% (UC) and 24% (CD) and mesenteric artery nerve fibres were unchanged. Nerve fibres labelled by SOM were markedly reduced surrounding submucosal arteries, from 22% to 1% (UC) and 2% (CD), but not perivascular mesenteric nerve fibres. 87 to 93% of SP immunoreactive nerve fibres were also reactive for TRvP1. TRPv1 labelling without SP was 12%in controls and increased to 40% in CD submucosal specimens. CONCLUSIONS & INFERENCES There is an increase in SP and TRPv1, and a reduction in SOM immunoreactive nerve fibres in IBD. Changes in the perivascular functional nerve subclasses may underlie the hyperaemia, and ulceration, characteristic of IBD. Furthermore, pain may relate to underlying neural changes.
Collapse
Affiliation(s)
- D de Fontgalland
- Department of Surgery/Department of Human Physiology, Flinders Medical Centre/Flinders University of South Australia, Adelaide, South Australia, Australia
| | | | | | | | | |
Collapse
|