1
|
Xiao T, Roland A, Chen Y, Guffey S, Kash T, Kimbrough A. A role for circuitry of the cortical amygdala in excessive alcohol drinking, withdrawal, and alcohol use disorder. Alcohol 2024; 121:151-159. [PMID: 38447789 PMCID: PMC11371945 DOI: 10.1016/j.alcohol.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Alcohol use disorder (AUD) poses a significant public health challenge. Individuals with AUD engage in chronic and excessive alcohol consumption, leading to cycles of intoxication, withdrawal, and craving behaviors. This review explores the involvement of the cortical amygdala (CoA), a cortical brain region that has primarily been examined in relation to olfactory behavior, in the expression of alcohol dependence and excessive alcohol drinking. While extensive research has identified the involvement of numerous brain regions in AUD, the CoA has emerged as a relatively understudied yet promising candidate for future study. The CoA plays a vital role in rewarding and aversive signaling and olfactory-related behaviors and has recently been shown to be involved in alcohol-dependent drinking in mice. The CoA projects directly to brain regions that are critically important for AUD, such as the central amygdala, bed nucleus of the stria terminalis, and basolateral amygdala. These projections may convey key modulatory signaling that drives excessive alcohol drinking in alcohol-dependent subjects. This review summarizes existing knowledge on the structure and connectivity of the CoA and its potential involvement in AUD. Understanding the contribution of this region to excessive drinking behavior could offer novel insights into the etiology of AUD and potential therapeutic targets.
Collapse
Affiliation(s)
- Tiange Xiao
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Alison Roland
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Yueyi Chen
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Skylar Guffey
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Thomas Kash
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Adam Kimbrough
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States; Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
2
|
Rasia-Filho AA, Calcagnotto ME, von Bohlen Und Halbach O. Glial Cell Modulation of Dendritic Spine Structure and Synaptic Function. ADVANCES IN NEUROBIOLOGY 2023; 34:255-310. [PMID: 37962798 DOI: 10.1007/978-3-031-36159-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Glia comprise a heterogeneous group of cells involved in the structure and function of the central and peripheral nervous system. Glial cells are found from invertebrates to humans with morphological specializations related to the neural circuits in which they are embedded. Glial cells modulate neuronal functions, brain wiring and myelination, and information processing. For example, astrocytes send processes to the synaptic cleft, actively participate in the metabolism of neurotransmitters, and release gliotransmitters, whose multiple effects depend on the targeting cells. Human astrocytes are larger and more complex than their mice and rats counterparts. Astrocytes and microglia participate in the development and plasticity of neural circuits by modulating dendritic spines. Spines enhance neuronal connectivity, integrate most postsynaptic excitatory potentials, and balance the strength of each input. Not all central synapses are engulfed by astrocytic processes. When that relationship occurs, a different pattern for thin and large spines reflects an activity-dependent remodeling of motile astrocytic processes around presynaptic and postsynaptic elements. Microglia are equally relevant for synaptic processing, and both glial cells modulate the switch of neuroendocrine secretion and behavioral display needed for reproduction. In this chapter, we provide an overview of the structure, function, and plasticity of glial cells and relate them to synaptic maturation and modulation, also involving neurotrophic factors. Together, neurons and glia coordinate synaptic transmission in both normal and abnormal conditions. Neglected over decades, this exciting research field can unravel the complexity of species-specific neural cytoarchitecture as well as the dynamic region-specific functional interactions between diverse neurons and glial subtypes.
Collapse
Affiliation(s)
- Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Psychiatry and Behavioral Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
3
|
Rasia-Filho AA, Calcagnotto ME, von Bohlen Und Halbach O. Introduction: What Are Dendritic Spines? ADVANCES IN NEUROBIOLOGY 2023; 34:1-68. [PMID: 37962793 DOI: 10.1007/978-3-031-36159-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spines are cellular specializations that greatly increase the connectivity of neurons and modulate the "weight" of most postsynaptic excitatory potentials. Spines are found in very diverse animal species providing neural networks with a high integrative and computational possibility and plasticity, enabling the perception of sensorial stimuli and the elaboration of a myriad of behavioral displays, including emotional processing, memory, and learning. Humans have trillions of spines in the cerebral cortex, and these spines in a continuum of shapes and sizes can integrate the features that differ our brain from other species. In this chapter, we describe (1) the discovery of these small neuronal protrusions and the search for the biological meaning of dendritic spines; (2) the heterogeneity of shapes and sizes of spines, whose structure and composition are associated with the fine-tuning of synaptic processing in each nervous area, as well as the findings that support the role of dendritic spines in increasing the wiring of neural circuits and their functions; and (3) within the intraspine microenvironment, the integration and activation of signaling biochemical pathways, the compartmentalization of molecules or their spreading outside the spine, and the biophysical properties that can affect parent dendrites. We also provide (4) examples of plasticity involving dendritic spines and neural circuits relevant to species survival and comment on (5) current research advancements and challenges in this exciting research field.
Collapse
Affiliation(s)
- Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Psychiatry and Behavioral Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
4
|
Jackson D, Holcomb P, Ellisman M, Spirou G. Two types of somatic spines provide sites for intercellular signaling during calyx of Held growth and maturation. Synapse 2020; 75:e22189. [PMID: 33025635 DOI: 10.1002/syn.22189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/25/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022]
Abstract
Dendritic spines have been described in developing and mature systems, but similar extensions from cell bodies are less studied. We utilized electron microscopy image volumes, uniquely collected across a range of early postnatal and month-old mice, to characterize and describe two types of somatic processes that extended into and under the developing calyx of Held (CH), which we named type 1 and type 2 spines. Type 1 spines occurred singly, were mostly vermiform in shape, and formed regularly spaced indentations into the CH. Type 1 spines appeared in concert with the earliest expansion of the CH by P3, peaked at P6 and returned to low density at P30. Type 2 spines were intertwined into a secondary structure called a spine mat, which has not previously been described in the CNS, and were more complex geometrically. Type 2 spines formed after the CH crossed a size threshold, reached maximum density at P9, and were absent from most CHs at P30. Both spine types, but a higher density of type 1 spines, were sites for synapse formation. Spine mats brought pre- and postsynaptic neurons and glial cells into contact, and were captured in stages of partial detachment and engulfment by the presynaptic terminal, suggesting trans-endocytosis as a mode of removal ahead of maturity. In conglomerate, these observations reveal somatic spines to be sites for chemical neurotransmission and chemical sampling among synaptic partners and glia as tissue structure transforms into mature neural circuits.
Collapse
Affiliation(s)
- Dakota Jackson
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Paul Holcomb
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Mark Ellisman
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, USA
| | - George Spirou
- Department of Medical Engineering, University of South Florida, Tampa, FL, USA
| |
Collapse
|
5
|
Zancan M, Malysz T, Moura DJ, Morás AM, Steffens L, Rasia-Filho AA. Gap junctions and expression of Cx36, Cx43 and Cx45 in the posterodorsal medial amygdala of adult rats. Histol Histopathol 2020; 35:395-403. [PMID: 31495909 DOI: 10.14670/hh-18-160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The posterodorsal medial amygdala (MePD) has an adapted synaptic organization that dynamically modulates reproduction and other social behaviors in rats. Discrete gap junctions between glial cells were previously reported in the MePD neuropil. Connexins (Cx) are components of gap junctions and indicative of cellular electrical coupling. Here, we report the ultrastructural occurrence of gap junctions between neurons in the MePD and demonstrate the expression and immunofluorescent labeling of Cx36, Cx43 and Cx45 in this subcortical area of adult male rats. Few neuronal gap junctions were found in the MePD and, when identified, occurred between dendrites. On the other hand, there is a diffuse presence and distribution of punctate labelling for the tested Cxs. Puncta were visualized isolated or forming clusters in the same focal plane of cell bodies or along the MePD neuropil. The Cx36 puncta were found in neurons, Cx43 in astrocytes and Cx45 in both neurons and astrocytes. Our data indicate the presence of few gap junctions and different Cxs composition in the MePD. Because Cxs can assemble, form hemichannel units and/or serve as transcriptional regulator, it is likely that additional modulation of intercellular communication can occur besides the chemical transmission in the MePD of adult rats.
Collapse
Affiliation(s)
- Mariana Zancan
- Universidade Federal de Ciências da Saúde de Porto Alegre/DCBS-Physiology, Porto Alegre-RS, Brazil
| | - Taís Malysz
- Universidade Federal do Rio Grande do Sul/ICBS-Anatomy, Porto Alegre-RS, Brazil
- Universidade Federal do Rio Grande do Sul/Graduate Program in Neurosciences, Porto Alegre-RS, Brazil
| | - Dinara J Moura
- Universidade Federal de Ciências da Saúde de Porto Alegre/Graduate Program in Biosciences, Porto Alegre-RS, Brazil
| | - Ana Moira Morás
- Universidade Federal de Ciências da Saúde de Porto Alegre/Graduate Program in Biosciences, Porto Alegre-RS, Brazil
| | - Luiza Steffens
- Universidade Federal de Ciências da Saúde de Porto Alegre/Graduate Program in Biosciences, Porto Alegre-RS, Brazil
| | - Alberto A Rasia-Filho
- Universidade Federal do Rio Grande do Sul/Graduate Program in Neurosciences, Porto Alegre-RS, Brazil
- Universidade Federal de Ciências da Saúde de Porto Alegre/Graduate Program in Biosciences, Porto Alegre-RS, Brazil
- Universidade Federal de Ciências da Saúde de Porto Alegre/DCBS-Physiology, Porto Alegre-RS, Brazil.
| |
Collapse
|
6
|
Llorente R, Marraudino M, Carrillo B, Bonaldo B, Simon-Areces J, Abellanas-Pérez P, Rivero-Aguilar M, Fernandez-Garcia JM, Pinos H, Garcia-Segura LM, Collado P, Grassi D. G Protein-Coupled Estrogen Receptor Immunoreactivity Fluctuates During the Estrous Cycle and Show Sex Differences in the Amygdala and Dorsal Hippocampus. Front Endocrinol (Lausanne) 2020; 11:537. [PMID: 32849310 PMCID: PMC7426398 DOI: 10.3389/fendo.2020.00537] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
G protein-coupled estrogen receptor (GPER) in the amygdala and the dorsal hippocampus mediates actions of estradiol on anxiety, social recognition and spatial memory. In addition, GPER participates in the estrogenic regulation of synaptic function in the amygdala and in the process of adult neurogenesis in the dentate gyrus. While the distribution of the canonical estrogen receptors α and β in the amygdala and dorsal hippocampus are well characterized, little is known about the regional distribution of GPER in these brain regions and whether this distribution is affected by sex or the stages of the estrous cycle. In this study we performed a morphometric analysis of GPER immunoreactivity in the posterodorsal medial, anteroventral medial, basolateral, basomedial and central subdivisions of the amygdala and in all the histological layers of CA1 and the dentate gyrus of the dorsal hippocampal formation. The number of GPER immunoreactive cells was estimated in these different structures. GPER immunoreactivity was detected in all the assessed subdivisions of the amygdaloid nucleus and dorsal hippocampal formation. The number of GPER immunoreactive cells was higher in males than in estrus females in the central (P = 0.001) and the posterodorsal medial amygdala (P < 0.05); higher in males than in diestrus females in the strata orients (P < 0.01) and radiatum-lacunosum-moleculare (P < 0.05) of CA1-CA3 and in the molecular layer of the dentate gyrus (P < 0.01); higher in diestrus females than in males in the basolateral amygdala (P < 0.05); higher in diestrus females than in estrus females in the central (P < 0.01), posterodorsal medial (P < 0.01) and basolateral amygdala (P < 0.01) and higher in estrus females than in diestrus females in the strata oriens (P < 0.05) and radiatum-lacunosum-moleculare (P < 0.05) of CA1-CA3 and in the molecular layer (P < 0.05) and the hilus of the dentate gyrus (P < 0.05). The findings suggest that estrogenic regulation of the amygdala and hippocampus through GPER may be different in males and in females and may fluctuate during the estrous cycle.
Collapse
Affiliation(s)
- Ricardo Llorente
- Department of Preclinical Odontology, Universidad Europea de Madrid, Madrid, Spain
| | - Marilena Marraudino
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Beatriz Carrillo
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
- Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), Madrid, Spain
| | - Brigitta Bonaldo
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Julia Simon-Areces
- Department of Physiotherapy, Podology and Dance, Universidad Europea de Madrid, Madrid, Spain
| | | | | | - Jose M. Fernandez-Garcia
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
- Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), Madrid, Spain
| | - Helena Pinos
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
- Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), Madrid, Spain
| | - Luis M. Garcia-Segura
- Cajal Institute, CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Paloma Collado
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
- Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), Madrid, Spain
| | - Daniela Grassi
- Department of Preclinical Odontology, Universidad Europea de Madrid, Madrid, Spain
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
- Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), Madrid, Spain
- Cajal Institute, CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Daniela Grassi ;
| |
Collapse
|
7
|
Zancan M, Moura DJ, Morás AM, Steffens L, de Moura AC, Giovenardi M, Rasia-Filho AA. Neurotrophic factors in the posterodorsal medial amygdala of male and cycling female rats. Brain Res Bull 2019; 155:92-101. [PMID: 31812781 DOI: 10.1016/j.brainresbull.2019.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/01/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
Abstract
The posterodorsal medial amygdala (MePD) has a high concentration of receptors for gonadal hormones, is a sexually dimorphic region and dynamically controls the reproductive behavior of both males and females. Neurotrophic factors can promote dendritic spine remodeling and change synaptic input strength in a region-specific manner. Here, we analyzed the gene and protein expression of brain-derived neurotrophic factor (BDNF), insulin-like growth factor-I (IGF-1), polysialylated neural cell adhesion molecule (PSA-NCAM) and Ephrin-A4 in the MePD of adult males and females in diestrus, proestrus and estrus using real-time qPCR and fluorescent immunohistochemistry. The first approach showed their amplification except for Igf1 and the latter revealed that BDNF, IGF-1, PSA-NCAM and Ephrin-A4 are expressed in the MePD of the adult rats. Protein expression of these neurotrophic factors showed no differences between groups. However, proestrus females displayed a higher number of labelled puncta than males for BDNF expression and diestrus females for IGF-1 expression. In conjunction, results indicate that IGF-1 might be released rather than synthetized in the MePD, and the expression of specific neurotrophic factors varies specifically during proestrus. The dynamic modulation of BDNF and IGF-1 during this cyclic phase is coincident with synaptic changes and spine density remodeling in the MePD, the disinhibition of gonadotrophin secretion for ovulation and the display of sexual behavior.
Collapse
Affiliation(s)
- Mariana Zancan
- Federal University of Health Sciences/DCBS-Physiology, Porto Alegre, RS, Brazil; Federal University of Rio Grande do Sul/Graduate Program in Neurosciences, Porto Alegre, RS, Brazil
| | - Dinara J Moura
- Federal University of Health Sciences/Graduate Program in Biosciences, Porto Alegre, RS, Brazil
| | - Ana Moira Morás
- Federal University of Health Sciences/Graduate Program in Biosciences, Porto Alegre, RS, Brazil
| | - Luiza Steffens
- Federal University of Health Sciences/Graduate Program in Biosciences, Porto Alegre, RS, Brazil
| | - Ana Carolina de Moura
- Federal University of Health Sciences/ Graduate Program in Health Sciences, Porto Alegre, RS, Brazil
| | - Márcia Giovenardi
- Federal University of Health Sciences/ Graduate Program in Health Sciences, Porto Alegre, RS, Brazil
| | - Alberto A Rasia-Filho
- Federal University of Health Sciences/DCBS-Physiology, Porto Alegre, RS, Brazil; Federal University of Rio Grande do Sul/Graduate Program in Neurosciences, Porto Alegre, RS, Brazil; Federal University of Health Sciences/Graduate Program in Biosciences, Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Dalpian F, Rasia-Filho AA, Calcagnotto ME. Sexual dimorphism, estrous cycle and laterality determine the intrinsic and synaptic properties of medial amygdala neurons in rat. J Cell Sci 2019; 132:jcs.227793. [PMID: 30967401 DOI: 10.1242/jcs.227793] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/29/2019] [Indexed: 01/06/2023] Open
Abstract
The posterodorsal medial amygdala (MePD) is a sex steroid-sensitive area that modulates different social behavior by relaying chemosensorial information to hypothalamic nuclei. However, little is known about MePD cell type diversity and functional connectivity. Here, we have characterized neurons and synaptic inputs in the right and left MePD of adult male and cycling female (in diestrus, proestrus or estrus) rats. Based on their electrophysiological properties and morphology, we found two coexisting subpopulations of spiny neurons that are sexually dimorphic. They were classified as Class I (predominantly bitufted-shaped neurons showing irregular spikes with frequency adaptation) or Class II (predominantly stellate-shaped neurons showing full spike frequency adaptation). Furthermore, excitatory and inhibitory inputs onto MePD cells were modulated by sex, estrous cycle and hemispheric lateralization. In the left MePD, there was an overall increase in the excitatory input to neurons of males compared to cycling females. However, in proestrus, the MePD neurons received mainly inhibitory inputs. Our findings indicate the existence of hemispheric lateralization, estrous cycle and sexual dimorphism influences at cellular and synaptic levels in the adult rat MePD.
Collapse
Affiliation(s)
- Francine Dalpian
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90170-050, Brazil
| | - Alberto A Rasia-Filho
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90170-050, Brazil.,Department of Basic Sciences/Physiology, Federal University of Health Sciences, Porto Alegre, RS 90170-050, Brazil
| | - Maria Elisa Calcagnotto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90170-050, Brazil .,Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| |
Collapse
|
9
|
Vásquez CE, Reberger R, Dall'Oglio A, Calcagnotto ME, Rasia-Filho AA. Neuronal types of the human cortical amygdaloid nucleus. J Comp Neurol 2018; 526:2776-2801. [PMID: 30156296 DOI: 10.1002/cne.24527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 12/29/2022]
Abstract
The human cortical amygdaloid nucleus (CoA) receives exteroceptive sensory stimuli, modulates the functions coded by the intrinsic amygdaloid circuit, and constitutes the beginning of the limbic lobe continuum with direct and indirect connections toward subcortical, allocortical, and higher order neocortical areas. To provide basic data on the human CoA, we characterized and classified the neurons using the thionin and the "single-section" Golgi method adapted for postmortem brain tissue and light microscopy. We found 10 different types of neurons named according to the morphological features of the cell body, dendritic branches, and spine distribution. Most cells are multipolar spiny neurons with two or more primary dendrites, including pyramidal-like ones. Three-dimensional reconstructions evidenced the types and diversity of the dendritic spines in each neuron. The unlike density of spines along dendritic branches, from proximal to distal ones, indicate that the synaptic processing and plasticity can be different in each CoA neuron. Our study provides novel data on the neuronal composition of the human CoA indicating that the variety of cells in this region can have phylogenetic, ontogenetic, morphological, and likely functional implications for the integrated human brain function. This can reflect both a more complex subcortical synaptic processing of sensory and emotional information and an adaptation for species-specific social behavior display.
Collapse
Affiliation(s)
- Carlos Escobar Vásquez
- Neuroscience Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Roman Reberger
- Friedrich Alexander Universität Erlangen-Nürnberg, Medical Engineering Program, Erlangen, Germany
| | - Aline Dall'Oglio
- Department of Basic Sciences/Physiology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Maria Elisa Calcagnotto
- Neuroscience Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Biochemistry Graduate Program, Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Alberto A Rasia-Filho
- Neuroscience Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Department of Basic Sciences/Physiology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
10
|
Zancan M, Cunha RSR, Schroeder F, Xavier LL, Rasia‐Filho AA. Remodeling of the number and structure of dendritic spines in the medial amygdala: From prepubertal sexual dimorphism to puberty and effect of sexual experience in male rats. Eur J Neurosci 2018; 48:1851-1865. [DOI: 10.1111/ejn.14052] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/18/2018] [Accepted: 06/13/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Mariana Zancan
- Department of Basic Sciences/PhysiologyFederal University of Health Sciences Porto Alegre Brazil
- Graduation Program in NeuroscienceFederal University of Rio Grande do Sul Porto Alegre Brazil
| | - Rick Shandler R. Cunha
- Department of Basic Sciences/PhysiologyFederal University of Health Sciences Porto Alegre Brazil
| | - Francielle Schroeder
- Laboratory of Tissue BiologyFaculty of BiosciencesPontifical Catholic University of Rio Grande do Sul (PUCRS) Porto Alegre Brazil
| | - Léder L. Xavier
- Laboratory of Tissue BiologyFaculty of BiosciencesPontifical Catholic University of Rio Grande do Sul (PUCRS) Porto Alegre Brazil
| | - Alberto A. Rasia‐Filho
- Department of Basic Sciences/PhysiologyFederal University of Health Sciences Porto Alegre Brazil
- Graduation Program in NeuroscienceFederal University of Rio Grande do Sul Porto Alegre Brazil
| |
Collapse
|
11
|
Hirsch MM, Brusco J, Vaccaro T, Margis R, Moreira JE, Gottfried C, Rasia-Filho AA. Sex Differences and Estrous Cycle Changes in Synaptic Plasticity-related microRNA in the Rat Medial Amygdala. Neuroscience 2018; 379:405-414. [DOI: 10.1016/j.neuroscience.2018.03.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 02/20/2018] [Accepted: 03/21/2018] [Indexed: 01/05/2023]
|
12
|
Zancan M, Dall'Oglio A, Quagliotto E, Rasia‐Filho AA. Castration alters the number and structure of dendritic spines in the male posterodorsal medial amygdala. Eur J Neurosci 2016; 45:572-580. [DOI: 10.1111/ejn.13460] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/22/2016] [Accepted: 10/31/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Mariana Zancan
- Department of Basic Sciences/Physiology Federal University of Health Sciences Sarmento Leite 245 Porto Alegre RS 90050‐170 Brazil
- Graduation Program in Neuroscience Federal University of Rio Grande do Sul Porto Alegre Brazil
| | - Aline Dall'Oglio
- Department of Basic Sciences/Physiology Federal University of Health Sciences Sarmento Leite 245 Porto Alegre RS 90050‐170 Brazil
| | - Edson Quagliotto
- Department of Basic Sciences/Physiology Federal University of Health Sciences Sarmento Leite 245 Porto Alegre RS 90050‐170 Brazil
| | - Alberto A. Rasia‐Filho
- Department of Basic Sciences/Physiology Federal University of Health Sciences Sarmento Leite 245 Porto Alegre RS 90050‐170 Brazil
- Graduation Program in Neuroscience Federal University of Rio Grande do Sul Porto Alegre Brazil
| |
Collapse
|