1
|
Mazzini L, De Marchi F, Buzanska L, Follenzi A, Glover JC, Gelati M, Lombardi I, Maioli M, Mesa-Herrera F, Mitrečić D, Olgasi C, Pivoriūnas A, Sanchez-Pernaute R, Sgromo C, Zychowicz M, Vescovi A, Ferrari D. Current status and new avenues of stem cell-based preclinical and therapeutic approaches in amyotrophic lateral sclerosis. Expert Opin Biol Ther 2024; 24:933-954. [PMID: 39162129 DOI: 10.1080/14712598.2024.2392307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
INTRODUCTION Cell therapy development represents a critical challenge in amyotrophic lateral sclerosis (ALS) research. Despite more than 20 years of basic and clinical research, no definitive safety and efficacy results of cell-based therapies for ALS have been published. AREAS COVERED This review summarizes advances using stem cells (SCs) in pre-clinical studies to promote clinical translation and in clinical trials to treat ALS. New technologies have been developed and new experimental in vitro and animal models are now available to facilitate pre-clinical research in this field and to determine the most promising approaches to pursue in patients. New clinical trial designs aimed at developing personalized SC-based treatment with biological endpoints are being defined. EXPERT OPINION Knowledge of the basic biology of ALS and on the use of SCs to study and potentially treat ALS continues to grow. However, a consensus has yet to emerge on how best to translate these results into therapeutic applications. The selection and follow-up of patients should be based on clinical, biological, and molecular criteria. Planning of SC-based clinical trials should be coordinated with patient profiling genetically and molecularly to achieve personalized treatment. Much work within basic and clinical research is still needed to successfully transition SC therapy in ALS.
Collapse
Affiliation(s)
- Letizia Mazzini
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Fabiola De Marchi
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Leonora Buzanska
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Antonia Follenzi
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Novara, Italy
- Dipartimento Attività Integrate Ricerca Innovazione, Azienda Ospedaliero-Universitaria SS. Antonio e Biagio e C. Arrigo, Alessandria, Italy
| | - Joel Clinton Glover
- Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital; Laboratory of Neural Development and Optical Recording (NDEVOR), Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maurizio Gelati
- Unità Produttiva per Terapie Avanzate (UPTA), IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Ivan Lombardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Center for Developmental Biology and Reprogramming-CEDEBIOR, University of Sassari, Sassari, Italy
| | - Fatima Mesa-Herrera
- Reprogramming and Neural Regeneration Lab, BioBizkaia Health Research Institute, Barakaldo, Spain
| | - Dinko Mitrečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research and Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Cristina Olgasi
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Rosario Sanchez-Pernaute
- Reprogramming and Neural Regeneration Lab, BioBizkaia Health Research Institute, Barakaldo, Spain
- Ikerbaske, Basque Foundation for Science, Bilbao, Spain
| | - Chiara Sgromo
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Novara, Italy
| | - Marzena Zychowicz
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Angelo Vescovi
- Unità Produttiva per Terapie Avanzate (UPTA), IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Daniela Ferrari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
2
|
Cai J, Liang X, Sun Y, Bao S. Beneficial effects of human umbilical cord mesenchymal stem cell (HUCMSC) transplantation on cyclophosphamide (CTX)-induced premature ovarian failure (POF) in Tibetan miniature pigs. Transpl Immunol 2024; 84:102051. [PMID: 38744348 DOI: 10.1016/j.trim.2024.102051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Premature ovarian failure (POF), also known as primary ovarian insufficiency, is a common endocrine disease in young women. The emergence of regenerative medicine using stem cells may improve ovarian function and structure, and represents a promising prospect for POF treatment. In his study, we explored the therapeutic effects of human umbilical cord mesenchymal stem cell (HUCMSC) transplantation in a Tibetan miniature pig model of cyclophosphamide (CTX)-induced POF. METHODS We cultured and identified HUCMSCs, labeled them with DiR iodide red dye, and implanted them into a CTX-induced model of POF in Tibetan miniature pigs. The daily weight changes were recorded, and the levels of estradiol (E2) and follicle-stimulating hormone (FSH) were measured on days 0, 7, and 14. At the end of the 21-day observation period, in vivo imaging of the bilateral ovaries was performed, and the ovarian index was measured. Ovarian tissue morphology and follicles were examined by hematoxylin-eosin staining. The terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay was employed to assess cell apoptosis, and immunohistochemistry was used to determine the levels of p-AKT, p-ERK1/2, BAX, and BCL2 expression. RESULTS Our analysis indicated successful delivery of HUCMSCs to the ovaries of the POF pig model. Significant increases were observed in body weight, E2 levels, ovarian index, and number of normal follicles (all p < 0.05). Moreover, FSH levels reduced and ovarian tissue morphology improved following HUCMSCs transplantation (all p < 0.05). Importantly, upregulated p-AKT, p-ERK1/2, and BCL2 expression were observed, whereas the expression of BAX was suppressed (all p < 0.05), suggesting the inhibition of ovarian cell apoptosis. CONCLUSION Our study highlights the significant therapeutic effects of HUCMSC transplantation on CTX-induced POF in a Tibetan miniature pig model.
Collapse
Affiliation(s)
- Junhong Cai
- Medical Laboratory Central, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, PR China
| | - Xiaochen Liang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan 571199, PR China; Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Haikou, Hainan 571199, PR China
| | - Yuting Sun
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan 571199, PR China; Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Haikou, Hainan 571199, PR China
| | - Shan Bao
- Department of Gynaecology and Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, PR China.
| |
Collapse
|
3
|
Zhu L, Li S, Li XJ, Yin P. Pathological insights from amyotrophic lateral sclerosis animal models: comparisons, limitations, and challenges. Transl Neurodegener 2023; 12:46. [PMID: 37730668 PMCID: PMC10510301 DOI: 10.1186/s40035-023-00377-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/01/2023] [Indexed: 09/22/2023] Open
Abstract
In order to dissect amyotrophic lateral sclerosis (ALS), a multigenic, multifactorial, and progressive neurodegenerative disease with heterogeneous clinical presentations, researchers have generated numerous animal models to mimic the genetic defects. Concurrent and comparative analysis of these various models allows identification of the causes and mechanisms of ALS in order to finally obtain effective therapeutics. However, most genetically modified rodent models lack overt pathological features, imposing challenges and limitations in utilizing them to rigorously test the potential mechanisms. Recent studies using large animals, including pigs and non-human primates, have uncovered important events that resemble neurodegeneration in patients' brains but could not be produced in small animals. Here we describe common features as well as discrepancies among these models, highlighting new insights from these models. Furthermore, we will discuss how to make rodent models more capable of recapitulating important pathological features based on the important pathogenic insights from large animal models.
Collapse
Affiliation(s)
- Longhong Zhu
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| | - Peng Yin
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
4
|
Kondo T, Inoue I, Umeyama K, Watanabe M, Matsunari H, Uchikura A, Nakano K, Tsukita K, Imamura K, Nagashima H, Inoue H. A Transgenic Pig Model With Human Mutant SOD1 Exhibits the Early Pathology of Amyotrophic Lateral Sclerosis. J Transl Med 2023; 103:100013. [PMID: 37039150 DOI: 10.1016/j.labinv.2022.100013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 01/12/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) causes progressive degeneration of the motor neurons. In this study, we delivered the genetic construct including the whole locus of human mutant superoxide dismutase 1 (SOD1) with the promoter region of human SOD1 into porcine zygotes using intracytoplasmic sperm injection-mediated gene transfer, and we thereby generated a pig model of human mutant SOD1-mediated familial ALS. The established ALS pig model exhibited an initial abnormality of motor neurons with accumulated misfolded SOD1. The ALS pig model, with a body size similar to that of human beings, will provide opportunities for cell and gene therapy platforms in preclinical translational research.
Collapse
|
5
|
Identification of Body Size Determination Related Candidate Genes in Domestic Pig Using Genome-Wide Selection Signal Analysis. Animals (Basel) 2022; 12:ani12141839. [PMID: 35883386 PMCID: PMC9312078 DOI: 10.3390/ani12141839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 01/03/2023] Open
Abstract
This study aimed to identify the genes related to the body size of pigs by conducting genome-wide selection analysis (GWSA). We performed a GWSA scan on 50 pigs belonging to four small-bodied pig populations (Diannan small-eared pig, Bama Xiang pig, Wuzhishan pig, and Jeju black pig from South Korea) and 124 large-bodied pigs. We used the genetic parameters of the pairwise fixation index (FST) and π ratio (case/control) to screen candidate genome regions and genes related to body size. The results revealed 47,339,509 high-quality SNPs obtained from 174 individuals, while 280 interacting candidate regions were obtained from the top 1% signal windows of both parameters, along with 187 genes (e.g., ADCK4, AMDHD2, ASPN, ASS1, and ATP6V0C). The results of the candidate gene (CG) annotation showed that a series of CGs (e.g., MSTN, LTBP4, PDPK1, PKMYT1, ASS1, and STAT6) was enriched into the gene ontology terms. Moreover, molecular pathways, such as the PI3K-Akt, HIF-1, and AMPK signaling pathways, were verified to be related to body development. Overall, we identified a series of key genes that may be closely related to the body size of pigs, further elucidating the heredity basis of body shape determination in pigs and providing a theoretical reference for molecular breeding.
Collapse
|
6
|
Hanna AS, Hellenbrand DJ, Schomberg DT, Salamat SM, Loh M, Wheeler L, Hanna B, Ozaydin B, Meudt J, Shanmuganayagam D. Brachial plexus anatomy in the miniature swine as compared to human. J Anat 2022; 240:172-181. [PMID: 34355792 PMCID: PMC8655215 DOI: 10.1111/joa.13525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 11/30/2022] Open
Abstract
Brachial plexus injury (BPI) occurs when the brachial plexus is compressed, stretched, or avulsed. Although rodents are commonly used to study BPI, these models poorly mimic human BPI due to the discrepancy in size. The objective of this study was to compare the brachial plexus between human and Wisconsin Miniature SwineTM (WMSTM ), which are approximately the weight of an average human (68-91 kg), to determine if swine would be a suitable model for studying BPI mechanisms and treatments. To analyze the gross anatomy, WMS brachial plexuses were dissected both anteriorly and posteriorly. For histological analysis, sections from various nerves of human and WMS brachial plexuses were fixed in 2.5% glutaraldehyde, and postfixed with 2% osmium tetroxide. Subsequently paraffin sections were counter-stained with Masson's Trichrome. Gross anatomy revealed that the separation into three trunks and three cords is significantly less developed in the swine than in human. In swine, it takes the form of upper, middle, and lower systems with ventral and dorsal components. Histological evaluation of selected nerves revealed differences in nerve trunk diameters and the number of myelinated axons in the two species. The WMS had significantly fewer myelinated axons than humans in median (p = 0.0049), ulnar (p = 0.0002), and musculocutaneous nerves (p = 0.0454). The higher number of myelinated axons in these nerves for humans is expected because there is a high demand of fine motor and sensory functions in the human hand. Due to the stronger shoulder girdle muscles in WMS, the WMS suprascapular and axillary nerves were larger than in human. Overall, the WMS brachial plexus is similar in size and origin to human making them a very good model to study BPI. Future studies analyzing the effects of BPI in WMS should be conducted.
Collapse
Affiliation(s)
- Amgad S. Hanna
- Department of Neurological SurgeryUniversity of Wisconsin School of Medicine and Public Health (UWSMPH) – MadisonMadisonWisconsinUSA
| | - Daniel J. Hellenbrand
- Department of Neurological SurgeryUniversity of Wisconsin School of Medicine and Public Health (UWSMPH) – MadisonMadisonWisconsinUSA
| | - Dominic T. Schomberg
- Department of Animal and Dairy SciencesUniversity of Wisconsin – MadisonMadisonWisconsinUSA
| | - Shahriar M. Salamat
- Department of Neurological SurgeryUniversity of Wisconsin School of Medicine and Public Health (UWSMPH) – MadisonMadisonWisconsinUSA
- Department of Pathology and Laboratory MedicineUniversity of Wisconsin School of Medicine and Public Health (UWSMPH)MadisonWisconsinUSA
| | - Megan Loh
- Department of Neurological SurgeryUniversity of Wisconsin School of Medicine and Public Health (UWSMPH) – MadisonMadisonWisconsinUSA
| | - Lea Wheeler
- Department of Neurological SurgeryUniversity of Wisconsin School of Medicine and Public Health (UWSMPH) – MadisonMadisonWisconsinUSA
| | - Barbara Hanna
- University of Wisconsin – MadisonMadisonWisconsinUSA
| | - Burak Ozaydin
- Department of Neurological SurgeryUniversity of Wisconsin School of Medicine and Public Health (UWSMPH) – MadisonMadisonWisconsinUSA
| | - Jennifer Meudt
- Biomedical & Genomic Research GroupUniversity of Wisconsin – MadisonMadisonWisconsinUSA
| | - Dhanansayan Shanmuganayagam
- Department of Animal and Dairy SciencesUniversity of Wisconsin – MadisonMadisonWisconsinUSA
- Department of SurgeryUniversity of Wisconsin School of Medicine and Public Health (UWSMPH) – MadisonMadisonWisconsinUSA
| |
Collapse
|
7
|
Bonifacino T, Zerbo RA, Balbi M, Torazza C, Frumento G, Fedele E, Bonanno G, Milanese M. Nearly 30 Years of Animal Models to Study Amyotrophic Lateral Sclerosis: A Historical Overview and Future Perspectives. Int J Mol Sci 2021; 22:ijms222212236. [PMID: 34830115 PMCID: PMC8619465 DOI: 10.3390/ijms222212236] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, multigenic, multifactorial, and non-cell autonomous neurodegenerative disease characterized by upper and lower motor neuron loss. Several genetic mutations lead to ALS development and many emerging gene mutations have been discovered in recent years. Over the decades since 1990, several animal models have been generated to study ALS pathology including both vertebrates and invertebrates such as yeast, worms, flies, zebrafish, mice, rats, guinea pigs, dogs, and non-human primates. Although these models show different peculiarities, they are all useful and complementary to dissect the pathological mechanisms at the basis of motor neuron degeneration and ALS progression, thus contributing to the development of new promising therapeutics. In this review, we describe the up to date and available ALS genetic animal models, classified by the different genetic mutations and divided per species, pointing out their features in modeling, the onset and progression of the pathology, as well as their specific pathological hallmarks. Moreover, we highlight similarities, differences, advantages, and limitations, aimed at helping the researcher to select the most appropriate experimental animal model, when designing a preclinical ALS study.
Collapse
Affiliation(s)
- Tiziana Bonifacino
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Genoa, Italy
| | - Roberta Arianna Zerbo
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Matilde Balbi
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Carola Torazza
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Giulia Frumento
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Ernesto Fedele
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence:
| | - Giambattista Bonanno
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Marco Milanese
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Genoa, Italy
| |
Collapse
|
8
|
Mehmood A, Ali W, Din ZU, Song S, Sohail M, Shah W, Guo J, Guo RY, Ilahi I, Shah S, Al-Shaebi F, Zeb L, Asiamah EA, Al-Dhamin Z, Bilal H, Li B. Clustered regularly interspaced short palindromic repeats as an advanced treatment for Parkinson's disease. Brain Behav 2021; 11:e2280. [PMID: 34291612 PMCID: PMC8413717 DOI: 10.1002/brb3.2280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/26/2021] [Accepted: 06/27/2021] [Indexed: 12/04/2022] Open
Abstract
Recently, genome-editing technology like clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 has improved the translational gap in the treatments mediated through gene therapy. The advantages of the CRISPR system, such as, work in the living cells and tissues, candidate this technique for the employing in experiments and the therapy of central nervous system diseases. Parkinson's disease (PD) is a widespread, disabling, neurodegenerative disease induced by dopaminergic neuron loss and linked to progressive motor impairment. Pathophysiological basis knowledge of PD has modified the PD classification model and expresses in the sporadic and familial types. Analyses of the earliest genetic linkage have shown in PD the inclusion of synuclein alpha (SNCA) genomic duplication and SNCA mutations in the familial types of PD pathogenesis. This review analyzes the structure, development, and function in genome editing regulated through the CRISPR/Cas9. Also, it explains the genes associated with PD pathogenesis and the appropriate modifications to favor PD. This study follows the direction by understanding the PD linking analyses in which the CRISPR technique is applied. Finally, this study explains the limitations and future trends of CRISPR service in relation to the genome-editing process in PD patients' induced pluripotent stem cells.
Collapse
Affiliation(s)
- Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, P. R. China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, 050000, P. R. China
| | - Wajid Ali
- Key Laboratory of Functional Inorganic Materials Chemistry, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Zaheer Ud Din
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Shuang Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, P. R. China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, 050000, P. R. China
| | - Muhammad Sohail
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Wahid Shah
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Jiangyuan Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, P. R. China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, 050000, P. R. China
| | - Ruo-Yi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, P. R. China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, 050000, P. R. China
| | - Ikram Ilahi
- Department of Zoology, University of Malakand, Chakdara, Khyber Pakhtunkhwa, 18800, Pakistan
| | - Suleman Shah
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei, 050017, China
| | - Fadhl Al-Shaebi
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, 050017, China
| | - Liaqat Zeb
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| | - Ernest Amponsah Asiamah
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei, 050017, China
| | - Zaid Al-Dhamin
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China
| | - Hazrat Bilal
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, Guangxi, 541004, China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, P. R. China.,Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, 050000, P. R. China
| |
Collapse
|
9
|
Bertani V, Prioni S, Di Lecce R, Gazza F, Ragionieri L, Merialdi G, Bonilauri P, Jagannathan V, Grassi S, Cabitta L, Paoli A, Morrone A, Sonnino S, Drögemüller C, Cantoni AM. A pathogenic HEXA missense variant in wild boars with Tay-Sachs disease. Mol Genet Metab 2021; 133:297-306. [PMID: 34119419 DOI: 10.1016/j.ymgme.2021.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/27/2022]
Abstract
Gangliosidoses are inherited lysosomal storage disorders caused by reduced or absent activity of either a lysosomal enzyme involved in ganglioside catabolism, or an activator protein required for the proper activity of a ganglioside hydrolase, which results in the intra-lysosomal accumulation of undegraded metabolites. We hereby describe morphological, ultrastructural, biochemical and genetic features of GM2 gangliosidosis in three captive bred wild boar littermates. The piglets were kept in a partially-free range farm and presented progressive neurological signs, starting at 6 months of age. Animals were euthanized at approximately one year of age due to their poor conditions. Neuropathogens were excluded as a possible cause of the signs. Gross examination showed a reduction of cerebral and cerebellar consistency. Central (CNS) and peripheral (PNS) nervous system neurons were enlarged and foamy, with severe and diffuse cytoplasmic vacuolization. Transmission electron microscopy (TEM) of CNS neurons demonstrated numerous lysosomes, filled by parallel or concentric layers of membranous electron-dense material, defined as membranous cytoplasmic bodies (MCB). Biochemical composition of gangliosides analysis from CNS revealed accumulation of GM2 ganglioside; furthermore, Hex A enzyme activity was less than 1% compared to control animals. These data confirmed the diagnosis of GM2 gangliosidosis. Genetic analysis identified, at a homozygous level, the presence of a missense nucleotide variant c.1495C > T (p Arg499Cys) in the hexosaminidase subunit alpha gene (HEXA), located within the GH20 hexosaminidase superfamily domain of the encoded protein. This specific HEXA variant is known to be pathogenic and associated with Tay-Sachs disease in humans, but has never been identified in other animal species. This is the first report of a HEXA gene associated Tay-Sachs disease in wild boars and provides a comprehensive description of a novel spontaneous animal model for this lysosomal storage disease.
Collapse
Affiliation(s)
- Valeria Bertani
- Department of Veterinary Science, University of Parma, Via Taglio, 8, 43100 Parma, Italy.
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20129 Segrate, Italy
| | - Rosanna Di Lecce
- Department of Veterinary Science, University of Parma, Via Taglio, 8, 43100 Parma, Italy
| | - Ferdinando Gazza
- Department of Veterinary Science, University of Parma, Via Taglio, 8, 43100 Parma, Italy
| | - Luisa Ragionieri
- Department of Veterinary Science, University of Parma, Via Taglio, 8, 43100 Parma, Italy
| | - Giuseppe Merialdi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Pietro Fiorini, 5, 40127, Bologna, Italy
| | - Paolo Bonilauri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Pietro Fiorini, 5, 40127, Bologna, Italy
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001 Bern, Switzerland
| | - Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20129 Segrate, Italy
| | - Livia Cabitta
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20129 Segrate, Italy
| | - Antonella Paoli
- Molecular and Cell Biology Laboratory, Paediatric Neurology Unit and Laboratories, Neuroscience Department, A. Meyer Children's Hospital, Florence, Italy
| | - Amelia Morrone
- Molecular and Cell Biology Laboratory, Paediatric Neurology Unit and Laboratories, Neuroscience Department, A. Meyer Children's Hospital, Florence, Italy; Department of Neurosciences, Psychology, Pharmacology and Child Health, University of Florence, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20129 Segrate, Italy
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001 Bern, Switzerland
| | - Anna Maria Cantoni
- Department of Veterinary Science, University of Parma, Via Taglio, 8, 43100 Parma, Italy
| |
Collapse
|
10
|
Zaer H, Deshmukh A, Orlowski D, Fan W, Prouvot PH, Glud AN, Jensen MB, Worm ES, Lukacova S, Mikkelsen TW, Fitting LM, Adler JR, Schneider MB, Jensen MS, Fu Q, Go V, Morizio J, Sørensen JCH, Stroh A. An Intracortical Implantable Brain-Computer Interface for Telemetric Real-Time Recording and Manipulation of Neuronal Circuits for Closed-Loop Intervention. Front Hum Neurosci 2021; 15:618626. [PMID: 33613212 PMCID: PMC7887289 DOI: 10.3389/fnhum.2021.618626] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/14/2021] [Indexed: 11/13/2022] Open
Abstract
Recording and manipulating neuronal ensemble activity is a key requirement in advanced neuromodulatory and behavior studies. Devices capable of both recording and manipulating neuronal activity brain-computer interfaces (BCIs) should ideally operate un-tethered and allow chronic longitudinal manipulations in the freely moving animal. In this study, we designed a new intracortical BCI feasible of telemetric recording and stimulating local gray and white matter of visual neural circuit after irradiation exposure. To increase the translational reliance, we put forward a Göttingen minipig model. The animal was stereotactically irradiated at the level of the visual cortex upon defining the target by a fused cerebral MRI and CT scan. A fully implantable neural telemetry system consisting of a 64 channel intracortical multielectrode array, a telemetry capsule, and an inductive rechargeable battery was then implanted into the visual cortex to record and manipulate local field potentials, and multi-unit activity. We achieved a 3-month stability of the functionality of the un-tethered BCI in terms of telemetric radio-communication, inductive battery charging, and device biocompatibility for 3 months. Finally, we could reliably record the local signature of sub- and suprathreshold neuronal activity in the visual cortex with high bandwidth without complications. The ability to wireless induction charging combined with the entirely implantable design, the rather high recording bandwidth, and the ability to record and stimulate simultaneously put forward a wireless BCI capable of long-term un-tethered real-time communication for causal preclinical circuit-based closed-loop interventions.
Collapse
Affiliation(s)
- Hamed Zaer
- Department of Neurosurgery, Center for Experimental Neuroscience (CENSE), Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ashlesha Deshmukh
- Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Dariusz Orlowski
- Department of Neurosurgery, Center for Experimental Neuroscience (CENSE), Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Wei Fan
- Leibniz Institute for Resilience Research, Mainz, Germany
| | | | - Andreas Nørgaard Glud
- Department of Neurosurgery, Center for Experimental Neuroscience (CENSE), Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Morten Bjørn Jensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Oncology, Radiation Therapy, and Clinical Medicine, Aarhus University Hospital, Aarhus University, Aarhus, Denmark
| | - Esben Schjødt Worm
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Oncology, Radiation Therapy, and Clinical Medicine, Aarhus University Hospital, Aarhus University, Aarhus, Denmark
| | - Slávka Lukacova
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Oncology, Radiation Therapy, and Clinical Medicine, Aarhus University Hospital, Aarhus University, Aarhus, Denmark
| | - Trine Werenberg Mikkelsen
- Department of Neurosurgery, Center for Experimental Neuroscience (CENSE), Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lise Moberg Fitting
- Department of Neurosurgery, Center for Experimental Neuroscience (CENSE), Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - John R. Adler
- Zap Surgical Systems, Inc., San Carlos, CA, United States
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - M. Bret Schneider
- Zap Surgical Systems, Inc., San Carlos, CA, United States
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Martin Snejbjerg Jensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark
| | - Quanhai Fu
- Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Vinson Go
- Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - James Morizio
- Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Jens Christian Hedemann Sørensen
- Department of Neurosurgery, Center for Experimental Neuroscience (CENSE), Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Albrecht Stroh
- Leibniz Institute for Resilience Research, Mainz, Germany
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
11
|
Novel Low-Voltage Electro-Ejaculation Approach for Sperm Collection from Zoo Captive Lanyu Miniature Pigs ( Sus barbatus sumatranus). Animals (Basel) 2020; 10:ani10101825. [PMID: 33036420 PMCID: PMC7600073 DOI: 10.3390/ani10101825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 11/17/2022] Open
Abstract
Semen collection can be achieved via hand penile massage or rectal stimulation using electro-ejaculation methods. Traditional electro-ejaculation procedure applied relatively high voltage of 3-15 volts with a maximum current of 900 mA. However, these manipulations often result in great stress and discomforts in animals. In this study, we showed low-voltage electro-ejaculation procedure using 2-3 volts with a maximum current of 500 mA can efficiently stimulated ejaculations in zoo captive lanyu miniature pigs with a high success rate of 81.3% (13/16). Besides normal semen properties (semen volume, pH, sperm concentration), we demonstrated that low-voltage electro-ejaculation caused less stress in the animals, and sperm cells obtained via low-voltage electro-ejaculation exhibit low abnormality (10.3%), high viability (84.3%), motility (75.7%), progressive motility (63.7%), and acrosome integrity (88%). However, cryopreservation protocol used in the current study requires further optimization, as sperm mitochondrial function was partially compromised during freezing procedures. Taken together, we demonstrated in this study that a low-voltage electro-ejaculation approach can be used to obtain quality sperm cells from zoo captive lanyu miniature pig with less physical stress during electro-ejaculation procedure.
Collapse
|
12
|
Safari F, Hatam G, Behbahani AB, Rezaei V, Barekati-Mowahed M, Petramfar P, Khademi F. CRISPR System: A High-throughput Toolbox for Research and Treatment of Parkinson's Disease. Cell Mol Neurobiol 2020; 40:477-493. [PMID: 31773362 DOI: 10.1007/s10571-019-00761-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022]
Abstract
In recent years, the innovation of gene-editing tools such as the CRISPR/Cas9 system improves the translational gap of treatments mediated by gene therapy. The privileges of CRISPR/Cas9 such as working in living cells and organs candidate this technology for using in research and treatment of the central nervous system (CNS) disorders. Parkinson's disease (PD) is a common, debilitating, neurodegenerative disorder which occurs due to loss of dopaminergic neurons and is associated with progressive motor dysfunction. Knowledge about the pathophysiological basis of PD has altered the classification system of PD, which manifests in familial and sporadic forms. The first genetic linkage studies in PD demonstrated the involvement of Synuclein alpha (SNCA) mutations and SNCA genomic duplications in the pathogenesis of PD familial forms. Subsequent studies have also insinuated mutations in leucine repeat kinase-2 (LRRK2), Parkin, PTEN-induced putative kinase 1 (PINK1), as well as DJ-1 causing familial forms of PD. This review will attempt to discuss the structure, function, and development in genome editing mediated by CRISP/Cas9 system. Further, it describes the genes involved in the pathogenesis of PD and the pertinent alterations to them. We will pursue this line by delineating the PD linkage studies in which CRISPR system was employed. Finally, we will discuss the pros and cons of CRISPR employment vis-à-vis the process of genome editing in PD patients' iPSCs.
Collapse
Affiliation(s)
- Fatemeh Safari
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Hatam
- Basic Sciences in Infectious Diseases Research Center, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Behzad Behbahani
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Rezaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mazyar Barekati-Mowahed
- Department of Physiology & Biophysics, School of Medicine, Case Western Reserve University, Ohio, USA
| | - Peyman Petramfar
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Khademi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
13
|
Ex vivo diffusion-weighted MRI tractography of the Göttingen minipig limbic system. Brain Struct Funct 2020; 225:1055-1071. [DOI: 10.1007/s00429-020-02058-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/18/2020] [Indexed: 10/24/2022]
|
14
|
Żakowski W. Animal Use in Neurobiological Research. Neuroscience 2020; 433:1-10. [PMID: 32156550 DOI: 10.1016/j.neuroscience.2020.02.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/20/2020] [Accepted: 02/29/2020] [Indexed: 12/13/2022]
Abstract
The fact that neurobiological research is reliant upon laboratory-reared rodents is well known. The following paper discusses this topic broadly, but also aims to highlight other species used in the study of the nervous system and the evolution of animal species usage from the end of World War II through recent investigations. Attention is drawn to the dramatic reduction in the diversity of species used in neuroscience, with a significant shift toward two species, the mouse (Mus musculus) and rat (Rattus norvegicus). Such a limitation in animal species causes many difficulties in the development of new therapies for various neuropsychiatric diseases. Based on numerous scientific publications, the advantages of using a greater diversity of species in neuroscience and the disadvantages of focusing on mice and rats are presented.
Collapse
Affiliation(s)
- Witold Żakowski
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| |
Collapse
|
15
|
Holland MT, Seaman SC, Woodroffe RW, Fredericks DC, Kovach CK, Gibson-Corley KN, Gillies GT, Howard MA. In Vivo Testing of a Prototype Intradural Spinal Cord Stimulator in a Porcine Model. World Neurosurg 2020; 137:e634-e641. [PMID: 32112934 DOI: 10.1016/j.wneu.2020.02.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Chronic midline low back pain is the number one reason for disability in the United States despite the prolific use of medical and surgical interventions. Notwithstanding the widespread use of epidural spinal cord stimulators (SCSs), there remains a large portion of the population with inadequate pain control thought to be because of the limited volume of stimulated neural tissue. Intradural SCSs represent an underexplored alternative strategy with the potential to improve selectivity, power efficiency, and efficacy. We studied and carried out development of an intradural form of an SCS. Herein we present the findings of in vivo testing of a prototype intradural SCS in a porcine model. METHODS Six female juvenile pigs underwent surgical investigation. One control animal underwent a laminectomy only, whereas the 5 other animals had implantation of an intradural SCS prototype. One of the prototypes was fully wired to enable acute stimulation and concurrent electromyographic recordings. All animals underwent terminal surgery 3 months postimplantation, with harvesting of the spinal column. Imaging (microcomputed tomography scan) and histopathologic examinations were subsequently performed. RESULTS All animals survived implantation without evidence of neurologic deficits or infection. Postmortem imaging and histopathologic examination of the spinal column revealed no evidence of spinal cord damage, cerebrospinal fluid fistula formation, abnormal bony overgrowth, or dural defect. Viable dura was present between the intra- and extradural plates of the device. Electromyographic recordings revealed evoked motor units from the stimulator. CONCLUSIONS Chronically implanted intradural device in the porcine model demonstrated safety and feasibility for translation into humans.
Collapse
Affiliation(s)
- Marshall T Holland
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Scott C Seaman
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Royce W Woodroffe
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Douglas C Fredericks
- Department of Orthopedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Christopher K Kovach
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | | | - George T Gillies
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Matthew A Howard
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA.
| |
Collapse
|
16
|
Hoffe B, Holahan MR. The Use of Pigs as a Translational Model for Studying Neurodegenerative Diseases. Front Physiol 2019; 10:838. [PMID: 31354509 PMCID: PMC6635594 DOI: 10.3389/fphys.2019.00838] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 06/18/2019] [Indexed: 12/14/2022] Open
Abstract
In recent years, the move to study neurodegenerative disease using larger animal models with brains that are more similar to humans has gained interest. While pigs have been used for various biomedical applications and research, it has only been recently that they have been used to study neurodegenerative diseases due to their neuroanatomically similar gyrencephalic brains and similar neurophysiological processes as seen in humans. This review focuses on the use of pigs in the study of Alzheimer’s disease (AD) and traumatic brain injury (TBI). AD is considered the most common neurodegenerative disease in elderly populations. Head impacts from falls are the most common form of injury in the elderly and recent literature has shown an association between repetitive head impacts and the development of AD. This review summarizes research into the pathological mechanisms underlying AD and TBI as well as the advantages and disadvantages of using pigs in the neuroscientific study of these disease processes. With the lack of successful therapeutics for neurodegenerative diseases, and an increasing elderly population, the use of pigs may provide a better translational model for understanding and treating these diseases.
Collapse
Affiliation(s)
- Brendan Hoffe
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | | |
Collapse
|
17
|
Orlowski D, Glud AN, Palomero-Gallagher N, Sørensen JCH, Bjarkam CR. Online histological atlas of the Göttingen minipig brain. Heliyon 2019; 5:e01363. [PMID: 30949607 PMCID: PMC6429808 DOI: 10.1016/j.heliyon.2019.e01363] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/24/2019] [Accepted: 03/13/2019] [Indexed: 02/04/2023] Open
Abstract
Background The cytoarchitecture of the Göttingen minipig telencephalon has recently been elucidated in the published article (Bjarkam et al., 2017). The aim of the current paper is to describe how such data can be presented in an online histological atlas of the Gottingen minipig brain and how this atlas was constructed. Methods Two sets of histological sections were used. One set was photographed in high resolution and labelled, the other set in low resolution (resized first set) was used for reference on the computer screen. The two sets of microphotographs enable, using the freely available JQuery Image Zoom Plugin, the subsequent construction of a simple HTML-based atlas web page with a “virtual microscope like” style, which allowed magnifying of the base image (low-resolution image) up to the maximum resolution of the high-resolution image. In addition, we describe how the established histological atlas can be accompanied by a set of similar T1-weighted MRI pictures. Results and conclusion Histological and MRI pictures are presented in atlas form on www.cense.dk/minipig_atlas/index.html. The described pipeline represent a cheap and freely available way to present histological images, in online virtual microscopic atlas form, and may thus be of general interest to anyone who would like to present histological data accordingly.
Collapse
Affiliation(s)
- Dariusz Orlowski
- Center for Experimental Neuroscience (Cense), Institute of Clinical Medicine - The Department of Neurosurgery, Aarhus University, Aarhus Universitetshospital, Palle Juul-Jensens Boulevard 165, Indgang J, Plan 1, J118-125, DK-8200 Aarhus N, Denmark
| | - Andreas N Glud
- Center for Experimental Neuroscience (Cense), Institute of Clinical Medicine - The Department of Neurosurgery, Aarhus University, Aarhus Universitetshospital, Palle Juul-Jensens Boulevard 165, Indgang J, Plan 1, J118-125, DK-8200 Aarhus N, Denmark
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Jens Christian H Sørensen
- Center for Experimental Neuroscience (Cense), Institute of Clinical Medicine - The Department of Neurosurgery, Aarhus University, Aarhus Universitetshospital, Palle Juul-Jensens Boulevard 165, Indgang J, Plan 1, J118-125, DK-8200 Aarhus N, Denmark.,Department of Neurosurgery, Aarhus University Hospital, Aarhus Universitetshospital, Palle Juul-Jensens Boulevard 165, Indgang J, Plan 6, DK-8200 Aarhus N, Denmark
| | - Carsten R Bjarkam
- Department of Neurosurgery, Aalborg University Hospital, and Institute of Clinical Medicine, Aalborg University, Hobrovej 18-22, DK-9000 Aalborg, Denmark
| |
Collapse
|
18
|
Wilson S, Nagel SJ, Frizon LA, Fredericks DC, DeVries-Watson NA, Gillies GT, Howard MA. The Hemisection Approach in Large Animal Models of Spinal Cord Injury: Overview of Methods and Applications. J INVEST SURG 2018; 33:240-251. [PMID: 30380340 DOI: 10.1080/08941939.2018.1492048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Introduction: Translating basic science research into a safe and effective therapy for spinal cord injury (SCI) requires suitable large animal models for testing both implantable devices and biologic approaches to better approximate human anatomy and function. Hemisection lesions, routinely used for investigational purposes in small animals, are less frequently described in large animals that might be appropriate for translational studies. Size constraints of small animals (mice and rats) limits the predictability of the findings when scaled up. Our goal is to review the status of hemisection SCI in large animals across species and time to prepare for the testing of a novel intradural spinal cord stimulation device for control of spasticity in an ovine model. Methods and Results: We surveyed the literature on hemisection in quadrupeds and nonhuman primates, and catalogued the species, protocols and outcomes of the experimental work in this field. Feline, lapine, canine, simian, porcine, ovine and bovine models were the primary focal points. There is a consistent body of literature reporting use of the hemisection approach in large animals, but with differences in surgical technique depending on the goals and nature of the individual studies. While the injuries are not always consistent, the experimental variability is generally lower than that of the contusion-based approach. In general, as the body size of the animal increases, animal care requirements and the associated costs follow. In most cases, this is inversely correlated with the number of animals used in hemisection models. Conclusions: The hemisection approach to modeling SCI is straightforward compared with other methods such as the contusive impact and enables the transection of isolated ascending and descending tracts and segment specific cell bodies. This has certain advantages in models investigating post-injury axonal regrowth. However, this approach is not generally in line with the patho-physiologies encountered in SCI patients. Even so, the ability to achieve more control over the level of injury makes it a useful adjunct to contusive and ischemic approaches, and suggests a useful role in future translational studies.
Collapse
Affiliation(s)
- S Wilson
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - S J Nagel
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| | - L A Frizon
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| | - D C Fredericks
- Department of Orthopedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - N A DeVries-Watson
- Department of Orthopedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - G T Gillies
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA
| | - M A Howard
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
19
|
Bech J, Glud AN, Sangill R, Petersen M, Frandsen J, Orlowski D, West MJ, Pedersen M, Sørensen JCH, Dyrby TB, Bjarkam CR. The porcine corticospinal decussation: A combined neuronal tracing and tractography study. Brain Res Bull 2018; 142:253-262. [DOI: 10.1016/j.brainresbull.2018.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/28/2018] [Accepted: 08/02/2018] [Indexed: 12/30/2022]
|
20
|
Zhu XX, Zhong YZ, Ge YW, Lu KH, Lu SS. CRISPR/Cas9-Mediated Generation of Guangxi Bama Minipigs Harboring Three Mutations in α-Synuclein Causing Parkinson's Disease. Sci Rep 2018; 8:12420. [PMID: 30127453 PMCID: PMC6102220 DOI: 10.1038/s41598-018-30436-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022] Open
Abstract
Parkinson’s disease (PD) is a common, progressive neurodegenerative disorder characterized by classical motor dysfunction and is associated with α-synuclein-immunopositive pathology and the loss of dopaminergic neurons in the substantia nigra (SN). Several missense mutations in the α-synuclein gene SCNA have been identified as cause of inherited PD, providing a practical strategy to generate genetically modified animal models for PD research. Since minipigs share many physiological and anatomical similarities to humans, we proposed that genetically modified minipigs carrying PD-causing mutations can serve as an ideal model for PD research. In the present study, we attempted to model PD by generating Guangxi Bama minipigs with three PD-causing missense mutations (E46K, H50Q and G51D) in SCNA using CRISPR/Cas9-mediated gene editing combining with somatic cell nuclear transfer (SCNT) technique. We successfully generated a total of eight SCNT-derived Guangxi Bama minipigs with the desired heterozygous SCNA mutations integrated into genome, and we also confirmed by DNA sequencing that these minipigs expressed mutant α-synuclein at the transcription level. However, immunohistochemical analysis was not able to detect PD-specific pathological changes such as α-synuclein-immunopositive pathology and loss of SN dopaminergic neurons in the gene-edited minipigs at 3 months of age. In summary, we successfully generated Guangxi Bama minipigs harboring three PD-casusing mutations (E46K, H50Q and G51D) in SCNA. As they continue to develop, these gene editing minipigs need to be regularly teseted for the presence of PD-like pathological features in order to validate the use of this large-animal model in PD research.
Collapse
Affiliation(s)
- Xiang-Xing Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology; College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| | - Yi-Zhi Zhong
- Guangxi Nanning Yanleshang Biotechnology Co. LTD, Nanning, 530004, China
| | - Yao-Wen Ge
- Wuhan ViaGen Animal Breeding Resources Development Company, Wuhan, 430073, China
| | - Ke-Huan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology; College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Sheng-Sheng Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology; College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
21
|
Rieke L, Schubert R, Matheis T, Muratori LM, Motlik J, Schramke S, Fels M, Kemper N, Schuldenzucker V, Reilmann R. Vocalisation as a Viable Assessment for Phenotyping Minipigs Transgenic for the Huntington Gene? J Huntingtons Dis 2018; 7:269-278. [PMID: 30103340 DOI: 10.3233/jhd-170284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Large animal models, such as the transgenic (tg) Huntington disease (HD) minipig, have been proposed to improve translational reliability and assessment of safety, efficacy and tolerability in preclinical studies. Minipigs are characterised by high genetic homology and comparable brain structures to humans. In addition, behavioural assessments successfully applied in humans could be explored in minipigs to establish similar endpoints in preclinical and clinical studies. Recently, analysis of voice and speech production was established to characterise HD patients. OBJECTIVE The aim of this study was to investigate whether vocalisation could also serve as a viable marker for phenotyping minipigs transgenic for Huntington's disease (tgHD) and whether tgHD minipigs reveal changes in this domain compared to wildtype (wt) minipigs. METHODS While conducting behavioural testing, incidence of vocalisation was assessed for a cohort of 14 tgHD and 18 wt minipigs. Statistical analyses were performed using Fisher's Exact Test for group comparisons and McNemar's Test for intra-visit differences between tgHD and wt minipigs. RESULTS Vocalisation can easily be documented during phenotyping assessments of minipigs. Differences in vocalisation incidences across behavioural conditions were detected between tgHD and wt minipigs. Influence of the genotype on vocalisation was detectable during a period of 1.5 years. CONCLUSION Vocalisation may be a viable marker for phenotyping minipigs transgenic for the Huntington gene. Documentation of vocalisation provides a non-invasive opportunity to capture potential disease signs and explore phenotypic development including the age of disease manifestation.
Collapse
Affiliation(s)
- Lorena Rieke
- George-Huntington-Institute, Technology Park Muenster, Muenster, Germany.,Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Robin Schubert
- George-Huntington-Institute, Technology Park Muenster, Muenster, Germany
| | - Tamara Matheis
- George-Huntington-Institute, Technology Park Muenster, Muenster, Germany.,Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Lisa M Muratori
- George-Huntington-Institute, Technology Park Muenster, Muenster, Germany.,Department of Physical Therapy, School of Health Technology and Management, Stony Brook University, Stony Brook, NY, USA
| | - Jan Motlik
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, v.v.i., AS CR, Libechov, Czech Republic
| | - Sarah Schramke
- George-Huntington-Institute, Technology Park Muenster, Muenster, Germany
| | - Michaela Fels
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Nicole Kemper
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Verena Schuldenzucker
- George-Huntington-Institute, Technology Park Muenster, Muenster, Germany.,Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Ralf Reilmann
- George-Huntington-Institute, Technology Park Muenster, Muenster, Germany.,Department of Radiology, Universitaetsklinikum Muenster, Albert-Schweitzer Campus, Muenster, Germany.,Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
22
|
Schuldenzucker V, Schubert R, Muratori LM, Freisfeld F, Rieke L, Matheis T, Schramke S, Motlik J, Kemper N, Radespiel U, Reilmann R. Behavioral testing of minipigs transgenic for the Huntington gene-A three-year observational study. PLoS One 2017; 12:e0185970. [PMID: 29016656 PMCID: PMC5633197 DOI: 10.1371/journal.pone.0185970] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/24/2017] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Large animal models of Huntington's disease (HD) may increase the reliability of translating preclinical findings to humans. Long live expectancy offers opportunities particularly for disease modifying approaches, but also challenges. The transgenic (tg) HD minipig model assessed in this study exhibits a high genetic homology with humans, similar body weight, and comparable brain structures. To test long-term safety, tolerability, and efficacy of novel therapeutic approaches in this model reliable assessments applicable longitudinally for several years are warranted for all phenotypical domains relevant in HD. OBJECTIVE To investigate whether the tests proposed assessing motor, cognitive and behavioral domains can be applied repetitively over a 3-year period in minipigs with acceptable variability or learning effects and whether tgHD minipigs reveal changes in these domains compared to wildtype (wt) minipigs suggesting the development of an HD phenotype. METHODS A cohort of 14 tgHD and 18 wt minipigs was followed for three years. Tests applied every six months included a tongue coordination and hurdle test for the motor domain, a color discrimination test for cognition, and a dominance test for assessing behavior. Statistical analyses were performed using repeated ANOVA for longitudinal group comparisons and Wilcoxon-tests for intra-visit differences between tgHD and wt minipigs. RESULTS All tests applied demonstrated feasibility, acceptable variance and good consistency during the three-year period. No significant differences between tgHD and wt minipigs were detected suggesting lack of a phenotype before the age of four years. CONCLUSIONS The assessment battery presented offers measures in all domains relevant for HD and can be applied in long-term phenotyping studies with tgHD minipigs. The observation of this cohort should be continued to explore the timeline of phenotype development and provide information for future interventional studies.
Collapse
Affiliation(s)
- Verena Schuldenzucker
- George-Huntington-Institute, Technology-Park, Muenster, Germany
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Robin Schubert
- George-Huntington-Institute, Technology-Park, Muenster, Germany
| | - Lisa M. Muratori
- George-Huntington-Institute, Technology-Park, Muenster, Germany
- Department of Physical Therapy, School of Health Technology and Management, Stony Brook University, Stony Brook, New York, United States of America
| | - Frauke Freisfeld
- George-Huntington-Institute, Technology-Park, Muenster, Germany
- Department of Clinical Radiology, University of Muenster, Albert-Schweitzer-Campus 1, Muenster, Germany
| | - Lorena Rieke
- George-Huntington-Institute, Technology-Park, Muenster, Germany
- Institute of Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Tamara Matheis
- George-Huntington-Institute, Technology-Park, Muenster, Germany
- Institute of Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sarah Schramke
- George-Huntington-Institute, Technology-Park, Muenster, Germany
| | - Jan Motlik
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, v.v.i., AS CR, Libechov, Czech Republic
| | - Nicole Kemper
- Institute of Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ralf Reilmann
- George-Huntington-Institute, Technology-Park, Muenster, Germany
- Department of Clinical Radiology, University of Muenster, Albert-Schweitzer-Campus 1, Muenster, Germany
- Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
23
|
Eaton SL, Wishart TM. Bridging the gap: large animal models in neurodegenerative research. Mamm Genome 2017; 28:324-337. [PMID: 28378063 PMCID: PMC5569151 DOI: 10.1007/s00335-017-9687-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/25/2017] [Indexed: 01/08/2023]
Abstract
The world health organisation has declared neurological disorders as one of the greatest public health risks in the world today. Yet, despite this growing concern, the mechanisms underpinning many of these conditions are still poorly understood. This may in part be due to the seemingly diverse nature of the initiating insults ranging from genetic (such as the Ataxia's and Lysosomal storage disorders) through to protein misfolding and aggregation (i.e. Prions), and those of a predominantly unknown aetiology (i.e. Alzheimer's and Parkinson's disease). However, efforts to elucidate mechanistic regulation are also likely to be hampered because of the complexity of the human nervous system, the apparent selective regional vulnerability and differential degenerative progression. The key to elucidating these aetiologies is determining the regional molecular cascades, which are occurring from the early through to terminal stages of disease progression. Whilst much molecular data have been captured at the end stage of disease from post-mortem analysis in humans, the very early stages of disease are often conspicuously asymptomatic, and even if they were not, repeated sampling from multiple brain regions of "affected" patients and "controls" is neither ethical nor possible. Model systems therefore become fundamental for elucidating the mechanisms governing these complex neurodegenerative conditions. However, finding a model that precisely mimics the human condition can be challenging and expensive. Whilst cellular and invertebrate models are frequently used in neurodegenerative research and have undoubtedly yielded much useful data, the comparatively simplistic nature of these systems makes insights gained from such a stand alone model limited when it comes to translation. Given the recent advances in gene editing technology, the options for novel model generation in higher order species have opened up new and exciting possibilities for the field. In this review, we therefore explain some of the reasons why larger animal models often appear to give a more robust recapitulation of human neurological disorders and why they may be a critical stepping stone for effective therapeutic translation.
Collapse
Affiliation(s)
- S L Eaton
- Roslin Institute and Royal (Dick) Veterinary studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
| | - T M Wishart
- Roslin Institute and Royal (Dick) Veterinary studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK.
- Euan MacDonald Centre for MND Research, Chancellor's Building, 49 Little France, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
24
|
Glud AN, Bech J, Tvilling L, Zaer H, Orlowski D, Fitting LM, Ziedler D, Geneser M, Sangill R, Alstrup AKO, Bjarkam CR, Sørensen JCH. A fiducial skull marker for precise MRI-based stereotaxic surgery in large animal models. J Neurosci Methods 2017; 285:45-48. [DOI: 10.1016/j.jneumeth.2017.04.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/23/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
|
25
|
Bjarkam CR, Orlowski D, Tvilling L, Bech J, Glud AN, Sørensen JCH. Exposure of the Pig CNS for Histological Analysis: A Manual for Decapitation, Skull Opening, and Brain Removal. J Vis Exp 2017. [PMID: 28447999 DOI: 10.3791/55511] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Pigs have become increasingly popular in large-animal translational neuroscience research as an economically and ethically feasible substitute to non-human primates. The large brain size of the pig allows the use of conventional clinical brain imagers and the direct use and testing of neurosurgical procedures and equipment from the human clinic. Further macroscopic and histological analysis, however, requires postmortem exposure of the pig central nervous system (CNS) and subsequent brain removal. This is not an easy task, as the pig CNS is encapsulated by a thick, bony skull and spinal column. The goal of this paper and instructional video is to describe how to expose and remove the postmortem pig brain and the pituitary gland in an intact state, suitable for subsequent macroscopic and histological analysis.
Collapse
Affiliation(s)
- Carsten R Bjarkam
- Department of Neurosurgery, Clinical Institute of Medicine, Aalborg University Hospital;
| | - Dariusz Orlowski
- Center of Experimental Neuroscience (Cense), Department of Neurosurgery, Institute of Clinical Medicine, Aarhus University Hospital
| | - Laura Tvilling
- Center of Experimental Neuroscience (Cense), Department of Neurosurgery, Institute of Clinical Medicine, Aarhus University Hospital
| | - Johannes Bech
- Center of Experimental Neuroscience (Cense), Department of Neurosurgery, Institute of Clinical Medicine, Aarhus University Hospital
| | - Andreas N Glud
- Center of Experimental Neuroscience (Cense), Department of Neurosurgery, Institute of Clinical Medicine, Aarhus University Hospital
| | - Jens-Christian H Sørensen
- Center of Experimental Neuroscience (Cense), Department of Neurosurgery, Institute of Clinical Medicine, Aarhus University Hospital
| |
Collapse
|
26
|
Meidahl AC, Orlowski D, Sørensen JCH, Bjarkam CR. The Retrograde Connections and Anatomical Segregation of the Göttingen Minipig Nucleus Accumbens. Front Neuroanat 2016; 10:117. [PMID: 27994542 PMCID: PMC5136552 DOI: 10.3389/fnana.2016.00117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/21/2016] [Indexed: 12/12/2022] Open
Abstract
Nucleus accumbens (NAcc) has been implicated in several psychiatric disorders such as treatment resistant depression (TRD), and obsessive-compulsive disorder (OCD), and has been an ongoing experimental target for deep brain stimulation (DBS) in both rats and humans. In order to translate basic scientific results from rodents to the human setting a large animal model is needed to thoroughly study the effect of such therapeutic interventions. The aim of the study was, accordingly, to describe the basic anatomy of the Göttingen minipig NAcc and its retrograde connections. Tracing was carried out by MRI-guided stereotactic unilateral fluorogold injections in the NAcc of Göttingen minipigs. After 2 weeks the brains were sectioned and subsequently stained with Nissl-, autometallographic (AMG) development of myelin, and DARPP-32 and calbindin immunohistochemistry. The minipig NAcc was divided in a central core and an outer medial, ventral and lateral shell. We confirmed the NAcc to be a large and well-segregated structure toward its medial, ventral and lateral borders. The fluorogold tracing revealed inputs to NAcc from the medial parts of the prefrontal cortex, BA 25 (subgenual cortex), insula bilaterally, amygdala, the CA1-region of hippocampus, entorhinal cortex, subiculum, paraventricular and anterior parts of thalamus, dorsomedial parts of hypothalamus, substantia nigra, ventral tegmental area (VTA), the retrorubral field and the dorsal and median raphe nuclei. In conclusion the Göttingen minipig NAcc is a large ventral striatal structure that can be divided into a core and shell with prominent afferent connections from several subrhinal and infra-/prelimbic brain areas.
Collapse
Affiliation(s)
- Anders C Meidahl
- Department of Neurosurgery, Department of Clinical Medicine, Faculty of Health, Center for Experimental Neuroscience, Aarhus University Hospital, Aarhus University Aarhus, Denmark
| | - Dariusz Orlowski
- Department of Neurosurgery, Department of Clinical Medicine, Faculty of Health, Center for Experimental Neuroscience, Aarhus University Hospital, Aarhus University Aarhus, Denmark
| | - Jens C H Sørensen
- Department of Neurosurgery, Department of Clinical Medicine, Faculty of Health, Center for Experimental Neuroscience, Aarhus University Hospital, Aarhus University Aarhus, Denmark
| | - Carsten R Bjarkam
- Department of Neurosurgery, Institute of Clinical Medicine, Aalborg University Hospital Aalborg, Denmark
| |
Collapse
|
27
|
Clinical potential of human-induced pluripotent stem cells : Perspectives of induced pluripotent stem cells. Cell Biol Toxicol 2016; 33:99-112. [PMID: 27900567 DOI: 10.1007/s10565-016-9370-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/18/2016] [Indexed: 02/06/2023]
Abstract
The recent establishment of induced pluripotent stem (iPS) cells promises the development of autologous cell therapies for degenerative diseases, without the ethical concerns associated with human embryonic stem (ES) cells. Initially, iPS cells were generated by retroviral transduction of somatic cells with core reprogramming genes. To avoid potential genotoxic effects associated with retroviral transfection, more recently, alternative non-viral gene transfer approaches were developed. Before a potential clinical application of iPS cell-derived therapies can be planned, it must be ensured that the reprogramming to pluripotency is not associated with genome mutagenesis or epigenetic aberrations. This may include direct effects of the reprogramming method or "off-target" effects associated with the reprogramming or the culture conditions. Thus, a rigorous safety testing of iPS or iPS-derived cells is imperative, including long-term studies in model animals. This will include not only rodents but also larger mammalian model species to allow for assessing long-term stability of the transplanted cells, functional integration into the host tissue, and freedom from undifferentiated iPS cells. Determination of the necessary cell dose is also critical; it is assumed that a minimum of 1 billion transplantable cells is required to achieve a therapeutic effect. This will request medium to long-term in vitro cultivation and dozens of cell divisions, bearing the risk of accumulating replication errors. Here, we review the clinical potential of human iPS cells and evaluate which are the most suitable approaches to overcome or minimize risks associated with the application of iPS cell-derived cell therapies.
Collapse
|
28
|
The telencephalon of the Göttingen minipig, cytoarchitecture and cortical surface anatomy. Brain Struct Funct 2016; 222:2093-2114. [PMID: 27778106 DOI: 10.1007/s00429-016-1327-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/15/2016] [Indexed: 12/19/2022]
Abstract
During the last 20 years pigs have become increasingly popular in large animal translational neuroscience research as an economical and ethical feasible substitute to non-human primates. The anatomy of the pig telencephalon is, however, not well known. We present, accordingly, a detailed description of the surface anatomy and cytoarchitecture of the Göttingen minipig telencephalon based on macrophotos and consecutive high-power microphotographs of 15 μm thick paraffin embedded Nissl-stained coronal sections. In 1-year-old specimens the formalin perfused brain measures approximately 55 × 47 × 36 mm (length, width, height) and weighs around 69 g. The telencephalic part of the Göttingen minipig cerebrum covers a large surface area, which can be divided into a neocortical gyrencephalic part located dorsal to the rhinal fissure, and a ventral subrhinal part dominated by olfactory, amygdaloid, septal, and hippocampal structures. This part of the telencephalon is named the subrhinal lobe, and based on cytoarchitectural and sulcal anatomy, can be discerned from the remaining dorsally located neocortical perirhinal/insular, pericallosal, frontal, parietal, temporal, and occipital lobes. The inner subcortical structure of the minipig telencephalon is dominated by a prominent ventricular system and large basal ganglia, wherein the putamen and the caudate nucleus posterior and dorsally are separated into two entities by the internal capsule, whereas both structures ventrally fuse into a large accumbens nucleus. The presented anatomical data is accompanied by surface renderings and high-power macrophotographs illustrating the telencephalic sulcal pattern, and the localization of the identified lobes and cytoarchitectonic areas. Additionally, 24 representative Nissl-stained telencephalic coronal sections are presented as supplementary material in atlas form on http://www.cense.dk/minipig_atlas/index.html and referred to as S1-S24 throughout the manuscript.
Collapse
|
29
|
Mahady LJ, Perez SE, Emerich DF, Wahlberg LU, Mufson EJ. Cholinergic profiles in the Goettingen miniature pig (Sus scrofa domesticus) brain. J Comp Neurol 2016; 525:553-573. [PMID: 27490949 DOI: 10.1002/cne.24087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 11/10/2022]
Abstract
Central cholinergic structures within the brain of the even-toed hoofed Goettingen miniature domestic pig (Sus scrofa domesticus) were evaluated by immunohistochemical visualization of choline acetyltransferase (ChAT) and the low-affinity neurotrophin receptor, p75NTR . ChAT-immunoreactive (-ir) perikarya were seen in the olfactory tubercle, striatum, medial septal nucleus, vertical and horizontal limbs of the diagonal band of Broca, and the nucleus basalis of Meynert, medial habenular nucleus, zona incerta, neurosecretory arcuate nucleus, cranial motor nuclei III and IV, Edinger-Westphal nucleus, parabigeminal nucleus, pedunculopontine nucleus, and laterodorsal tegmental nucleus. Cholinergic ChAT-ir neurons were also found within transitional cortical areas (insular, cingulate, and piriform cortices) and hippocampus proper. ChAT-ir fibers were seen throughout the dentate gyrus and hippocampus, in the mediodorsal, laterodorsal, anteroventral, and parateanial thalamic nuclei, the fasciculus retroflexus of Meynert, basolateral and basomedial amygdaloid nuclei, anterior pretectal and interpeduncular nuclei, as well as select laminae of the superior colliculus. Double immunofluorescence demonstrated that virtually all ChAT-ir basal forebrain neurons were also p75NTR -positive. The present findings indicate that the central cholinergic system in the miniature pig is similar to other mammalian species. Therefore, the miniature pig may be an appropriate animal model for preclinical studies of neurodegenerative diseases where the cholinergic system is compromised. J. Comp. Neurol. 525:553-573, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Laura J Mahady
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona.,Interdisciplinary Graduate Program in Neuroscience, Arizona State University, Tempe, Arizona
| | - Sylvia E Perez
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona
| | | | | | - Elliott J Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona
| |
Collapse
|
30
|
Macakova M, Bohuslavova B, Vochozkova P, Pavlok A, Sedlackova M, Vidinska D, Vochyanova K, Liskova I, Valekova I, Baxa M, Ellederova Z, Klima J, Juhas S, Juhasova J, Klouckova J, Haluzik M, Klempir J, Hansikova H, Spacilova J, Collins R, Blumenthal I, Talkowski M, Gusella JF, Howland DS, DiFiglia M, Motlik J. Mutated Huntingtin Causes Testicular Pathology in Transgenic Minipig Boars. NEURODEGENER DIS 2016; 16:245-59. [PMID: 26959244 DOI: 10.1159/000443665] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 12/23/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Huntington's disease is induced by CAG expansion in a single gene coding the huntingtin protein. The mutated huntingtin (mtHtt) primarily causes degeneration of neurons in the brain, but it also affects peripheral tissues, including testes. OBJECTIVE We studied sperm and testes of transgenic boars expressing the N-terminal region of human mtHtt. METHODS In this study, measures of reproductive parameters and electron microscopy (EM) images of spermatozoa and testes of transgenic (TgHD) and wild-type (WT) boars of F1 (24-48 months old) and F2 (12-36 months old) generations were compared. In addition, immunofluorescence, immunohistochemistry, Western blot, hormonal analysis and whole-genome sequencing were done in order to elucidate the effects of mtHtt. RESULTS Evidence for fertility failure of both TgHD generations was observed at the age of 13 months. Reproductive parameters declined and progressively worsened with age. EM revealed numerous pathological features in sperm tails and in testicular epithelium from 24- and 36-month-old TgHD boars. Moreover, immunohistochemistry confirmed significantly lower proliferation activity of spermatogonia in transgenic testes. mtHtt was highly expressed in spermatozoa and testes of TgHD boars and localized in all cells of seminiferous tubules. Levels of fertility-related hormones did not differ in TgHD and WT siblings. Genome analysis confirmed that insertion of the lentiviral construct did not interrupt any coding sequence in the pig genome. CONCLUSIONS The sperm and testicular degeneration of TgHD boars is caused by gain-of-function of the highly expressed mtHtt.
Collapse
Affiliation(s)
- Monika Macakova
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Schomberg DT, Tellez A, Meudt JJ, Brady DA, Dillon KN, Arowolo FK, Wicks J, Rousselle SD, Shanmuganayagam D. Miniature Swine for Preclinical Modeling of Complexities of Human Disease for Translational Scientific Discovery and Accelerated Development of Therapies and Medical Devices. Toxicol Pathol 2016; 44:299-314. [DOI: 10.1177/0192623315618292] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Noncommunicable diseases, including cardiovascular disease, diabetes, chronic respiratory disease, and cancer, are the leading cause of death in the world. The cost, both monetary and time, of developing therapies to prevent, treat, or manage these diseases has become unsustainable. A contributing factor is inefficient and ineffective preclinical research, in which the animal models utilized do not replicate the complex physiology that influences disease. An ideal preclinical animal model is one that responds similarly to intrinsic and extrinsic influences, providing high translatability and concordance of preclinical findings to humans. The overwhelming genetic, anatomical, physiological, and pathophysiological similarities to humans make miniature swine an ideal model for preclinical studies of human disease. Additionally, recent development of precision gene-editing tools for creation of novel genetic swine models allows the modeling of highly complex pathophysiology and comorbidities. As such, the utilization of swine models in early research allows for the evaluation of novel drug and technology efficacy while encouraging redesign and refinement before committing to clinical testing. This review highlights the appropriateness of the miniature swine for modeling complex physiologic systems, presenting it as a highly translational preclinical platform to validate efficacy and safety of therapies and devices.
Collapse
Affiliation(s)
- Dominic T. Schomberg
- Biomedical & Genomic Research Group, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | | | - Jennifer J. Meudt
- Biomedical & Genomic Research Group, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | | | | | - Folagbayi K. Arowolo
- Biomedical & Genomic Research Group, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Joan Wicks
- Alizée Pathology, LLC, Thurmont, Maryland, USA
| | | | | |
Collapse
|
32
|
Schramke S, Schuldenzucker V, Schubert R, Frank F, Wirsig M, Ott S, Motlik J, Fels M, Kemper N, Hölzner E, Reilmann R. Behavioral phenotyping of minipigs transgenic for the Huntington gene. J Neurosci Methods 2015; 265:34-45. [PMID: 26688470 DOI: 10.1016/j.jneumeth.2015.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/17/2015] [Accepted: 11/19/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND While several novel therapeutic approaches for HD are in development, resources to conduct clinical trials are limited. Large animal models have been proposed to improve assessment of safety, tolerability and especially to increase translational reliability of efficacy signals obtained in preclinical studies. They may thus help to select candidates for translation to human studies. We here introduce a battery of novel tests designed to assess the motor, cognitive and behavioral phenotype of a transgenic (tg) HD minipig model. NEW METHODS A group of tgHD and wildtype (wt) Libechov minipigs (n=36) was available for assessment with (1) a gait test using the GAITRite(®) automated acquisition system, (2) a hurdle-test, (3) a tongue coordination test, (4) a color discrimination test, (5) a startbox back and forth test and (6) a dominance test. Performance of all tests and definition of measures obtained is presented. RESULTS Minipigs were able to learn performance of all tests. All tests were safe, well tolerated and feasible. Exploratory between group comparisons showed no differences between groups of tgHD and wt minipigs assessed, but low variability within and between groups. COMPARISON WITH EXISTING METHOD(S) So far there are no established or validated assessments to test minipigs in the domains described. CONCLUSIONS The data shows that the tests presented are safe, well tolerated and all measures defined can be assessed. Prospective longitudinal application of these tests is warranted to determine their test-retest reliability, sensitivity and validity in assessing motor, cognitive and behavioral features of tg and wt minipigs.
Collapse
Affiliation(s)
- Sarah Schramke
- George-Huntington-Institute, Technology Park Muenster, Johann-Krane Weg 27 48149, Muenster, Germany; Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Bischofsholer Damm 15 30173, Hannover, Germany
| | - Verena Schuldenzucker
- George-Huntington-Institute, Technology Park Muenster, Johann-Krane Weg 27 48149, Muenster, Germany
| | - Robin Schubert
- George-Huntington-Institute, Technology Park Muenster, Johann-Krane Weg 27 48149, Muenster, Germany
| | - Frauke Frank
- George-Huntington-Institute, Technology Park Muenster, Johann-Krane Weg 27 48149, Muenster, Germany; Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, v.v.i., AS CR, Libechov, Czech Republic
| | - Maike Wirsig
- George-Huntington-Institute, Technology Park Muenster, Johann-Krane Weg 27 48149, Muenster, Germany
| | - Stefanie Ott
- George-Huntington-Institute, Technology Park Muenster, Johann-Krane Weg 27 48149, Muenster, Germany
| | - Jan Motlik
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, v.v.i., AS CR, Libechov, Czech Republic
| | - Michaela Fels
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Bischofsholer Damm 15 30173, Hannover, Germany
| | - Nicole Kemper
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Bischofsholer Damm 15 30173, Hannover, Germany
| | - Eva Hölzner
- George-Huntington-Institute, Technology Park Muenster, Johann-Krane Weg 27 48149, Muenster, Germany
| | - Ralf Reilmann
- George-Huntington-Institute, Technology Park Muenster, Johann-Krane Weg 27 48149, Muenster, Germany; Department of Radiology, Universitaetsklinikum Muenster, Albert-Schweitzer Campus 1 48149, Muenster, Germany; Dept of Neurology Muenster, Germany; Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Hoppe-Seyler Str. 3 72076 Tuebingen, Germany.
| |
Collapse
|
33
|
Schubert R, Frank F, Nagelmann N, Liebsch L, Schuldenzucker V, Schramke S, Wirsig M, Johnson H, Kim EY, Ott S, Hölzner E, Demokritov SO, Motlik J, Faber C, Reilmann R. Neuroimaging of a minipig model of Huntington's disease: Feasibility of volumetric, diffusion-weighted and spectroscopic assessments. J Neurosci Methods 2015; 265:46-55. [PMID: 26658298 DOI: 10.1016/j.jneumeth.2015.11.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND As novel treatment approaches for Huntington's disease (HD) evolve, the use of transgenic (tg) large animal models has been considered for preclinical safety and efficacy assessments. It is hoped that large animal models may provide higher reliability in translating preclinical findings to humans, e.g., by using similar endpoints and biomarkers. NEW METHOD We here investigated the feasibility to conduct MRI assessments in a recently developed tgHD model in the Libechov minipig. The model is characterized by high genetic homology to humans and a similar body mass and compartments. The minipig brain provides anatomical features that are attractive for imaging studies and could be used as endpoints for disease modifying preclinical studies similar to human HD. RESULTS We demonstrate that complex MRI protocols can be successfully acquired with tgHD and wild type (wt) Libechov minipigs. We show that acquisition of anatomical images applicable for volumetric assessments is feasible and outline the development of a segmented MRI brain atlas. Similarly diffusion-weighted imaging (DWI) including fiber tractography is presented. We also demonstrate the feasibility to conduct in vivo metabolic assessments using MR spectroscopy. COMPARISON WITH EXISTING METHODS In human HD, these MRI methods are already validated and used as reliable biomarker of disease progression even before the onset of a clinical motor phenotype. CONCLUSIONS The results show that the minipig brain is well suited for MRI assessments in preclinical studies. We conclude that further characterization of phenotypical differences between tg and wt animals in sufficiently powered cross-sectional and longitudinal studies is warranted.
Collapse
Affiliation(s)
- Robin Schubert
- George-Huntington-Institute, Technology Park, Johann-Krane-Weg 27, 48149 Muenster, Germany
| | - Frauke Frank
- George-Huntington-Institute, Technology Park, Johann-Krane-Weg 27, 48149 Muenster, Germany; Dept of Radiology, University of Muenster, Albert-Schweitzer Campus 1, 48149 Muenster, Germany
| | - Nina Nagelmann
- Dept of Radiology, University of Muenster, Albert-Schweitzer Campus 1, 48149 Muenster, Germany
| | - Lennart Liebsch
- Dept of Radiology, University of Muenster, Albert-Schweitzer Campus 1, 48149 Muenster, Germany
| | - Verena Schuldenzucker
- George-Huntington-Institute, Technology Park, Johann-Krane-Weg 27, 48149 Muenster, Germany
| | - Sarah Schramke
- George-Huntington-Institute, Technology Park, Johann-Krane-Weg 27, 48149 Muenster, Germany; Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Maike Wirsig
- George-Huntington-Institute, Technology Park, Johann-Krane-Weg 27, 48149 Muenster, Germany
| | - Hans Johnson
- Dept of Psychiatry, University of Iowa, IowaCity, IA, USA; Electrical and Computer Engineering, University of Iowa, IowaCity, IA, USA
| | - Eun Young Kim
- Dept of Psychiatry, University of Iowa, IowaCity, IA, USA
| | - Stefanie Ott
- George-Huntington-Institute, Technology Park, Johann-Krane-Weg 27, 48149 Muenster, Germany
| | - Eva Hölzner
- George-Huntington-Institute, Technology Park, Johann-Krane-Weg 27, 48149 Muenster, Germany
| | - Sergej O Demokritov
- Department of Physics and Center for Nonlinear Science, University of Muenster, Germany
| | - Jan Motlik
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, v.v.i., AS CR, Libechov, Czech Republic
| | - Cornelius Faber
- Dept of Radiology, University of Muenster, Albert-Schweitzer Campus 1, 48149 Muenster, Germany
| | - Ralf Reilmann
- George-Huntington-Institute, Technology Park, Johann-Krane-Weg 27, 48149 Muenster, Germany; Dept of Radiology, University of Muenster, Albert-Schweitzer Campus 1, 48149 Muenster, Germany; Department of Neurology, University of Munster, Germany; Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Hoppe-Seyler Str. 3, 72076 Tuebingen, Germany.
| |
Collapse
|
34
|
Tyleckova J, Valekova I, Zizkova M, Rakocyova M, Marsala S, Marsala M, Gadher SJ, Kovarova H. Surface N-glycoproteome patterns reveal key proteins of neuronal differentiation. J Proteomics 2015; 132:13-20. [PMID: 26581640 DOI: 10.1016/j.jprot.2015.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/03/2015] [Accepted: 11/09/2015] [Indexed: 01/23/2023]
Abstract
UNLABELLED Pluripotent stem cell-derived committed neural precursors are an important source of cells to treat neurodegenerative diseases including spinal cord injury. There remains an urgency to identify markers for monitoring of neural progenitor specificity, estimation of neural fate and follow-up correlation with therapeutic effect in preclinical studies using animal disease models. Cell surface capture technology was used to uncover the cell surface exposed N-glycoproteome of neural precursor cells upon neuronal differentiation as well as post-mitotic mature hNT neurons. The data presented depict an extensive study of surfaceome during neuronal differentiation, confirming glycosylation at a particular predicted site of many of the identified proteins. Quantitative changes detected in cell surface protein levels reveal a set of proteins that highlight the complexity of the neuronal differentiation process. Several of these proteins including the cell adhesion molecules ICAM1, CHL1, and astrotactin1 as well as LAMP1 were validated by SRM. Combination of immunofluorescence staining of ICAM1 and flow cytometry indicated a possible direction for future scrutiny of such proteins as targets for enrichment of the neuronal subpopulation from mixed cultures after differentiation of neural precursor cells. These surface proteins hold an important key for development of safe strategies in cell-replacement therapies of neuronal disorders. BIOLOGICAL SIGNIFICANCE Neural stem and/or precursor cells have a great potential for cell-replacement therapies of neuronal diseases. Availability of well characterised and expandable neural cell lineage specific populations is critical for addressing such a challenge. In our study we identified and relatively quantified several hundred surface N-glycoproteins in the course of neuronal differentiation. We further confirmed the abundant changes for several cell adhesion proteins by SRM and outlined a strategy for utilisation of such N-glycoproteins in antibody based cell sorting. The comprehensive dataset presented here demonstrates the molecular background of neuronal differentiation highly useful for development of new plasma membrane markers to identify and select neuronal subpopulation from mixed neural cell cultures.
Collapse
Affiliation(s)
- Jirina Tyleckova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Laboratory of Applied Proteome Analyses, Libechov, CZ 27721, Czech Republic; Research Center PIGMOD, Laboratory of Applied Proteome Analyses, Libechov, CZ 27721, Czech Republic
| | - Ivona Valekova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Laboratory of Applied Proteome Analyses, Libechov, CZ 27721, Czech Republic; Research Center PIGMOD, Laboratory of Applied Proteome Analyses, Libechov, CZ 27721, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, CZ 128 43 Prague, Czech Republic
| | - Martina Zizkova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Laboratory of Applied Proteome Analyses, Libechov, CZ 27721, Czech Republic; Research Center PIGMOD, Laboratory of Applied Proteome Analyses, Libechov, CZ 27721, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, CZ 128 43 Prague, Czech Republic
| | - Michaela Rakocyova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Laboratory of Applied Proteome Analyses, Libechov, CZ 27721, Czech Republic; Research Center PIGMOD, Laboratory of Applied Proteome Analyses, Libechov, CZ 27721, Czech Republic
| | - Silvia Marsala
- University of California, San Diego, Department of Anesthesiology, Neuroregeneration Laboratory, Sanford Consortium for Regenerative Medicine, La Jolla, CA-92037, USA
| | - Martin Marsala
- University of California, San Diego, Department of Anesthesiology, Neuroregeneration Laboratory, Sanford Consortium for Regenerative Medicine, La Jolla, CA-92037, USA
| | | | - Hana Kovarova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Laboratory of Applied Proteome Analyses, Libechov, CZ 27721, Czech Republic; Research Center PIGMOD, Laboratory of Applied Proteome Analyses, Libechov, CZ 27721, Czech Republic.
| |
Collapse
|
35
|
Amorim IS, Mitchell NL, Palmer DN, Sawiak SJ, Mason R, Wishart TM, Gillingwater TH. Molecular neuropathology of the synapse in sheep with CLN5 Batten disease. Brain Behav 2015; 5:e00401. [PMID: 26664787 PMCID: PMC4667763 DOI: 10.1002/brb3.401] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/25/2015] [Accepted: 09/02/2015] [Indexed: 12/26/2022] Open
Abstract
AIMS Synapses represent a major pathological target across a broad range of neurodegenerative conditions. Recent studies addressing molecular mechanisms regulating synaptic vulnerability and degeneration have relied heavily on invertebrate and mouse models. Whether similar molecular neuropathological changes underpin synaptic breakdown in large animal models and in human patients with neurodegenerative disease remains unclear. We therefore investigated whether molecular regulators of synaptic pathophysiology, previously identified in Drosophila and mouse models, are similarly present and modified in the brain of sheep with CLN5 Batten disease. METHODS Gross neuropathological analysis of CLN5 Batten disease sheep and controls was used alongside postmortem MRI imaging to identify affected brain regions. Synaptosome preparations were then generated and quantitative fluorescent Western blotting used to determine and compare levels of synaptic proteins. RESULTS The cortex was particularly affected by regional neurodegeneration and synaptic loss in CLN5 sheep, whilst the cerebellum was relatively spared. Quantitative assessment of the protein content of synaptosome preparations revealed significant changes in levels of seven out of eight synaptic neurodegeneration proteins investigated in the motor cortex, but not cerebellum, of CLN5 sheep (α-synuclein, CSP-α, neurofascin, ROCK2, calretinin, SIRT2, and UBR4). CONCLUSIONS Synaptic pathology is a robust correlate of region-specific neurodegeneration in the brain of CLN5 sheep, driven by molecular pathways similar to those reported in Drosophila and rodent models. Thus, large animal models, such as sheep, represent ideal translational systems to develop and test therapeutics aimed at delaying or halting synaptic pathology for a range of human neurodegenerative conditions.
Collapse
Affiliation(s)
- Inês S Amorim
- Centre for Integrative Physiology University of Edinburgh Hugh Robson Building Edinburgh UK ; Euan MacDonald Centre for Motor Neurone Disease Research University of Edinburgh Hugh Robson Building Edinburgh UK
| | - Nadia L Mitchell
- Department of Molecular Biosciences Faculty of Agricultural and Life Sciences and Batten Animal Research Network Lincoln University Christchurch New Zealand
| | - David N Palmer
- Department of Molecular Biosciences Faculty of Agricultural and Life Sciences and Batten Animal Research Network Lincoln University Christchurch New Zealand
| | - Stephen J Sawiak
- Department of Physiology, Development and Neuroscience University of Cambridge Downing Street Cambridge UK ; Wolfson Brain Imaging Centre University of Cambridge Box 65 Addenbrooke's Hospital Hills Road Cambridge UK
| | - Roger Mason
- Department of Physiology, Development and Neuroscience University of Cambridge Downing Street Cambridge UK
| | - Thomas M Wishart
- Euan MacDonald Centre for Motor Neurone Disease Research University of Edinburgh Hugh Robson Building Edinburgh UK ; Division of Neurobiology The Roslin Institute and Royal (Dick) School of Veterinary Studies University of Edinburgh Edinburgh UK
| | - Thomas H Gillingwater
- Centre for Integrative Physiology University of Edinburgh Hugh Robson Building Edinburgh UK ; Euan MacDonald Centre for Motor Neurone Disease Research University of Edinburgh Hugh Robson Building Edinburgh UK
| |
Collapse
|
36
|
Klymiuk N, Seeliger F, Bohlooly-Y M, Blutke A, Rudmann DG, Wolf E. Tailored Pig Models for Preclinical Efficacy and Safety Testing of Targeted Therapies. Toxicol Pathol 2015; 44:346-57. [PMID: 26511847 DOI: 10.1177/0192623315609688] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite enormous advances in translational biomedical research, there remains a growing demand for improved animal models of human disease. This is particularly true for diseases where rodent models do not reflect the human disease phenotype. Compared to rodents, pig anatomy and physiology are more similar to humans in cardiovascular, immune, respiratory, skeletal muscle, and metabolic systems. Importantly, efficient and precise techniques for genetic engineering of pigs are now available, facilitating the creation of tailored large animal models that mimic human disease mechanisms at the molecular level. In this article, the benefits of genetically engineered pigs for basic and translational research are exemplified by a novel pig model of Duchenne muscular dystrophy and by porcine models of cystic fibrosis. Particular emphasis is given to potential advantages of using these models for efficacy and safety testing of targeted therapies, such as exon skipping and gene editing, for example, using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system. In general, genetically tailored pig models have the potential to bridge the gap between proof-of-concept studies in rodents and clinical trials in patients, thus supporting translational medicine.
Collapse
Affiliation(s)
- Nikolai Klymiuk
- Gene Center and Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Frank Seeliger
- Pathology Science, DSM, Transgenic, AstraZeneca RD, Mölndal, Sweden
| | | | - Andreas Blutke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniel G Rudmann
- Pathology Science, DSM, Transgenic, AstraZeneca RD, Mölndal, Sweden
| | - Eckhard Wolf
- Gene Center and Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
37
|
Hall VJ, Lindblad MM, Jakobsen JE, Gunnarsson A, Schmidt M, Rasmussen MA, Volke D, Zuchner T, Hyttel P. Impaired APP activity and altered Tau splicing in embryonic stem cell-derived astrocytes obtained from an APPsw transgenic minipig. Dis Model Mech 2015; 8:1265-78. [PMID: 26398935 PMCID: PMC4610230 DOI: 10.1242/dmm.019489] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 07/27/2015] [Indexed: 01/09/2023] Open
Abstract
Animal models of familial juvenile onset of Alzheimer's disease (AD) often fail to produce diverse pathological features of the disease by modification of single gene mutations that are responsible for the disease. They can hence be poor models for testing and development of novel drugs. Here, we analyze in vitro-produced stem cells and their derivatives from a large mammalian model of the disease created by overexpression of a single mutant human gene (APPsw). We produced hemizygous and homozygous radial glial-like cells following culture and differentiation of embryonic stem cells (ESCs) isolated from embryos obtained from mated hemizygous minipigs. These cells were confirmed to co-express varying neural markers, including NES, GFAP and BLBP, typical of type one radial glial cells (RGs) from the subgranular zone. These cells had altered expression of CCND1 and NOTCH1 and decreased expression of several ribosomal RNA genes. We found that these cells were able to differentiate into astrocytes upon directed differentiation. The astrocytes produced had decreased α- and β-secretase activity, increased γ-secretase activity and altered splicing of tau. This indicates novel aspects of early onset mechanisms related to cell renewal and function in familial AD astrocytes. These outcomes also highlight that radial glia could be a potentially useful population of cells for drug discovery, and that altered APP expression and altered tau phosphorylation can be detected in an in vitro model of the disease. Finally, it might be possible to use large mammal models to model familial AD by insertion of only a single mutation. Summary: Insight into astrocyte and radial glia pathology in an in vitro culture system derived from the APPsw pig.
Collapse
Affiliation(s)
- Vanessa J Hall
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| | - Maiken M Lindblad
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| | - Jannik E Jakobsen
- Department of Biomedicine, Aarhus University, Faculty of Health, DK-8000 Aarhus, Denmark
| | - Anders Gunnarsson
- Department of Biomedicine, Aarhus University, Faculty of Health, DK-8000 Aarhus, Denmark
| | - Mette Schmidt
- Department of Large Animal Sciences, Faculty of Life Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| | | | - Daniela Volke
- Center for Biotechnology and Biomedicine, Institute of Bioanalytical Chemistry, University of Leipzig, 04103 Leipzig, Germany
| | - Thole Zuchner
- Octapharma Biopharmaceuticals GmbH, 69120 Heidelberg, Germany
| | - Poul Hyttel
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| |
Collapse
|
38
|
Perentos N, Martins AQ, Watson TC, Bartsch U, Mitchell NL, Palmer DN, Jones MW, Morton AJ. Translational neurophysiology in sheep: measuring sleep and neurological dysfunction in CLN5 Batten disease affected sheep. Brain 2015; 138:862-74. [PMID: 25724202 PMCID: PMC5014075 DOI: 10.1093/brain/awv026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 12/22/2022] Open
Abstract
Creating valid mouse models of slowly progressing human neurological diseases is challenging, not least because the short lifespan of rodents confounds realistic modelling of disease time course. With their large brains and long lives, sheep offer significant advantages for translational studies of human disease. Here we used normal and CLN5 Batten disease affected sheep to demonstrate the use of the species for studying neurological function in a model of human disease. We show that electroencephalography can be used in sheep, and that longitudinal recordings spanning many months are possible. This is the first time such an electroencephalography study has been performed in sheep. We characterized sleep in sheep, quantifying characteristic vigilance states and neurophysiological hallmarks such as sleep spindles. Mild sleep abnormalities and abnormal epileptiform waveforms were found in the electroencephalographies of Batten disease affected sheep. These abnormalities resemble the epileptiform activity seen in children with Batten disease and demonstrate the translational relevance of both the technique and the model. Given that both spontaneous and engineered sheep models of human neurodegenerative diseases already exist, sheep constitute a powerful species in which longitudinal in vivo studies can be conducted. This will advance our understanding of normal brain function and improve our capacity for translational research into neurological disorders.
Collapse
Affiliation(s)
- Nicholas Perentos
- 1 Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Amadeu Q Martins
- 1 Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Thomas C Watson
- 1 Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Ullrich Bartsch
- 2 School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Nadia L Mitchell
- 3 Department of Molecular Biosciences, Faculty of Agricultural and Life Sciences and Batten Animal Research Network, PO Box 85084, Lincoln University, Lincoln 7647, Christchurch, New Zealand
| | - David N Palmer
- 3 Department of Molecular Biosciences, Faculty of Agricultural and Life Sciences and Batten Animal Research Network, PO Box 85084, Lincoln University, Lincoln 7647, Christchurch, New Zealand
| | - Matthew W Jones
- 2 School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - A Jennifer Morton
- 1 Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| |
Collapse
|
39
|
Juhasova J, Juhas S, Hruska-Plochan M, Dolezalova D, Holubova M, Strnadel J, Marsala S, Motlik J, Marsala M. Time course of spinal doublecortin expression in developing rat and porcine spinal cord: implication in in vivo neural precursor grafting studies. Cell Mol Neurobiol 2015; 35:57-70. [PMID: 25487013 DOI: 10.1007/s10571-014-0145-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 11/19/2014] [Indexed: 12/13/2022]
Abstract
Expression of doublecortin (DCX), a 43-53 kDa microtubule binding protein, is frequently used as (i) an early neuronal marker to identify the stage of neuronal maturation of in vivo grafted neuronal precursors (NSCs), and (ii) a neuronal fate marker transiently expressed by immature neurons during development. Reliable identification of the origin of DCX-immunoreactive cells (i.e., host vs. graft) requires detailed spatial and temporal mapping of endogenous DCX expression at graft-targeted brain or spinal cord regions. Accordingly, in the present study, we analyzed (i) the time course of DCX expression in pre- and postnatal rat and porcine spinal cord, and (ii) the DCX expression in spinally grafted porcine-induced pluripotent stem cells (iPS)-derived NSCs and human embryonic stem cell (ES)-derived NSCs. In addition, complementary temporospatial GFAP expression study in porcine spinal cord was also performed. In 21-day-old rat fetuses, an intense DCX immunoreactivity distributed between the dorsal horn (DH) and ventral horn was seen and was still present in the DH neurons on postnatal day 20. In animals older than 8 weeks, no DCX immunoreactivity was seen at any spinal cord laminae. In contrast to rat, in porcine spinal cord (gestational period 113-114 days), DCX was only expressed during the pre-natal period (up to 100 days) but was no longer present in newborn piglets or in adult animals. Immunohistochemical analysis was confirmed with a comparable expression profile by western blot analysis. Contrary, the expression of porcine GFAP started within 70-80 days of the pre-natal period. Spinally grafted porcine iPS-NSCs and human ES-NSCs showed clear DCX expression at 3-4 weeks postgrafting. These data indicate that in spinal grafting studies which employ postnatal or adult porcine models, the expression of DCX can be used as a reliable marker of grafted neurons. In contrast, if grafted neurons are to be analyzed during the first 4 postnatal weeks in the rat spinal cord, additional markers or grafted cell-specific labeling techniques need to be employed to reliably identify grafted early postmitotic neurons and to differentiate the DCX expression from the neurons of the host.
Collapse
Affiliation(s)
- J Juhasova
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, AS CR, v.v.i., Rumburska 89, 27721, Libechov, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|