1
|
Tamura M, Ishikawa R, Nakanishi Y, Pascual-Anaya J, Fukui M, Saitou T, Sugahara F, Rijli FM, Kuratani S, Suzuki DG, Murakami Y. Comparative analysis of Hmx expression and the distribution of neuronal somata in the trigeminal ganglion in lamprey and shark: insights into the homology of the trigeminal nerve branches and the evolutionary origin of the vertebrate jaw. ZOOLOGICAL LETTERS 2023; 9:23. [PMID: 38049907 PMCID: PMC10696661 DOI: 10.1186/s40851-023-00222-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/25/2023] [Indexed: 12/06/2023]
Abstract
The evolutionary origin of the jaw remains one of the most enigmatic events in vertebrate evolution. The trigeminal nerve is a key component for understanding jaw evolution, as it plays a crucial role as a sensorimotor interface for the effective manipulation of the jaw. This nerve is also found in the lamprey, an extant jawless vertebrate. The trigeminal nerve has three major branches in both the lamprey and jawed vertebrates. Although each of these branches was classically thought to be homologous between these two taxa, this homology is now in doubt. In the present study, we compared expression patterns of Hmx, a candidate genetic marker of the mandibular nerve (rV3, the third branch of the trigeminal nerve in jawed vertebrates), and the distribution of neuronal somata of trigeminal nerve branches in the trigeminal ganglion in lamprey and shark. We first confirmed the conserved expression pattern of Hmx1 in the shark rV3 neuronal somata, which are distributed in the caudal part of the trigeminal ganglion. By contrast, lamprey Hmx genes showed peculiar expression patterns, with expression in the ventrocaudal part of the trigeminal ganglion similar to Hmx1 expression in jawed vertebrates, which labeled the neuronal somata of the second branch. Based on these results, we propose two alternative hypotheses regarding the homology of the trigeminal nerve branches, providing new insights into the evolutionary origin of the vertebrate jaw.
Collapse
Affiliation(s)
- Motoki Tamura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Ibaraki, Japan
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Ryota Ishikawa
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Yuki Nakanishi
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Juan Pascual-Anaya
- Department of Animal Biology, Faculty of Science, University of Málaga, Campus de Teatinos s/n, Málaga, 29071, Spain
| | - Makiko Fukui
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Takashi Saitou
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Toon, 791-0295, Japan
| | - Fumiaki Sugahara
- Division of Biology, Hyogo Medical University, Nishinomiya, 663-8501, Hyogo, Japan
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047, Japan
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel, 4058, Switzerland
- University of Basel, Basel, Switzerland
| | - Shigeru Kuratani
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047, Japan
| | - Daichi G Suzuki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Ibaraki, Japan
| | - Yasunori Murakami
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan.
| |
Collapse
|
2
|
García-Guillén IM, Martínez-de-la-Torre M, Puelles L, Aroca P, Marín F. Molecular Segmentation of the Spinal Trigeminal Nucleus in the Adult Mouse Brain. Front Neuroanat 2021; 15:785840. [PMID: 34955765 PMCID: PMC8702626 DOI: 10.3389/fnana.2021.785840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
The trigeminal column is a hindbrain structure formed by second order sensory neurons that receive afferences from trigeminal primary (ganglionic) nerve fibers. Classical studies subdivide it into the principal sensory trigeminal nucleus located next to the pontine nerve root, and the spinal trigeminal nucleus which in turn consists of oral, interpolar and caudal subnuclei. On the other hand, according to the prosomeric model, this column would be subdivided into segmental units derived from respective rhombomeres. Experimental studies have mapped the principal sensory trigeminal nucleus to pontine rhombomeres (r) r2-r3 in the mouse. The spinal trigeminal nucleus emerges as a plurisegmental formation covering several rhombomeres (r4 to r11 in mice) across pontine, retropontine and medullary hindbrain regions. In the present work we reexamined the issue of rhombomeric vs. classical subdivisions of this column. To this end, we analyzed its subdivisions in an AZIN2-lacZ transgenic mouse, known as a reference model for hindbrain topography, together with transgenic reporter lines for trigeminal fibers. We screened as well for genes differentially expressed along the axial dimension of this structure in the adult and juvenile mouse brain. This analysis yielded genes from multiple functional families that display transverse domains fitting the mentioned rhombomeric map. The spinal trigeminal nucleus thus represents a plurisegmental structure with a series of distinct neuromeric units having unique combinatorial molecular profiles.
Collapse
Affiliation(s)
- Isabel M García-Guillén
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Margaret Martínez-de-la-Torre
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Pilar Aroca
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Faustino Marín
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| |
Collapse
|
3
|
Guberinic A, Souverein V, Volkers R, van Cappellen van Walsum AM, Vissers KC, Mollink J, Henssen DJ. Mapping the trigeminal root entry zone and its pontine fibre distribution patterns. Cephalalgia 2020; 40:1645-1656. [PMID: 32962405 PMCID: PMC7691629 DOI: 10.1177/0333102420959796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Introduction Recently, an additional trigeminothalamic tract – the dorsal
trigeminothalamic tract – has been described in human brainstems by our
group next to the known ventral trigeminothalamic tract. As various elements
of the trigeminal system are known to be organised in a somatotopic fashion,
the question arose whether the fibres within the trigeminal root show
specific distributions patterns in their contribution to the ventral
trigeminothalamic tract and dorsal trigeminothalamic tract specifically. Methods This study investigated the arrangement of the fibres in the trigeminal root
by combining various imaging methods in the pons of 11 post-mortem
specimens. The pons were investigated by polarised light imaging (PLI)
(n = 4; to quantify fibre orientation; 100 µm interslice distance),
histochemical staining methods (n = 3; to visualise the internal
myeloarchitecture; 60 µm) and ultra-high field, post-mortem magnetic
resonance imaging (MRI) (n = 4; for tractography; 500 µm interslice
distance). Results This study shows that the fibres, from the point where the trigeminal root
enters the brainstem, are distinctly arranged by their contribution to the
ventral trigeminothalamic tract and dorsal trigeminothalamic tract. This
finding is supported by both post-mortem, ultra-high dMRI and different
light microscopy techniques. Conclusion The data from this study suggest that the fibres in the superior half of the
root contribute mainly to the ventral trigeminothalamic tract, whereas the
fibres in the inferior half mainly contribute to the dorsal
trigeminothalamic tract. Such a somatotopic organisation could possibly
create new insights into the anatomical origin of trigeminal neuralgia and
the clinical relevance of this somatotopic organisation should therefore be
further explored.
Collapse
Affiliation(s)
- Alis Guberinic
- Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Veerle Souverein
- Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ruben Volkers
- Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anne-Marie van Cappellen van Walsum
- Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Kris Cp Vissers
- Department of Anesthesiology, Pain and Palliative Care, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jeroen Mollink
- Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Dylan Jha Henssen
- Department of Radiology, Nuclear Medicine and Anatomy, Radboud University Medical Center, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
4
|
Pombal MA, Megías M. Development and Functional Organization of the Cranial Nerves in Lampreys. Anat Rec (Hoboken) 2018; 302:512-539. [DOI: 10.1002/ar.23821] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/15/2017] [Accepted: 09/17/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Manuel A. Pombal
- Neurolam Group, Department of Functional Biology and Health Sciences, Faculty of Biology - IBIV; University of Vigo; Vigo, 36310 Spain
| | - Manuel Megías
- Neurolam Group, Department of Functional Biology and Health Sciences, Faculty of Biology - IBIV; University of Vigo; Vigo, 36310 Spain
| |
Collapse
|
5
|
Patthey C, Clifford H, Haerty W, Ponting CP, Shimeld SM, Begbie J. Identification of molecular signatures specific for distinct cranial sensory ganglia in the developing chick. Neural Dev 2016; 11:3. [PMID: 26819088 PMCID: PMC4730756 DOI: 10.1186/s13064-016-0057-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/08/2016] [Indexed: 11/22/2022] Open
Abstract
Background The cranial sensory ganglia represent populations of neurons with distinct functions, or sensory modalities. The production of individual ganglia from distinct neurogenic placodes with different developmental pathways provides a powerful model to investigate the acquisition of specific sensory modalities. To date there is a limited range of gene markers available to examine the molecular pathways underlying this process. Results Transcriptional profiles were generated for populations of differentiated neurons purified from distinct cranial sensory ganglia using microdissection in embryonic chicken followed by FAC-sorting and RNAseq. Whole transcriptome analysis confirmed the division into somato- versus viscerosensory neurons, with additional evidence for subdivision of the somatic class into general and special somatosensory neurons. Cross-comparison of distinct ganglia transcriptomes identified a total of 134 markers, 113 of which are novel, which can be used to distinguish trigeminal, vestibulo-acoustic and epibranchial neuronal populations. In situ hybridisation analysis provided validation for 20/26 tested markers, and showed related expression in the target region of the hindbrain in many cases. Conclusions One hundred thirty-four high-confidence markers have been identified for placode-derived cranial sensory ganglia which can now be used to address the acquisition of specific cranial sensory modalities. Electronic supplementary material The online version of this article (doi:10.1186/s13064-016-0057-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cedric Patthey
- Department of Zoology, University of Oxford, Oxford, UK. .,Umeå Center for Molecular Medicine, Umeå University, Umeå, Sweden.
| | - Harry Clifford
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK. .,MRC Functional Genomics, University of Oxford, Oxford, UK.
| | - Wilfried Haerty
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK. .,MRC Functional Genomics, University of Oxford, Oxford, UK.
| | - Chris P Ponting
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK. .,MRC Functional Genomics, University of Oxford, Oxford, UK.
| | | | - Jo Begbie
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
Kohl T, Bothe MS, Luksch H, Straka H, Westhoff G. Organotopic organization of the primary Infrared Sensitive Nucleus (LTTD) in the western diamondback rattlesnake (Crotalus atrox). J Comp Neurol 2014; 522:3943-59. [PMID: 24989331 DOI: 10.1002/cne.23644] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/25/2014] [Accepted: 06/30/2014] [Indexed: 11/08/2022]
Abstract
Pit vipers (Crotalinae) have a specific sensory system that detects infrared radiation with bilateral pit organs in the upper jaw. Each pit organ consists of a thin membrane, innervated by three trigeminal nerve branches that project to a specific nucleus in the dorsal hindbrain. The known topographic organization of infrared signals in the optic tectum prompted us to test the implementation of spatiotopically aligned sensory maps through hierarchical neuronal levels from the peripheral epithelium to the first central site in the hindbrain, the nucleus of the lateral descending trigeminal tract (LTTD). The spatial organization of the anatomical connections was revealed in a novel in vitro whole-brain preparation of the western diamondback rattlesnake (Crotalus atrox) that allowed specific application of multiple neuronal tracers to identified pit-organ-supplying trigeminal nerve branches. After adequate survival times, the entire peripheral and central projections of fibers within the pit membrane and the LTTD became visible. This approach revealed a morphological partition of the pit membrane into three well-defined sensory areas with largely separated innervations by the three main branches. The peripheral segregation of infrared afferents in the sensory epithelium was matched by a differential termination of the afferents within different areas of the LTTD, with little overlap. This result demonstrates a topographic organizational principle of the snake infrared system that is implemented by maintaining spatially aligned representations of environmental infrared cues on the sensory epithelium through specific neuronal projections at the level of the first central processing stage, comparable to the visual system.
Collapse
Affiliation(s)
- Tobias Kohl
- Chair of Zoology, Technische Universität München, Freising-Weihenstephan, Germany
| | | | | | | | | |
Collapse
|
7
|
Tosa Y, Hirao A, Matsubara I, Kawaguchi M, Fukui M, Kuratani S, Murakami Y. Development of the thalamo-dorsal ventricular ridge tract in the Chinese soft-shelled turtle, Pelodiscus sinensis. Dev Growth Differ 2014; 57:40-57. [PMID: 25494924 DOI: 10.1111/dgd.12186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/07/2014] [Accepted: 10/07/2014] [Indexed: 01/04/2023]
Abstract
With the exception of that from the olfactory system, the vertebrate sensory information is relayed by the dorsal thalamus (dTh) to be carried to the telencephalon via the thalamo-telencephalic tract. Although the trajectory of the tract from the dTh to the basal telencephalon seems to be highly conserved among amniotes, the axonal terminals vary in each group. In mammals, thalamic axons project onto the neocortex, whereas they project onto the dorsal pallium and the dorsal ventricular ridge (DVR) in reptiles and birds. To ascertain the evolutionary development of the thalamo-telencephalic connection in amniotes, we focused on reptiles. Using the Chinese soft-shelled turtle (Pelodiscus sinensis), we studied the developmental course of the thalamic axons projecting onto the DVR. We found, during the developmental period when the thalamo-DVR connection forms, that transcripts of axon guidance molecules, including EphA4 and Slit2, were expressed in the diencephalon, similar to the mouse embryo. These results suggest that the basic mechanisms responsible for the formation of the thalamo-telencephalic tract are shared across amniote lineages. Conversely, there was a characteristic difference in the expression patterns of Slit2, Netrin1, and EphrinA5 in the telencephalon between synapsid (mammalian) and diapsid (reptilian and avian) lineages. This indicates that changes in the expression domains of axon guidance molecules may modify the thalamic axon projection and lead to the diversity of neuronal circuits in amniotes.
Collapse
Affiliation(s)
- Yasuhiko Tosa
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Donatti AF, Araujo RM, Soriano RN, Azevedo LU, Leite-Panissi CA, Branco LG. Role of hydrogen sulfide in the formalin-induced orofacial pain in rats. Eur J Pharmacol 2014; 738:49-56. [DOI: 10.1016/j.ejphar.2014.05.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/30/2014] [Accepted: 05/10/2014] [Indexed: 12/24/2022]
|
9
|
Modrell MS, Hockman D, Uy B, Buckley D, Sauka-Spengler T, Bronner ME, Baker CVH. A fate-map for cranial sensory ganglia in the sea lamprey. Dev Biol 2014; 385:405-16. [PMID: 24513489 PMCID: PMC3928997 DOI: 10.1016/j.ydbio.2013.10.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 10/17/2013] [Accepted: 10/21/2013] [Indexed: 11/30/2022]
Abstract
Cranial neurogenic placodes and the neural crest make essential contributions to key adult characteristics of all vertebrates, including the paired peripheral sense organs and craniofacial skeleton. Neurogenic placode development has been extensively characterized in representative jawed vertebrates (gnathostomes) but not in jawless fishes (agnathans). Here, we use in vivo lineage tracing with DiI, together with neuronal differentiation markers, to establish the first detailed fate-map for placode-derived sensory neurons in a jawless fish, the sea lamprey Petromyzon marinus, and to confirm that neural crest cells in the lamprey contribute to the cranial sensory ganglia. We also show that a pan-Pax3/7 antibody labels ophthalmic trigeminal (opV, profundal) placode-derived but not maxillomandibular trigeminal (mmV) placode-derived neurons, mirroring the expression of gnathostome Pax3 and suggesting that Pax3 (and its single Pax3/7 lamprey ortholog) is a pan-vertebrate marker for opV placode-derived neurons. Unexpectedly, however, our data reveal that mmV neuron precursors are located in two separate domains at neurula stages, with opV neuron precursors sandwiched between them. The different branches of the mmV nerve are not comparable between lampreys and gnatho-stomes, and spatial segregation of mmV neuron precursor territories may be a derived feature of lampreys. Nevertheless, maxillary and mandibular neurons are spatially segregated within gnathostome mmV ganglia, suggesting that a more detailed investigation of gnathostome mmV placode development would be worthwhile. Overall, however, our results highlight the conservation of cranial peripheral sensory nervous system development across vertebrates, yielding insight into ancestral vertebrate traits. The first detailed fate-map for placode-derived sensory neurons in a jawless fish. Pax3 is a pan-vertebrate marker for ophthalmic trigeminal placode-derived neurons. Maxillomandibular trigeminal neuron precursors are located in two separate domains. Confirmation that lamprey neural crest cells contribute to cranial sensory ganglia. Results overall highlight conservation of cranial sensory nervous system development.
Collapse
|