1
|
Muthoharoh L, Hardhienata H, Alatas H. Modified Asano-Ohya-Khrennikov quantum-like model for decision-making process in a two-player game with nonlinear self- and cross-interaction terms of brain's amygdala and prefrontal-cortex. J Biol Phys 2020; 46:297-307. [PMID: 32710262 PMCID: PMC7501371 DOI: 10.1007/s10867-020-09553-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/24/2020] [Indexed: 11/30/2022] Open
Abstract
In this report, we propose a modification on the Asano-Ohya-Khrennikov
quantum-like decision-making process model of a two-player game by adding additional
nonlinear terms to the related comparison step dynamical equation. The additions are
in the form of a self-interaction and cross-interaction of the brain’s
amygdala and prefrontal cortex. We show that the cross-interaction significantly
determines the final decision of a player, whether it becomes a rational or an
irrational choice. In contrast, the nonlinear self-interaction term provides a
feedback mechanism that speeds up the corresponding decision-making process. We also
suggest the form of expectation values of the overall reaction rate coefficients of
those nonlinear terms by making an analogy with the original model
formulation.
Collapse
Affiliation(s)
- Luluk Muthoharoh
- Theoretical Physics Division, Department of Physics, IPB University (Bogor Agricultural University), Jl. Meranti, Kampus IPB Darmaga, Bogor, 16680, Indonesia
| | - Hendradi Hardhienata
- Theoretical Physics Division, Department of Physics, IPB University (Bogor Agricultural University), Jl. Meranti, Kampus IPB Darmaga, Bogor, 16680, Indonesia
| | - Husin Alatas
- Theoretical Physics Division, Department of Physics, IPB University (Bogor Agricultural University), Jl. Meranti, Kampus IPB Darmaga, Bogor, 16680, Indonesia.
| |
Collapse
|
2
|
Abstract
The gustatory system contributes to the flavor of foods and beverages and communicates information about nutrients and poisons. This system has evolved to detect and ultimately respond to hydrophilic molecules dissolved in saliva. Taste receptor cells, located in taste buds and distributed throughout the oral cavity, activate nerve afferents that project to the brainstem. From here, information propagates to thalamic, subcortical, and cortical areas, where it is integrated with information from other sensory systems and with homeostatic, visceral, and affective processes. There is considerable divergence, as well as convergence, of information between multiple regions of the central nervous system that interact with the taste pathways, with reciprocal connections occurring between the involved regions. These widespread interactions among multiple systems are crucial for the perception of food. For example, memory, hunger, satiety, and visceral changes can directly affect and can be affected by the experience of tasting. In this chapter, we review the literature on the central processing of taste with a specific focus on the anatomic and physiologic responses of single neurons. Emphasis is placed on how information is distributed along multiple systems with the goal of better understanding how the rich and complex sensations associated with flavor emerge from large-scale, systems-wide, interactions.
Collapse
|
3
|
|
4
|
Abstract
Orthodontic tooth movement is accompanied by inflammatory responses in the periodontal ligament. Chemical mediators such as interleukin-1β have key roles in nociception around teeth. Such nociceptive inputs to the periodontal ligament continue for several days and potentially induce plastic changes in higher brain regions, including the cerebral cortex. This review summarizes research on orthodontic treatment-induced modulation of neural activities in the central nervous system. Furthermore, we describe our recent findings on the spatiotemporal effects of orthodontic treatment in the somatosensory and insular cortices.
Collapse
Affiliation(s)
- Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry.,Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry.,Molecular Imaging Research Center, RIKEN
| | - Eri Horinuki
- Department of Pharmacology, Nihon University School of Dentistry.,Department of Orthodontics, Nihon University School of Dentistry
| |
Collapse
|
5
|
Abstract
UNLABELLED The primary gustatory cortex (GC) receives projections from the basolateral nucleus of the amygdala (BLA). Behavioral and electrophysiological studies demonstrated that this projection is involved in encoding the hedonic value of taste and is a source of anticipatory activity in GC. Anatomically, this projection is largest in the agranular portion of GC; however, its synaptic targets and synaptic properties are currently unknown. In vivo electrophysiological recordings report conflicting evidence about BLA afferents either selectively activating excitatory neurons or driving a compound response consistent with the activation of inhibitory circuits. Here we demonstrate that BLA afferents directly activate excitatory neurons and two distinct populations of inhibitory neurons in both superficial and deep layers of rat GC. BLA afferents recruit different proportions of excitatory and inhibitory neurons and show distinct patterns of circuit activation in the superficial and deep layers of GC. These results provide the first circuit-level analysis of BLA inputs to a sensory area. Laminar- and target-specific differences of BLA inputs likely explain the complexity of amygdalocortical interactions during sensory processing. SIGNIFICANCE STATEMENT Projections from the basolateral nucleus of the amygdala (BLA) to the cortex convey information about the emotional value and the expectation of a sensory stimulus. Although much work has been done to establish the behavioral role of BLA inputs to sensory cortices, very little is known about the circuit organization of BLA projections. Here we provide the first in-depth analysis of connectivity and synaptic properties of the BLA input to the gustatory cortex. We show that BLA afferents activate excitatory and inhibitory circuits in a layer-specific and pattern-specific manner. Our results provide important new information about how neural circuits establishing the hedonic value of sensory stimuli and driving anticipatory behaviors are organized at the synaptic level.
Collapse
|
6
|
Macey PM, Rieken NS, Kumar R, Ogren JA, Middlekauff HR, Wu P, Woo MA, Harper RM. Sex Differences in Insular Cortex Gyri Responses to the Valsalva Maneuver. Front Neurol 2016; 7:87. [PMID: 27375549 PMCID: PMC4899449 DOI: 10.3389/fneur.2016.00087] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/27/2016] [Indexed: 12/26/2022] Open
Abstract
Sex differences in autonomic regulation may underlie cardiovascular disease variations between females and males. One key autonomic brain region is the insular cortex, which typically consists of five main gyri in each hemisphere, and shows a topographical organization of autonomic function across those gyri. The present study aims to identify possible sex differences in organization of autonomic function in the insula. We studied brain functional magnetic resonance imaging (fMRI) responses to a series of four 18-s Valsalva maneuvers in 22 healthy females (age ± SD: 50.0 ± 7.9 years) and 36 healthy males (45.3 ± 9.2 years). Comparisons of heart rate (HR) and fMRI signals were performed with repeated measures ANOVA (threshold P < 0.05 for all findings). All subjects achieved the target 30 mmHg expiratory pressure for all challenges. Typical HR responses were elicited by the maneuver, including HR increases from ~4 s into the strain period (Phase II) and rapid declines to below baseline 5–10 s, following strain release (Phase IV). Small, but significant, sex differences in HR percent change occurred during the sympathetic-dominant Phase II (female < male) and parasympathetic-dominant Phase IV (female > male, i.e., greater undershoot in males). The insular cortices showed similar patterns in all gyri, with greater signal decreases in males than females. Both sexes exhibited an anterior–posterior topographical organization of insular responses during Phase II, with anterior gyri showing higher responses than more posterior gyri. The exception was the right anterior-most gyrus in females, which had lower responses than the four other right gyri. Responses were lateralized, with right-sided dominance during Phase II in both sexes, except the right anterior-most gyrus in females, which showed lower responses than the left. The findings confirm the anterior and right-sided sympathetic dominance of the insula. Although sex differences were prominent in response magnitude, organization differences between males and females were limited to the right anterior-most gyrus, which showed a lower fMRI response in females vs. males (and vs. other gyri in females). The sex differences suggest a possible differing baseline state of brain physiology or tonic functional activity between females and males, especially in the right anterior-most gyrus.
Collapse
Affiliation(s)
- Paul M Macey
- UCLA School of Nursing, University of California at Los Angeles, Los Angeles, CA, USA; Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA
| | - Nicholas S Rieken
- UCLA School of Nursing, University of California at Los Angeles , Los Angeles, CA , USA
| | - Rajesh Kumar
- Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA; Department of Anesthesiology, University of California at Los Angeles, Los Angeles, CA, USA; Department of Radiological Sciences, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jennifer A Ogren
- Department of Neurobiology, University of California at Los Angeles , Los Angeles, CA , USA
| | - Holly R Middlekauff
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California at Los Angeles , Los Angeles, CA , USA
| | - Paula Wu
- Department of Neurobiology, University of California at Los Angeles, Los Angeles, CA, USA; Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Mary A Woo
- UCLA School of Nursing, University of California at Los Angeles , Los Angeles, CA , USA
| | - Ronald M Harper
- Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA; Department of Neurobiology, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
7
|
Nakamura H, Shirakawa T, Koshikawa N, Kobayashi M. Distinct Excitation to Pulpal Stimuli between Somatosensory and Insular Cortices. J Dent Res 2015; 95:180-7. [DOI: 10.1177/0022034515611047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Somatosensory information from the dental pulp is processed in the primary (S1) and secondary somatosensory cortex (S2) and in the insular oral region (IOR). Stimulation of maxillary incisor and molar initially induces excitation in S2/IOR, rostrodorsal to the mandibular incisor and molar pulp-responding regions. Although S1 and S2/IOR play their own roles in nociceptive information processing, the anatomical and physiological differences in the temporal activation kinetics, dependency on stimulation intensity, and additive or summative effects of simultaneous pulpal stimulation are still unknown. This information contributes not only to understanding topographical organization but also to speculating about the roles of S1 and S2/IOR in clinical aspects of pain regulation. In vivo optical imaging enables investigation of the spatiotemporal profiles of cortical excitation with high resolution. We determined the distinct features of optical responses to nociceptive stimulation of dental pulps between S1 and S2/IOR. In comparison to S1, optical signals in S2/IOR showed a larger amplitude with a shorter rise time and a longer decay time responding to maxillary molar pulp stimulation. The latency of excitation in S2/IOR was shorter than in S1. S2/IOR exhibited a lower threshold to evoke optical responses than S1, and the peak amplitude was larger in S2/IOR than in S1. Unexpectedly, the topography of S1 that responded to maxillary and mandibular incisor and molar pulps overlapped with the most ventral sites in S1 that was densely stained with cytochrome oxidase. An additive effect was observed in both S1 and S2/IOR after simultaneous stimulation of bilateral maxillary molar pulps but not after contralateral maxillary and mandibular molar pulp stimulation. These findings suggest that S2/IOR is more sensitive for detecting dental pulp sensation and codes stimulation intensity more precisely than S1. In addition, contra- and ipsilateral dental pulp nociception converges onto spatially closed sites in S1 and S2/IOR.
Collapse
Affiliation(s)
- H. Nakamura
- Department of Pharmacology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
- Department of Pediatric Dentistry, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - T. Shirakawa
- Department of Pediatric Dentistry, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
- Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - N. Koshikawa
- Department of Pharmacology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
- Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - M. Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
- Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
- Molecular Imaging Research Center, RIKEN, Chuo-ku, Kobe, Japan
| |
Collapse
|
8
|
Nakamura H, Kato R, Shirakawa T, Koshikawa N, Kobayashi M. Spatiotemporal profiles of dental pulp nociception in rat cerebral cortex: an optical imaging study. J Comp Neurol 2015; 523:1162-74. [PMID: 25308210 DOI: 10.1002/cne.23692] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/07/2014] [Accepted: 10/07/2014] [Indexed: 01/01/2023]
Abstract
Somatosensation is topographically organized in the primary (S1) and secondary somatosensory cortex (S2), which contributes to identify the region receiving sensory inputs. However, it is still unknown how somatosensory inputs from the oral region, especially nociceptive inputs from the teeth, are processed in the somatosensory cortex. We performed in vivo optical imaging and identified the precise cortical regions responding to electrical stimulation of the maxillary and mandibular dental pulp in rats. Electrical stimulation of the mandibular incisor pulp evoked neural excitation in two areas: the most rostroventral part of S1, and the ventral part of S2 caudal to the middle cerebral artery. Maxillary incisor pulp stimulation initially evoked responses only in the ventral part of S2, although later maximum responses were also observed in S1 similar to mandibular incisor stimulation responses. The maxillary and mandibular molar pulp-responding regions were located in the most ventral S2, a part of which was histologically classified as the insular oral region (IOR). In terms of the initial responses, maxillary incisor and molar stimulation induced excitation in the S2/IOR rostral to the mandibular dental pulp-responding region. Contrary to the spatially segregated initial responses, the maximum excitatory areas responding to both incisors and molars in the mandible and maxilla overlapped in S1 and the S2/IOR. Multielectrode extracellular recording supported the characteristic localization of S2/IOR neurons responding to mandibular and maxillary molar pulp stimulation. The discrete and overlapped spatial profiles of initial and maximum responses, respectively, may characterize nociceptive information processing of dental pain in the cortex.
Collapse
Affiliation(s)
- Hiroko Nakamura
- Department of Pharmacology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan; Department of Pediatric Dentistry, Nihon University School of Dentistry, Tokyo, 101-8310, Japan
| | | | | | | | | |
Collapse
|
9
|
Fujita S, Mizoguchi N, Aoki R, Cui Y, Koshikawa N, Kobayashi M. Cytoarchitecture-Dependent Decrease in Propagation Velocity of Cortical Spreading Depression in the Rat Insular Cortex Revealed by Optical Imaging. Cereb Cortex 2015; 26:1580-1589. [PMID: 25595184 DOI: 10.1093/cercor/bhu336] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cortical spreading depression (SD) is a self-propagating wave of depolarization accompanied by a substantial disturbance of the ionic distribution between the intra- and extracellular compartments. Glial cells, including astrocytes, play critical roles in maintenance of the extracellular environment, including ionic distribution. Therefore, SD propagation in the cerebral cortex may depend on the density of astrocytes. The present study aimed to examine the profile of SD propagation in the insular cortex (IC), which is located between the neocortex and paleocortex and is where the density of astrocytes gradually changes. The velocity of SD propagation in the neocortex, including the somatosensory, motor, and granular insular cortices (5.7 mm/min), was higher than that (2.8 mm/min) in the paleocortex (agranular insular and piriform cortices). Around thick vessels, including the middle cerebral artery, SD propagation was frequently delayed and sometimes disappeared. Immunohistological analysis of glial fibrillary acidic protein (GFAP) demonstrated the sparse distribution of astrocytes in the somatosensory cortex and the IC dorsal to the rhinal fissure, whereas the ventral IC showed a higher density of astrocytes. These results suggest that cortical cytoarchitectonic features, which possibly involve the distribution of astrocytes, are crucial for regulating the velocity of SD propagation in the cerebral cortex.
Collapse
Affiliation(s)
- Satoshi Fujita
- Department of Pharmacology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.,Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Naoko Mizoguchi
- Department of Pharmacology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.,Division of Physiology, Department of Human Development and Fostering
| | - Ryuhei Aoki
- Department of Pharmacology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.,Division of Oral and Maxillofacial Surgery, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| | - Yilong Cui
- Molecular Dynamics Imaging Unit, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Noriaki Koshikawa
- Department of Pharmacology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.,Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.,Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.,Molecular Dynamics Imaging Unit, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|