1
|
Muthuswamy A, Pardo ID, Rao DB, Switzer RC, Sharma AK, Bolon B. Neuroanatomy and Sampling of Central Projections for the Visual System in Mammals Used in Toxicity Testing. Toxicol Pathol 2020; 49:455-471. [PMID: 33243077 DOI: 10.1177/0192623320967279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Visual system toxicity may manifest anywhere in the visual system, from the eye proper to the visual brain. Therefore, effective screening for visual system toxicity must evaluate not only ocular structures (ie, eye and optic nerve) but also multiple key brain regions involved in vision (eg, optic tract, subcortical relay nuclei, and primary and secondary visual cortices). Despite a generally comparable pattern across species, the neuroanatomic organization and function of the visual brain in rodents and rabbits exhibit appreciable differences relative to nonrodents. Currently recognized sampling practices for general toxicity studies in animals, which are based on easily discerned external neuroanatomic landmarks and guided by extant stereotaxic brain atlases, typically will permit histopathologic evaluation of many brain centers involved in visual sensation (eg, optic chiasm, optic tract, dorsal lateral geniculate nucleus, primary and secondary visual cortices) and often some subcortical brain nuclei involved in light-modulated nonvisual activities needed for visual attention and orientation (eg, rostral colliculus in quadrupeds, termed the superior colliculus in bipeds; several cranial nerve nuclei). Pathologic findings induced by toxicants in the visual brain centers are similar to those that are produced in other brain regions.
Collapse
Affiliation(s)
| | - Ingrid D Pardo
- 390190Pfizer Inc, Global Pathology and Investigative Toxicology, Groton, CT, USA
| | - Deepa B Rao
- ToxPath Specialists LLC [a StageBio Company], Frederick, MD, USA
| | | | | | - Brad Bolon
- GEMpath Inc., Longmont, CO, USA * Deceased
| |
Collapse
|
2
|
Loutit AJ, Vickery RM, Potas JR. Functional organization and connectivity of the dorsal column nuclei complex reveals a sensorimotor integration and distribution hub. J Comp Neurol 2020; 529:187-220. [PMID: 32374027 DOI: 10.1002/cne.24942] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
The dorsal column nuclei complex (DCN-complex) includes the dorsal column nuclei (DCN, referring to the gracile and cuneate nuclei collectively), external cuneate, X, and Z nuclei, and the median accessory nucleus. The DCN are organized by both somatotopy and modality, and have a diverse range of afferent inputs and projection targets. The functional organization and connectivity of the DCN implicate them in a variety of sensorimotor functions, beyond their commonly accepted role in processing and transmitting somatosensory information to the thalamus, yet this is largely underappreciated in the literature. To consolidate insights into their sensorimotor functions, this review examines the morphology, organization, and connectivity of the DCN and their associated nuclei. First, we briefly discuss the receptors, afferent fibers, and pathways involved in conveying tactile and proprioceptive information to the DCN. Next, we review the modality and somatotopic arrangements of the remaining constituents of the DCN-complex. Finally, we examine and discuss the functional implications of the myriad of DCN-complex projection targets throughout the diencephalon, midbrain, and hindbrain, in addition to their modulatory inputs from the cortex. The organization and connectivity of the DCN-complex suggest that these nuclei should be considered a complex integration and distribution hub for sensorimotor information.
Collapse
Affiliation(s)
- Alastair J Loutit
- School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia.,The Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Richard M Vickery
- School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jason R Potas
- School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia.,The Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
3
|
Pupillary light reflex circuits in the macaque monkey: the preganglionic Edinger-Westphal nucleus. Brain Struct Funct 2020; 225:403-425. [PMID: 31875262 PMCID: PMC6957570 DOI: 10.1007/s00429-019-02000-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/28/2019] [Indexed: 01/12/2023]
Abstract
The motor outflow for the pupillary light reflex originates in the preganglionic motoneuron subdivision of the Edinger-Westphal nucleus (EWpg), which also mediates lens accommodation. Despite their importance for vision, the morphology, ultrastructure and luminance-related inputs of these motoneurons have not been fully described in primates. In macaque monkeys, we labeled EWpg motoneurons from ciliary ganglion and orbital injections. Both approaches indicated preganglionic motoneurons occupy an EWpg organized as a unitary, ipsilateral cell column. When tracers were placed in the pretectal complex, labeled terminals targeted the ipsilateral EWpg and reached contralateral EWpg by crossing both above and below the cerebral aqueduct. They also terminated in the lateral visceral column, a ventrolateral periaqueductal gray region containing neurons projecting to the contralateral pretectum. Combining olivary pretectal and ciliary ganglion injections to determine whether a direct pupillary light reflex projection is present revealed a labeled motoneuron subpopulation that displayed close associations with labeled pretectal terminal boutons. Ultrastructurally, this subpopulation received synaptic contacts from labeled pretectal terminals that contained numerous clear spherical vesicles, suggesting excitation, and scattered dense-core vesicles, suggesting peptidergic co-transmitters. A variety of axon terminal classes, some of which may serve the near response, synapsed on preganglionic motoneurons. Quantitative analysis indicated that pupillary motoneurons receive more inhibitory inputs than lens motoneurons. To summarize, the pupillary light reflex circuit utilizes a monosynaptic, excitatory, bilateral pretectal projection to a distinct subpopulation of EWpg motoneurons. Furthermore, the interconnections between the lateral visceral column and olivary pretectal nucleus may provide pretectal cells with bilateral retinal fields.
Collapse
|
4
|
Pupillary light reflex circuits in the Macaque Monkey: the olivary pretectal nucleus. Brain Struct Funct 2019; 225:305-320. [PMID: 31848686 DOI: 10.1007/s00429-019-02003-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
Abstract
The olivary pretectal nucleus is the first central connection in the pupillary light reflex pathway, the circuit that adjusts the diameter of the pupil in response to ambient light levels. This study investigated aspects of the morphology and connectivity of the olivary pretectal nucleus in macaque monkeys by use of anterograde and retrograde tracers. Within the pretectum, the vast majority of neurons projecting to the preganglionic Edinger-Westphal nucleus were found within the olivary pretectal nucleus. Most of these neurons had somata located at the periphery of the nucleus and their heavily branched dendrites extended into the core of the nucleus. Retinal terminals were concentrated within the borders of the olivary pretectal nucleus. Ultrastructural examination of these terminals showed that they had clear spherical vesicles, occasional dense-core vesicles, and made asymmetric synaptic contacts. Retrogradely labeled cells projecting to the preganglionic Edinger-Westphal nucleus displayed relatively few somatic contacts. Double labeling indicated that these neurons receive direct retinal input. The concentration of retinal terminals within the nucleus and the extensive dendritic trees of the olivary projection cells provide a substrate for very large receptive fields. In some species, pretectal commissural connections are a substrate for balancing the direct and consensual pupillary responses to produce pupils of equal size. In the macaque, there was little evidence for such a commissural projection based on either anterograde or retrograde tracing. This may be due to the fact that each macaque retina provides nearly equal density projections to the ipsilateral and contralateral olivary pretectal nucleus.
Collapse
|
5
|
Rucker JC, Buettner-Ennever JA, Straumann D, Cohen B. Case Studies in Neuroscience: Instability of the visual near triad in traumatic brain injury-evidence for a putative convergence integrator. J Neurophysiol 2019; 122:1254-1263. [PMID: 31339793 DOI: 10.1152/jn.00861.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Deficits of convergence and accommodation are common following traumatic brain injury, including mild traumatic brain injury, although the mechanism and localization of these deficits have been unclear and supranuclear control of the near-vision response has been incompletely understood. We describe a patient who developed profound instability of the near-vision response with inability to maintain convergence and accommodation following mild traumatic brain injury, who was identified to have a structural lesion on brain MRI in the pulvinar of the caudal thalamus, the pretectum, and the rostral superior colliculus. We discuss the potential relationship between posttraumatic clinical near-vision response deficits and the MRI lesion in this patient. We further propose that the MRI lesion location, specifically the rostral superior colliculus, participates in neural integration for convergence holding, given its proven anatomic connections with the central mesencephalic reticular formation and C-group medial rectus motoneurons in the oculomotor nucleus, which project to extraocular muscle nontwitch fibers specialized for fatigue-resistant, slow, tonic activity such as vergence holding.NEW & NOTEWORTHY Supranuclear control of the near-vision response has been incompletely understood to date. We propose, based on clinical and anatomic evidence, functional pathways for vergence that participate in the generation of the near triad, "slow vergence," and vergence holding.
Collapse
Affiliation(s)
- Janet C Rucker
- Departments of Neurology and Ophthalmology, New York University School of Medicine, New York, New York
| | | | - Dominik Straumann
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Swiss Concussion Center, Zurich, Switzerland
| | - Bernard Cohen
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
6
|
Abstract
The dynamic oval pupil is defined and its distinction from corectopia, as well as their different clinical significance is proposed. A literature search for instances presenting this condition yielded only 20 such cases with enough clinical data. A review of these cases allows us to draw some tentative conclusions regarding the most likely anatomical location for its causative lesion and the pathophysiological mechanism responsible for its occurrence.
Collapse
Affiliation(s)
- Fion D Bremner
- Department of Neuro-Ophthalmology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Allan J Drapkin
- Department of Surgery (Neurosurgery), Jersey Shore University Medical Center, Neptune, NJ, United States
| |
Collapse
|
7
|
May PJ, Warren S, Gamlin PDR, Billig I. An Anatomic Characterization of the Midbrain Near Response Neurons in the Macaque Monkey. Invest Ophthalmol Vis Sci 2018; 59:1486-1502. [PMID: 29625471 PMCID: PMC5861931 DOI: 10.1167/iovs.17-23737] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose These experiments were designed to reveal the location of the premotor neurons that have previously been designated physiologically as the midbrain near response cells controlling vergence, lens accommodation, and pupillary constriction in response to target distance. Methods To identify this population, the fixed N2c strain of rabies virus was injected into the ciliary body of seven Macaca fascicularis monkeys. The virus was trans-synaptically transported to the brain. Following a 58- to 76-hour survival, animals were perfused with formalin fixative. After frozen sectioning, tissue was reacted to reveal the location of the infected populations by use of a monoclonal anti-rabies antibody. Another series of sections was processed to determine which of the rabies-positive cells were cholinergic motoneurons by use of an antibody to choline acetyl transferase. Results At earlier time points, only cholinergic cells in the preganglionic Edinger-Westphal nucleus ipsilateral to the injection were labeled. At later time points, an additional population of noncholinergic, premotor cells was present. These were most numerous at the caudal end of the supraoculomotor area, where they formed a bilateral band, oriented mediolaterally immediately above the oculomotor nucleus. Rostral to this, a smaller bilateral population was located near the midline within the supraoculomotor area. Conclusions Most lens preganglionic motoneurons are multipolar cells making up a continuous column within the Edinger-Westphal nucleus. A population of premotor cells that likely represents the midbrain near response cells is located in the supraoculomotor area. These cells are bilaterally distributed relative to the eye they control, and are most numerous caudally.
Collapse
Affiliation(s)
- Paul J May
- Department of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi, United States.,Department of Ophthalmology, University of Mississippi Medical Center, Jackson, Mississippi, United States.,Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Susan Warren
- Department of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Paul D R Gamlin
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Isabelle Billig
- Systems Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
8
|
|
9
|
Stonex TM, Bartoe JT, Aguirre GD. Lack of consensus on consensual response. Vet Ophthalmol 2017; 21:104-107. [DOI: 10.1111/vop.12469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tara M. Stonex
- Section of Ophthalmology; School of Veterinary Medicine; University of Pennsylvania; Philadelphia PA 19104 USA
| | | | - Gustavo D. Aguirre
- Section of Ophthalmology; School of Veterinary Medicine; University of Pennsylvania; Philadelphia PA 19104 USA
| |
Collapse
|
10
|
Naumann EA, Fitzgerald JE, Dunn TW, Rihel J, Sompolinsky H, Engert F. From Whole-Brain Data to Functional Circuit Models: The Zebrafish Optomotor Response. Cell 2017; 167:947-960.e20. [PMID: 27814522 DOI: 10.1016/j.cell.2016.10.019] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/24/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023]
Abstract
Detailed descriptions of brain-scale sensorimotor circuits underlying vertebrate behavior remain elusive. Recent advances in zebrafish neuroscience offer new opportunities to dissect such circuits via whole-brain imaging, behavioral analysis, functional perturbations, and network modeling. Here, we harness these tools to generate a brain-scale circuit model of the optomotor response, an orienting behavior evoked by visual motion. We show that such motion is processed by diverse neural response types distributed across multiple brain regions. To transform sensory input into action, these regions sequentially integrate eye- and direction-specific sensory streams, refine representations via interhemispheric inhibition, and demix locomotor instructions to independently drive turning and forward swimming. While experiments revealed many neural response types throughout the brain, modeling identified the dimensions of functional connectivity most critical for the behavior. We thus reveal how distributed neurons collaborate to generate behavior and illustrate a paradigm for distilling functional circuit models from whole-brain data.
Collapse
Affiliation(s)
- Eva A Naumann
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | | | - Timothy W Dunn
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Haim Sompolinsky
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Racah Institute of Physics and the Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Florian Engert
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
11
|
May PJ, Warren S, Bohlen MO, Barnerssoi M, Horn AKE. A central mesencephalic reticular formation projection to the Edinger-Westphal nuclei. Brain Struct Funct 2015; 221:4073-4089. [PMID: 26615603 DOI: 10.1007/s00429-015-1147-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/12/2015] [Indexed: 11/30/2022]
Abstract
The central mesencephalic reticular formation, a region associated with horizontal gaze control, has recently been shown to project to the supraoculomotor area in primates. The Edinger-Westphal nucleus is found within the supraoculomotor area. It has two functionally and anatomically distinct divisions: (1) the preganglionic division, which contains motoneurons that control both the actions of the ciliary muscle, which focuses the lens, and the sphincter pupillae muscle, which constricts the iris, and (2) the centrally projecting division, which contains peptidergic neurons that play a role in food and fluid intake, and in stress responses. In this study, we used neuroanatomical tracers in conjunction with immunohistochemistry in Macaca fascicularis monkeys to examine whether either of these Edinger-Westphal divisions receives synaptic input from the central mesencephalic reticular formation. Anterogradely labeled reticular axons were observed making numerous boutonal associations with the cholinergic, preganglionic motoneurons of the Edinger-Westphal nucleus. These associations were confirmed to be synaptic contacts through the use of confocal and electron microscopic analysis. The latter indicated that these terminals generally contained pleomorphic vesicles and displayed symmetric, synaptic densities. Examination of urocortin-1-positive cells in the same cases revealed fewer examples of unambiguous synaptic relationships, suggesting the centrally projecting Edinger-Westphal nucleus is not the primary target of the projection from the central mesencephalic reticular formation. We conclude from these data that the central mesencephalic reticular formation must play a here-to-for unexpected role in control of the near triad (vergence, lens accommodation and pupillary constriction), which is used to examine objects in near space.
Collapse
Affiliation(s)
- Paul J May
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, 39216, USA
- Department of Ophthalmology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Susan Warren
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Martin O Bohlen
- Department of Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Miriam Barnerssoi
- Institute of Anatomy and Cell Biology I, Ludwig-Maximilians University, Pettenkoferstrasse 11, 80336, Munich, Germany
| | - Anja K E Horn
- Institute of Anatomy and Cell Biology I, Ludwig-Maximilians University, Pettenkoferstrasse 11, 80336, Munich, Germany.
| |
Collapse
|
12
|
Zeeh C, Mustari MJ, Hess BJM, Horn AKE. Transmitter inputs to different motoneuron subgroups in the oculomotor and trochlear nucleus in monkey. Front Neuroanat 2015; 9:95. [PMID: 26257611 PMCID: PMC4513436 DOI: 10.3389/fnana.2015.00095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/06/2015] [Indexed: 11/13/2022] Open
Abstract
In all vertebrates the eyes are moved by six pairs of extraocular muscles enabling horizontal, vertical and rotatory movements. Recent work showed that each extraocular muscle is controlled by two motoneuronal groups: (1) Motoneurons of singly-innervated muscle fibers (SIF) that lie within the boundaries of motonuclei mediating a fast muscle contraction; and (2) motoneurons of multiply-innervated muscle fibers (MIF) in the periphery of motonuclei mediating a tonic muscle contraction. Currently only limited data about the transmitter inputs to the SIF and MIF motoneurons are available. Here we performed a quantitative study on the transmitter inputs to SIF and MIF motoneurons of individual muscles in the oculomotor and trochlear nucleus in monkey. Pre-labeled motoneurons were immunostained for GABA, glutamate decarboxylase, GABA-A receptor, glycine transporter 2, glycine receptor 1, and vesicular glutamate transporters 1 and 2. The main findings were: (1) the inhibitory control of SIF motoneurons for horizontal and vertical eye movements differs. Unlike in previous primate studies a considerable GABAergic input was found to all SIF motoneuronal groups, whereas a glycinergic input was confined to motoneurons of the medial rectus (MR) muscle mediating horizontal eye movements and to those of the levator palpebrae (LP) muscle elevating the upper eyelid. Whereas SIF and MIF motoneurons of individual eye muscles do not differ numerically in their GABAergic, glycinergic and vGlut2 input, vGlut1 containing terminals densely covered the supraoculomotor area (SOA) targeting MR MIF motoneurons. It is reasonable to assume that the vGlut1 input affects the near response system in the SOA, which houses the preganglionic neurons mediating pupillary constriction and accommodation and the MR MIF motoneurones involved in vergence.
Collapse
Affiliation(s)
- Christina Zeeh
- Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians UniversityMunich, Germany
| | - Michael J. Mustari
- Washington National Primate Research Center and Department of Ophthalmology, University of WashingtonSeattle, WA, USA
| | - Bernhard J. M. Hess
- Vestibulo-Oculomotor Laboratory Zürich, Department of Neurology, University HospitalZürich, Switzerland
| | - Anja K. E. Horn
- Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians UniversityMunich, Germany
| |
Collapse
|
13
|
Bohlen MO, Warren S, May PJ. A central mesencephalic reticular formation projection to the supraoculomotor area in macaque monkeys. Brain Struct Funct 2015; 221:2209-29. [PMID: 25859632 DOI: 10.1007/s00429-015-1039-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/02/2015] [Indexed: 11/26/2022]
Abstract
The central mesencephalic reticular formation is physiologically implicated in oculomotor function and anatomically interwoven with many parts of the oculomotor system's premotor circuitry. This study in Macaca fascicularis monkeys investigates the pattern of central mesencephalic reticular formation projections to the area in and around the extraocular motor nuclei, with special emphasis on the supraoculomotor area. It also examines the location of the cells responsible for this projection. Injections of biotinylated dextran amine were stereotaxically placed within the central mesencephalic reticular formation to anterogradely label axons and terminals. These revealed bilateral terminal fields in the supraoculomotor area. In addition, dense terminations were found in both the preganglionic Edinger-Westphal nuclei. The dense terminations just dorsal to the oculomotor nucleus overlap with the location of the C-group medial rectus motoneurons projecting to multiply innervated muscle fibers suggesting they may be targeted. Minor terminal fields were observed bilaterally within the borders of the oculomotor and abducens nuclei. Injections including the supraoculomotor area and oculomotor nucleus retrogradely labeled a tight band of neurons crossing the central third of the central mesencephalic reticular formation at all rostrocaudal levels, indicating a subregion of the nucleus provides this projection. Thus, these experiments reveal that a subregion of the central mesencephalic reticular formation may directly project to motoneurons in the oculomotor and abducens nuclei, as well as to preganglionic neurons controlling the tone of intraocular muscles. This pattern of projections suggests an as yet undetermined role in regulating the near triad.
Collapse
Affiliation(s)
- Martin O Bohlen
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Susan Warren
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Paul J May
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
- Department of Ophthalmology, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|
14
|
Tang X, Büttner-Ennever JA, Mustari MJ, Horn AKE. Internal organization of medial rectus and inferior rectus muscle neurons in the C group of the oculomotor nucleus in monkey. J Comp Neurol 2015; 523:1809-23. [PMID: 25684641 DOI: 10.1002/cne.23760] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 02/08/2015] [Accepted: 02/09/2015] [Indexed: 11/11/2022]
Abstract
Mammalian extraocular muscles contain singly innervated twitch muscle fibers (SIF) and multiply innervated nontwitch muscle fibers (MIF). In monkey, MIF motoneurons lie around the periphery of oculomotor nuclei and have premotor inputs different from those of the motoneurons inside the nuclei. The most prominent MIF motoneuron group is the C group, which innervates the medial rectus (MR) and inferior rectus (IR) muscle. To explore the organization of both cell groups within the C group, we performed small injections of choleratoxin subunit B into the myotendinous junction of MR or IR in monkeys. In three animals the IR and MR myotendinous junction of one eye was injected simultaneously with different tracers (choleratoxin subunit B and wheat germ agglutinin). This revealed that both muscles were supplied by two different, nonoverlapping populations in the C group. The IR neurons lie adjacent to the dorsomedial border of the oculomotor nucleus, whereas MR neurons are located farther medially. A striking feature was the differing pattern of dendrite distribution of both cell groups. Whereas the dendrites of IR neurons spread into the supraoculomotor area bilaterally, those of the MR neurons were restricted to the ipsilateral side and sent a focused bundle dorsally to the preganglionic neurons of the Edinger-Westphal nucleus, which are involved in the "near response." In conclusion, MR and IR are innervated by independent neuron populations from the C group. Their dendritic branching pattern within the supraoculomotor area indicates a participation in the near response providing vergence but also reflects their differing functional roles.
Collapse
Affiliation(s)
- Xiaofang Tang
- Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-University of Munich, D-80336, Munich, Germany
| | - Jean A Büttner-Ennever
- Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-University of Munich, D-80336, Munich, Germany
| | - Michael J Mustari
- Washington National Primate Research Center and Department of Ophthalmology, University of Washington, Seattle, Washington, 98195
| | - Anja K E Horn
- Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-University of Munich, D-80336, Munich, Germany
| |
Collapse
|
15
|
Sun W, May PJ. Central pupillary light reflex circuits in the cat: I. The olivary pretectal nucleus. J Comp Neurol 2014; 522:3960-77. [PMID: 24706328 PMCID: PMC4185307 DOI: 10.1002/cne.23602] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 12/18/2022]
Abstract
The central pathways subserving the feline pupillary light reflex were examined by defining retinal input to the olivary pretectal nucleus (OPt), the midbrain projections of this nucleus, and the premotor neurons within it. Unilateral intravitreal wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP) injections revealed differences in the pattern of retinal OPt termination on the two sides. Injections of WGA-HRP into OPt labeled terminals bilaterally in the anteromedian nucleus, and to a lesser extent in the supraoculomotor area, centrally projecting Edinger-Westphal nucleus, and nucleus of the posterior commissure. Labeled terminals, as well as retrogradely labeled multipolar cells, were present in the contralateral OPt, indicating a commissural pathway. Injections of WGA-HRP into the anteromedian nucleus labeled fusiform premotor neurons within the OPt, as well as multipolar cells in the nucleus of the posterior commissure. Connections between retinal terminals and the pretectal premotor neurons were characterized by combining vitreous chamber and anteromedian nucleus injections of WGA-HRP in the same animal. Fusiform-shaped, retrogradely labeled cells fell within the anterogradely labeled retinal terminal field in the OPt. Ultrastructural analysis revealed labeled retinal terminals containing clear spherical vesicles. They contacted labeled pretectal premotor neurons via asymmetric synaptic densities. These results provide an anatomical substrate for the pupillary light reflex in the cat. Pretectal premotor neurons receive direct retinal input via synapses suggestive of an excitatory drive, and project directly to nuclei containing preganglionic motoneurons. These projections are concentrated in the anteromedian nucleus, indicating its involvement in the pupillary light reflex.
Collapse
Affiliation(s)
- Wensi Sun
- Department of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216 U.S.A
| | - Paul J. May
- Department of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216 U.S.A
- Department of Ophthalmology, University of Mississippi Medical Center, Jackson, MS 39216 U.S.A
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216 U.S.A
| |
Collapse
|
16
|
Sun W, May PJ. Central pupillary light reflex circuits in the cat: II. Morphology, ultrastructure, and inputs of preganglionic motoneurons. J Comp Neurol 2014; 522:3978-4002. [PMID: 24706263 PMCID: PMC4185308 DOI: 10.1002/cne.23601] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/08/2014] [Accepted: 04/03/2014] [Indexed: 01/26/2023]
Abstract
Preganglionic motoneurons supplying the ciliary ganglion control lens accommodation and pupil diameter. In cats, these motoneurons make up the preganglionic Edinger-Westphal population, which lies rostral, dorsal, and ventral to the oculomotor nucleus. A recent cat study suggested that caudal motoneurons control the lens and rostral motoneurons control the pupil. This led us to examine the morphology, ultrastructure, and pretectal inputs of these populations. Preganglionic motoneurons retrogradely labeled by introducing tracer into the cat ciliary ganglion generally fell into two morphologic categories. Fusiform neurons were located rostrally, in the anteromedian nucleus and between the oculomotor nuclei. Multipolar neurons were found caudally, dorsal and ventral to the oculomotor nucleus. The dendrites of preganglionic motoneurons within the anteromedian nucleus crossed the midline, providing a possible basis for consensual responses. Ultrastructurally, several different classes of synaptic profiles contact preganglionic motoneurons, suggesting that their activity may be modified by a variety of inputs. Furthermore, there were differences in the synaptic populations contacting the rostral vs. caudal populations, supporting the contention that these populations display functional differences. Anterogradely labeled pretectal terminals were observed in close association with labeled preganglionic motoneurons, particularly in the rostral population. Ultrastructural analysis revealed that these terminals, packed with clear, spherical vesicles, made asymmetric synaptic contacts onto motoneurons in the rostral population, indicating that these cells serve the pupillary light reflex. Thus, the preganglionic motoneurons found in the cat display morphologic, ultrastructural, and connectional differences suggesting that this rostral preganglionic population is specialized for pupil control, whereas more caudal elements control the lens.
Collapse
Affiliation(s)
- Wensi Sun
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi, 39216
| | | |
Collapse
|