1
|
Seo S, Parr-Brownlie LC, Wicky HE, Bilkey DK, Hughes SM, Oorschot DE. A Risk Factor for Attention Deficit Hyperactivity Disorder Induces Marked Long-Term Anatomical Changes at GABAergic-Dopaminergic Synapses in the Rat Ventral Tegmental Area. Int J Mol Sci 2024; 25:12970. [PMID: 39684680 DOI: 10.3390/ijms252312970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder. However, the core biology of the disorder that leads to the hypofunctioning of the cerebral dopaminergic network requires further elucidation. We investigated midbrain synaptic changes in male rats exposed to repeated hypoxia during the equivalent of extreme prematurity, which is a new animal model of the hyperactive/impulsive presentation of ADHD. We used a novel combination of a lentiviral vector, peroxidase-immunonanogold double-labelling, three-dimensional serial section transmission electron microscopy and stereological techniques to investigate the synapses formed between GABAergic axons of the rostromedial tegmental nucleus (RMTg) and dopaminergic neurons of the posterior ventral tegmental area (pVTA). This is a key site that sends extensive dopaminergic projections to the forebrain. We also compared the results to our previous study on a schizophrenia risk factor that produces cerebral hyperdopaminergia. In total, 117 reconstructed synapses were compared. Repeated hypoxic rats had a significantly thicker (22%) and longer (18%) postsynaptic density at RMTg GABAergic-pVTA dopaminergic synapses compared to their controls. These results were opposite to those previously observed in rats exposed to a schizophrenia risk factor. These findings for repeated hypoxic rats suggest that the enhanced inhibition of pVTA dopaminergic neurons may contribute to hypodopaminergia in ADHD motor hyperactivity. Synaptic triads, a key component of pVTA circuitry, were not detected in repeated hypoxic rats, indicating a marked deficit. The current knowledge may guide development in males of novel, site-specific ADHD drugs, which is necessary due to the rising prevalence of ADHD, the chronic nature of ADHD symptoms and the limitations of the currently available medications.
Collapse
Affiliation(s)
- Steve Seo
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
| | - Louise C Parr-Brownlie
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
- Brain Research, Dunedin 9054, New Zealand
| | - Hollie E Wicky
- Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
- Brain Research, Dunedin 9054, New Zealand
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - David K Bilkey
- Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
- Department of Psychology, University of Otago, Dunedin 9054, New Zealand
| | - Stephanie M Hughes
- Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
- Brain Research, Dunedin 9054, New Zealand
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Dorothy E Oorschot
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
2
|
Brown NK, Roche JK, Farmer CB, Roberts RC. Evidence for upregulation of excitatory synaptic transmission in the substantia nigra in Schizophrenia: a postmortem ultrastructural study. J Neural Transm (Vienna) 2023; 130:561-573. [PMID: 36735096 DOI: 10.1007/s00702-023-02593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/14/2023] [Indexed: 02/04/2023]
Abstract
The dopamine hypothesis of schizophrenia suggests that psychotic symptoms originate from dysregulation of dopaminergic activity, which may be controlled by upstream innervation. We hypothesized that we would find anatomical evidence for the hyperexcitability seen in the SN. We examined and quantified synaptic morphology, which correlates with function, in the postmortem substantia nigra (SN) from 15 schizophrenia and 12 normal subjects. Synapses were counted using stereological techniques and classified based on the morphology of the post-synaptic density (PSD) and the presence or absence of a presynaptic density. The density and proportion of excitatory synapses was higher in the schizophrenia group than in controls, while the proportion (but not density) of inhibitory synapses was lower. We also detected in the schizophrenia group an increase in density of synapses with a PSD of intermediate thickness, which may represent excitatory synapses. The density of synapses with presynaptic densities was similar in both groups. The density of synapses with mixed morphologies was higher in the schizophrenia group than in controls. The human SN contains atypical synaptic morphology. We found an excess amount and proportion of excitatory synapses in the SN in schizophrenia that could result in hyperactivity and drive the psychotic symptoms of schizophrenia. The sources of afferent excitatory inputs to the SN arise from the subthalamic nucleus, the pedunculopontine nucleus, and the ventral tegmental area (VTA), areas that could be the source of excess excitation. Synapses with mixed morphologies may represent inputs from the VTA, which release multiple transmitters.
Collapse
Affiliation(s)
- Nicole K Brown
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 2nd Avenue South, Birmingham, AL, 35294, USA
| | - Joy K Roche
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 2nd Avenue South, Birmingham, AL, 35294, USA
| | - Charlene B Farmer
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 2nd Avenue South, Birmingham, AL, 35294, USA
| | - Rosalinda C Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 2nd Avenue South, Birmingham, AL, 35294, USA.
| |
Collapse
|
3
|
Seo S, Sizemore RJ, Reader KL, Smither RA, Wicky HE, Hughes SM, Bilkey DK, Parr-Brownlie LC, Oorschot DE. A schizophrenia risk factor induces marked anatomical deficits at GABAergic-dopaminergic synapses in the rat ventral tegmental area: Essential evidence for new targeted therapies. J Comp Neurol 2021; 529:3946-3973. [PMID: 34338311 DOI: 10.1002/cne.25225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/07/2021] [Accepted: 07/26/2021] [Indexed: 11/09/2022]
Abstract
To develop new therapies for schizophrenia, evidence accumulated over decades highlights the essential need to investigate the GABAergic synapses that presynaptically influence midbrain dopaminergic neurons. Since current technology restricts these studies to animals, and evidence accumulated in recent decades indicates a developmental origin of schizophrenia, we investigated synaptic changes in male rat offspring exposed to maternal immune activation (MIA), a schizophrenia risk factor. Using a novel combination of lentiviruses, peroxidase-immunogold double labeling, three-dimensional serial section transmission electron microscopy and stereology, we observed clear anatomical alterations in synaptic inputs on dopaminergic neurons in the midbrain posterior ventral tegmental area (pVTA). These changes relate directly to a characteristic feature of schizophrenia: increased dopamine release. In 3-month-old and 14-month-old MIA rats, we found a marked decrease in the volume of presynaptic GABAergic terminals from the rostromedial tegmental nucleus (RMTg) and in the length of the synapses they made, when innervating pVTA dopaminergic neurons. In MIA rats in the long-term, we also discovered a decrease in the volume of the postsynaptic density (PSD) and in the maximum thickness of the PSD at the same synapses. These marked deficits were evident in conventional GABA-dopamine synapses and in synaptic triads that we discovered involving asymmetric synapses that innervated RMTg GABAergic presynaptic terminals, which in turn innervated pVTA dopaminergic neurons. In triads, the PSD thickness of asymmetric synapses was significantly decreased in MIA rats in the long-term cohort. The extensive anatomical deficits provide a potential basis for new therapies targeted at synaptic inputs on midbrain pVTA dopaminergic neurons, in contrast to current striatum-targeted antipsychotic drugs.
Collapse
Affiliation(s)
- Steve Seo
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Rachel J Sizemore
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Karen L Reader
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Roseanna A Smither
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Brain Research, New Zealand
| | - Hollie E Wicky
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Brain Research, New Zealand.,Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Stephanie M Hughes
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Brain Research, New Zealand.,Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David K Bilkey
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Louise C Parr-Brownlie
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Brain Research, New Zealand
| | - Dorothy E Oorschot
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
4
|
Abstract
Dystonia is by far the most intrusive and invalidating extrapyramidal side effect of potent classical antipsychotic drugs. Antipsychotic drug-induced dystonia is classified in both acute and tardive forms. The incidence of drug-induced dystonia is associated with the affinity to inhibitory dopamine D2 receptors. Particularly acute dystonia can be treated with anticholinergic drugs, but the tardive form may also respond to such antimuscarinic treatment, which contrasts their effects in tardive dyskinesia. Combining knowledge of the pathophysiology of primary focal dystonia with the anatomical and pharmacological organization of the extrapyramidal system may shed some light on the mechanism of antipsychotic drug-induced dystonia. A suitable hypothesis is derived from the understanding that focal dystonia may be due to a faulty processing of somatosensory input, so leading to inappropriate execution of well-trained motor programmes. Neuroplastic alterations of the sensitivity of extrapyramidal medium-sized spiny projection neurons to stimulation, which are induced by the training of specific complex movements, lead to the sophisticated execution of these motor plans. The sudden and non-selective disinhibition of indirect pathway medium-sized spiny projection neurons by blocking dopamine D2 receptors may distort this process. Shutting down the widespread influence of tonically active giant cholinergic interneurons on all medium-sized spiny projection neurons by blocking muscarinic receptors may result in a reduction of the influence of extrapyramidal cortical-striatal-thalamic-cortical regulation. Furthermore, striatal cholinergic interneurons have an important role to play in integrating cerebellar input with the output of cerebral cortex, and are also targeted by dopaminergic nigrostriatal fibres affecting dopamine D2 receptors.
Collapse
Affiliation(s)
- Anton JM Loonen
- Groningen Research Institute of Pharmacy, Pharmacotherapy, -Epidemiology and -Economics, University of Groningen, Groningen, The Netherlands
- Geestelijke GezondheidsZorg Westelijk Noord-Brabant (GGZ WNB), Mental Health Hospital, Halsteren, The Netherlands
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
- National Research Tomsk Polytechnic University, Tomsk, Russian Federation
- Siberian State Medical University, Tomsk, Russian Federation
| |
Collapse
|
5
|
Bensussen S, Shankar S, Ching KH, Zemel D, Ta TL, Mount RA, Shroff SN, Gritton HJ, Fabris P, Vanbenschoten H, Beck C, Man HY, Han X. A Viral Toolbox of Genetically Encoded Fluorescent Synaptic Tags. iScience 2020; 23:101330. [PMID: 32674057 PMCID: PMC7363701 DOI: 10.1016/j.isci.2020.101330] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 04/18/2020] [Accepted: 06/26/2020] [Indexed: 01/16/2023] Open
Abstract
Fibronectin intrabodies generated with mRNA display (FingRs) are a recently developed tool for labeling excitatory or inhibitory synapses, with the benefit of not altering endogenous synaptic protein expression levels or synaptic transmission. Here, we generated a viral vector FingR toolbox that allows for multi-color, neuron-type-specific labeling of excitatory or inhibitory synapses in multiple brain regions. We screened various fluorophores, FingR fusion configurations, and transcriptional control regulations in adeno-associated virus (AAV) and retrovirus vector designs. We report the development of a red FingR variant and demonstrated dual labeling of excitatory and inhibitory synapses in the same cells. Furthermore, we developed cre-inducible FingR AAV variants and demonstrated their utility, finding that the density of inhibitory synapses in aspiny striatal cholinergic interneurons remained unchanged in response to dopamine depletion. Finally, we generated FingR retroviral vectors, which enabled us to track the development of excitatory and inhibitory synapses in hippocampal adult-born granule cells.
Collapse
Affiliation(s)
- Seth Bensussen
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Sneha Shankar
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Kimberley H Ching
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Dana Zemel
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Tina L Ta
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Rebecca A Mount
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Sanaya N Shroff
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Howard J Gritton
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Pierre Fabris
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | | | - Connor Beck
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
6
|
Noncanonical Roles of h α-syn (A53T) in the Pathogenesis of Parkinson's Disease: Synaptic Pathology and Neuronal Aging. Neural Plast 2020; 2020:6283754. [PMID: 32273890 PMCID: PMC7115172 DOI: 10.1155/2020/6283754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/04/2020] [Accepted: 01/31/2020] [Indexed: 12/26/2022] Open
Abstract
The motor and nonmotor symptoms of PD involve several brain regions. However, whether α-syn pathology originating from the SNc can directly lead to the pathological changes in distant cerebral regions and induce PD-related symptoms remains unclear. Here, AAV9-synapsin-mCherry-human SNCA (A53T) was injected into the unilateral SNc of mice. Motor function and olfactory sensitivity were evaluated. Our results showed that AAV9-synapsin-mCherry-human SNCA was continuously expressed in SNc. The animals showed mild motor and olfactory dysfunction at 7 months after viral injection. The pathology in SNc was characterized by the loss of dopaminergic neurons accompanied by ER stress. In the striatum, hα-syn expression was high, CaMKβ-2 and NR2B expression decreased, and active synapses reduced. In the olfactory bulb, hα-syn expression was high, and aging cells in the mitral layer increased. The results suggested that hα-syn was transported in the striatum and OB along the nerve fibers that originated from the SNc and induced pathological changes in the distant cerebral regions, which contributed to the motor and nonmotor symptoms of PD.
Collapse
|
7
|
Loonen AJ, Wilffert B, Ivanova SA. Putative role of pharmacogenetics to elucidate the mechanism of tardive dyskinesia in schizophrenia. Pharmacogenomics 2019; 20:1199-1223. [PMID: 31686592 DOI: 10.2217/pgs-2019-0100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Identifying biomarkers which can be used as a diagnostic tool is a major objective of pharmacogenetic studies. Most mental and many neurological disorders have a compiled multifaceted nature, which may be the reason why this endeavor has hitherto not been very successful. This is also true for tardive dyskinesia (TD), an involuntary movement complication of long-term treatment with antipsychotic drugs. The observed associations of specific gene variants with the prevalence and severity of a disorder can also be applied to try to elucidate the pathogenesis of the condition. In this paper, this strategy is used by combining pharmacogenetic knowledge with theories on the possible role of a dysfunction of specific cellular elements of neostriatal parts of the (dorsal) extrapyramidal circuits: various glutamatergic terminals, medium spiny neurons, striatal interneurons and ascending monoaminergic fibers. A peculiar finding is that genetic variants which would be expected to increase the neostriatal dopamine concentration are not associated with the prevalence and severity of TD. Moreover, modifying the sensitivity to glutamatergic long-term potentiation (and excitotoxicity) shows a relationship with levodopa-induced dyskinesia, but not with TD. Contrasting this, TD is associated with genetic variants that modify vulnerability to oxidative stress. Reducing the oxidative stress burden of medium spiny neurons may also be the mechanism behind the protective influence of 5-HT2 receptor antagonists. It is probably worthwhile to discriminate between neostriatal matrix and striosomal compartments when studying the mechanism of TD and between orofacial and limb-truncal components in epidemiological studies.
Collapse
Affiliation(s)
- Anton Jm Loonen
- Unit of PharmacoTherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.,GGZ Westelijk Noord-Brabant, Hoofdlaan 8, 4661AA Halsteren, The Netherlands
| | - Bob Wilffert
- Unit of PharmacoTherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.,Dept. of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya Street, 4, 634014 Tomsk, Russian Federation.,School of Non-Destructive Testing & Security, Division for Control and Diagnostics, National Research Tomsk Polytechnic University, Lenin Avenue, 30, 634050 Tomsk, Russian Federation.,Central Research Laboratory, Siberian State Medical University, Moscowski Trakt, 2, 634050 Tomsk, Russian Federation
| |
Collapse
|
8
|
Npas1+ Pallidal Neurons Target Striatal Projection Neurons. J Neurosci 2017; 36:5472-88. [PMID: 27194328 DOI: 10.1523/jneurosci.1720-15.2016] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 04/03/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Compelling evidence demonstrates that the external globus pallidus (GPe) plays a key role in processing sensorimotor information. An anatomical projection from the GPe to the dorsal striatum has been described for decades. However, the cellular target and functional impact of this projection remain unknown. Using cell-specific transgenic mice, modern monosynaptic tracing techniques, and optogenetics-based mapping, we discovered that GPe neurons provide inhibitory inputs to direct and indirect pathway striatal projection neurons (SPNs). Our results indicate that the GPe input to SPNs arises primarily from Npas1-expressing neurons and is strengthened in a chronic Parkinson's disease (PD) model. Alterations of the GPe-SPN input in a PD model argue for the critical position of this connection in regulating basal ganglia motor output and PD symptomatology. Finally, chemogenetic activation of Npas1-expressing GPe neurons suppresses motor output, arguing that strengthening of the GPe-SPN connection is maladaptive and may underlie the hypokinetic symptoms in PD. SIGNIFICANCE STATEMENT An anatomical projection from the pallidum to the striatum has been described for decades, but little is known about its connectivity pattern. The authors dissect the presynaptic and postsynaptic neurons involved in this projection, and show its cell-specific remodeling and strengthening in parkinsonian mice. Chemogenetic activation of Npas1(+) pallidal neurons that give rise to the principal pallidostriatal projection increases the time that the mice spend motionless. This argues that maladaptive strengthening of this connection underlies the paucity of volitional movements, which is a hallmark of Parkinson's disease.
Collapse
|
9
|
Sil’kis IG, Markevich VA. The influence of acetylcholine, dopamine, and GABA on the functioning of the corticostriatal neuronal network in Alzheimer’s and Parkinson’s diseases: A hypothetical mechanism. NEUROCHEM J+ 2017. [DOI: 10.1134/s1819712416040103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|