1
|
Experience-dependent plasticity in early stations of sensory processing in mature brains: effects of environmental enrichment on dendrite measures in trigeminal nuclei. Brain Struct Funct 2021; 227:865-879. [PMID: 34807302 PMCID: PMC8930882 DOI: 10.1007/s00429-021-02424-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 11/07/2021] [Indexed: 11/21/2022]
Abstract
Nervous systems respond with structural changes to environmental changes even in adulthood. In recent years, experience-dependent structural plasticity was shown not to be restricted to the cerebral cortex, as it also occurs at subcortical and even peripheral levels. We have previously shown that two populations of trigeminal nuclei neurons, trigeminothalamic barrelette neurons of the principal nucleus (Pr5), and intersubnuclear neurons in the caudal division of the spinal trigeminal nucleus (Sp5C) that project to Pr5 underwent morphometric and topological changes in their dendritic trees after a prolonged total or partial loss of afferent input from the vibrissae. Here we examined whether and what structural alterations could be elicited in the dendritic trees of the same cell populations in young adult rats after being exposed for 2 months to an enriched environment (EE), and how these changes evolved when animals were returned to standard housing for an additional 2 months. Neurons were retrogradely labeled with BDA delivered to, respectively, the ventral posteromedial thalamic nucleus or Pr5. Fully labeled cells were digitally reconstructed with Neurolucida and analyzed with NeuroExplorer. EE gave rise to increases in dendritic length, number of trees and branching nodes, spatial expansion of the trees, and dendritic spines, which were less pronounced in Sp5C than in Pr5 and differed between sides. In Pr5, these parameters returned, but only partially, to control values after EE withdrawal. These results underscore a ubiquity of experience-dependent changes that should not be overlooked when interpreting neuroplasticity and developing plasticity-based therapeutic strategies.
Collapse
|
2
|
Fernández-Montoya J, Avendaño C, Negredo P. The Glutamatergic System in Primary Somatosensory Neurons and Its Involvement in Sensory Input-Dependent Plasticity. Int J Mol Sci 2017; 19:ijms19010069. [PMID: 29280965 PMCID: PMC5796019 DOI: 10.3390/ijms19010069] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 01/25/2023] Open
Abstract
Glutamate is the most common neurotransmitter in both the central and the peripheral nervous system. Glutamate is present in all types of neurons in sensory ganglia, and is released not only from their peripheral and central axon terminals but also from their cell bodies. Consistently, these neurons express ionotropic and metabotropic receptors, as well as other molecules involved in the synthesis, transport and release of the neurotransmitter. Primary sensory neurons are the first neurons in the sensory channels, which receive information from the periphery, and are thus key players in the sensory transduction and in the transmission of this information to higher centers in the pathway. These neurons are tightly enclosed by satellite glial cells, which also express several ionotropic and metabotropic glutamate receptors, and display increases in intracellular calcium accompanying the release of glutamate. One of the main interests in our group has been the study of the implication of the peripheral nervous system in sensory-dependent plasticity. Recently, we have provided novel evidence in favor of morphological changes in first- and second-order neurons of the trigeminal system after sustained alterations of the sensory input. Moreover, these anatomical changes are paralleled by several molecular changes, among which those related to glutamatergic neurotransmission are particularly relevant. In this review, we will describe the state of the art of the glutamatergic system in sensory ganglia and its involvement in input-dependent plasticity, a fundamental ground for advancing our knowledge of the neural mechanisms of learning and adaptation, reaction to injury, and chronic pain.
Collapse
Affiliation(s)
- Julia Fernández-Montoya
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, 28029 Madrid, Spain.
| | - Carlos Avendaño
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, 28029 Madrid, Spain.
| | - Pilar Negredo
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, 28029 Madrid, Spain.
| |
Collapse
|
3
|
Fernández-Montoya J, Martin YB, Negredo P, Avendaño C. Changes in the axon terminals of primary afferents from a single vibrissa in the rat trigeminal nuclei after active touch deprivation or exposure to an enriched environment. Brain Struct Funct 2017; 223:47-61. [PMID: 28702736 DOI: 10.1007/s00429-017-1472-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/05/2017] [Indexed: 02/03/2023]
Abstract
Lasting modifications of sensory input induce structural and functional changes in the brain, but the involvement of primary sensory neurons in this plasticity has been practically ignored. Here, we examine qualitatively and quantitatively the central axonal terminations of a population of trigeminal ganglion neurons, whose peripheral axons innervate a single mystacial vibrissa. Vibrissa follicles are heavily innervated by myelinated and unmyelinated fibers that exit the follicle mainly through a single deep vibrissal nerve. We made intraneural injections of a mixture of cholera-toxin B (CTB) and isolectin B4, tracers for myelinated and unmyelinated fibers, respectively, in three groups of young adult rats: controls, animals subjected to chronic haptic touch deprivation by unilateral whisker trimming, and rats exposed for 2 months to environmental enrichment. The regional and laminar pattern of terminal arborizations in the trigeminal nuclei of the brain stem did not show gross changes after sensory input modification. However, there were significant and widespread increases in the number and size of CTB-labeled varicosities in the enriched condition, and a prominent expansion in both parameters in laminae III-IV of the caudal division of the spinal nucleus in the whisker trimming condition. No obvious changes were detected in IB4-labeled terminals in laminae I-II. These results show that a prolonged exposure to changes in sensory input without any neural damage is capable of inducing structural changes in terminals of primary afferents in mature animals, and highlight the importance of peripheral structures as the presumed earliest players in sensory experience-dependent plasticity.
Collapse
Affiliation(s)
- Julia Fernández-Montoya
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, c/Arzobispo Morcillo 2, 28029, Madrid, Spain
| | - Yasmina B Martin
- Departamento de Anatomía, Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, UFV, Edificio E, Ctra. M-115, Pozuelo-Majadahonda Km 1,800, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Pilar Negredo
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, c/Arzobispo Morcillo 2, 28029, Madrid, Spain
| | - Carlos Avendaño
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, c/Arzobispo Morcillo 2, 28029, Madrid, Spain.
| |
Collapse
|
4
|
Fernández-Montoya J, Buendia I, Martin YB, Egea J, Negredo P, Avendaño C. Sensory Input-Dependent Changes in Glutamatergic Neurotransmission- Related Genes and Proteins in the Adult Rat Trigeminal Ganglion. Front Mol Neurosci 2016; 9:132. [PMID: 27965535 PMCID: PMC5124698 DOI: 10.3389/fnmol.2016.00132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 11/11/2016] [Indexed: 11/13/2022] Open
Abstract
Experience-dependent plasticity induces lasting changes in the structure of synapses, dendrites, and axons at both molecular and anatomical levels. Whilst relatively well studied in the cortex, little is known about the molecular changes underlying experience-dependent plasticity at peripheral levels of the sensory pathways. Given the importance of glutamatergic neurotransmission in the somatosensory system and its involvement in plasticity, in the present study, we investigated gene and protein expression of glutamate receptor subunits and associated molecules in the trigeminal ganglion (TG) of young adult rats. Microarray analysis of naïve rat TG revealed significant differences in the expression of genes, coding for various glutamate receptor subunits and proteins involved in clustering and stabilization of AMPA receptors, between left and right ganglion. Long-term exposure to sensory-enriched environment increased this left–right asymmetry in gene expression. Conversely, unilateral whisker trimming on the right side almost eliminated the mentioned asymmetries. The above manipulations also induced side-specific changes in the protein levels of glutamate receptor subunits. Our results show that sustained changes in sensory input induce modifications in glutamatergic transmission-related gene expression in the TG, thus supporting a role for this early sensory-processing node in experience-dependent plasticity.
Collapse
Affiliation(s)
- Julia Fernández-Montoya
- Departamento de Anatomía, Histología y Neurociencia, Universidad Autónoma de Madrid Madrid, Spain
| | - Izaskun Buendia
- Instituto de Investigación Sanitaria, Hospital Universitario de La PrincesaMadrid, Spain; Departamento de Farmacología y Terapéutica, Instituto Teófilo Hernando, Universidad Autónoma de MadridMadrid, Spain
| | - Yasmina B Martin
- Departamento de Anatomía, Histología y Neurociencia, Universidad Autónoma de MadridMadrid, Spain; Departamento de Anatomía, Universidad Francisco de VitoriaMadrid, Spain
| | - Javier Egea
- Instituto de Investigación Sanitaria, Hospital Universitario de La PrincesaMadrid, Spain; Departamento de Farmacología y Terapéutica, Instituto Teófilo Hernando, Universidad Autónoma de MadridMadrid, Spain
| | - Pilar Negredo
- Departamento de Anatomía, Histología y Neurociencia, Universidad Autónoma de Madrid Madrid, Spain
| | - Carlos Avendaño
- Departamento de Anatomía, Histología y Neurociencia, Universidad Autónoma de Madrid Madrid, Spain
| |
Collapse
|
5
|
Lo FS, Erzurumlu RS. Neonatal sensory nerve injury-induced synaptic plasticity in the trigeminal principal sensory nucleus. Exp Neurol 2016; 275 Pt 2:245-52. [PMID: 25956829 PMCID: PMC4636484 DOI: 10.1016/j.expneurol.2015.04.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 04/29/2015] [Indexed: 11/26/2022]
Abstract
Sensory deprivation studies in neonatal mammals, such as monocular eye closure, whisker trimming, and chemical blockade of the olfactory epithelium have revealed the importance of sensory inputs in brain wiring during distinct critical periods. But very few studies have paid attention to the effects of neonatal peripheral sensory nerve damage on synaptic wiring of the central nervous system (CNS) circuits. Peripheral somatosensory nerves differ from other special sensory afferents in that they are more prone to crush or severance because of their locations in the body. Unlike the visual and auditory afferents, these nerves show regenerative capabilities after damage. Uniquely, damage to a somatosensory peripheral nerve does not only block activity incoming from the sensory receptors but also mediates injury-induced neuro- and glial chemical signals to the brain through the uninjured central axons of the primary sensory neurons. These chemical signals can have both far more and longer lasting effects than sensory blockade alone. Here we review studies which focus on the consequences of neonatal peripheral sensory nerve damage in the principal sensory nucleus of the brainstem trigeminal complex.
Collapse
Affiliation(s)
- Fu-Sun Lo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Reha S Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
6
|
Smith JB, Watson GDR, Alloway KD, Schwarz C, Chakrabarti S. Corticofugal projection patterns of whisker sensorimotor cortex to the sensory trigeminal nuclei. Front Neural Circuits 2015; 9:53. [PMID: 26483640 PMCID: PMC4588702 DOI: 10.3389/fncir.2015.00053] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/14/2015] [Indexed: 11/29/2022] Open
Abstract
The primary (S1) and secondary (S2) somatosensory cortices project to several trigeminal sensory nuclei. One putative function of these corticofugal projections is the gating of sensory transmission through the trigeminal principal nucleus (Pr5), and some have proposed that S1 and S2 project differentially to the spinal trigeminal subnuclei, which have inhibitory circuits that could inhibit or disinhibit the output projections of Pr5. Very little, however, is known about the origin of sensorimotor corticofugal projections and their patterns of termination in the various trigeminal nuclei. We addressed this issue by injecting anterograde tracers in S1, S2 and primary motor (M1) cortices, and quantitatively characterizing the distribution of labeled terminals within the entire rostro-caudal chain of trigeminal sub-nuclei. We confirmed our anterograde tracing results by injecting retrograde tracers at various rostro-caudal levels within the trigeminal sensory nuclei to determine the position of retrogradely labeled cortical cells with respect to S1 barrel cortex. Our results demonstrate that S1 and S2 projections terminate in largely overlapping regions but show some significant differences. Whereas S1 projection terminals tend to cluster within the principal trigeminal (Pr5), caudal spinal trigeminal interpolaris (Sp5ic), and the dorsal spinal trigeminal caudalis (Sp5c), S2 projection terminals are distributed in a continuum across all trigeminal nuclei. Contrary to the view that sensory gating could be mediated by differential activation of inhibitory interconnections between the spinal trigeminal subnuclei, we observed that projections from S1 and S2 are largely overlapping in these subnuclei despite the differences noted earlier.
Collapse
Affiliation(s)
- Jared B Smith
- Department of Engineering Science and Mechanics, Pennsylvania State University University Park, PA, USA ; Center for Neural Engineering, Huck Institute of Life Sciences, Pennsylvania State University University Park, PA, USA
| | - Glenn D R Watson
- Center for Neural Engineering, Huck Institute of Life Sciences, Pennsylvania State University University Park, PA, USA ; Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine Hershey, PA, USA
| | - Kevin D Alloway
- Center for Neural Engineering, Huck Institute of Life Sciences, Pennsylvania State University University Park, PA, USA ; Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine Hershey, PA, USA
| | - Cornelius Schwarz
- Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen Tübingen, Germany ; Systems Neurophysiology, Werner Reichardt Center for Integrative Neurosciences, Eberhard Karls University of Tübingen Tübingen, Germany
| | - Shubhodeep Chakrabarti
- Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen Tübingen, Germany ; Systems Neurophysiology, Werner Reichardt Center for Integrative Neurosciences, Eberhard Karls University of Tübingen Tübingen, Germany
| |
Collapse
|