1
|
Sendel M, Dunst A, Forstenpointner J, Hüllemann P, Baron R. Capsaicin treatment in neuropathic pain: axon reflex vasodilatation after 4 weeks correlates with pain reduction. Pain 2023; 164:534-542. [PMID: 35857438 DOI: 10.1097/j.pain.0000000000002735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Capsaicin, an agonist at the transient receptor potential vanilloid 1, is used for the topical treatment of peripheral neuropathic pain. Reversible receptor defunctionalization and degeneration and subsequent regeneration of cutaneous nociceptors are discussed as its mechanism of action. Here, we hypothesize an accelerated functional recovery of a subclass of nociceptive afferents, the peptidergic vasoactive nociceptors, as the potential cause of capsaicin analgesia. In this noninterventional exploratory trial, 23 patients with peripheral neuropathic pain were treated with one topical high-concentration capsaicin application. Baseline pain ratings, comorbidities, and quality of life were assessed. Functional laser speckle contrast analysis (heat-evoked neurogenic vasodilatation to assess functional properties of peptidergic nociceptors) and quantitative sensory testing were performed in the affected skin. Four weeks after treatment, functional laser speckle contrast analysis and questionnaires were repeated. Telephone interviews were conducted at weeks 2, 10, and 12. Topical capsaicin treatment induced a significant reduction in pain intensity with a maximum at 4 weeks. At the same time, heat-evoked neurogenic vasodilatation was on average similar to pretreatment values. Half of the patients not only showed a functional recovery but also an improvement in vasodilatation, indicating regeneration of nerve fibers. Patients with improved heat-evoked neurogenic vasodilatation at week 4 showed a greater pain reduction than those with deterioration. The degree of vasodilatation significantly correlated with pain reduction. These findings suggest that (1) regeneration of peptidergic nociceptors may be the mechanism behind capsaicin-induced analgesia and (2) that a disease-modifying effect of capsaicin on these fibers already occurs 4 weeks after application.
Collapse
Affiliation(s)
- Manon Sendel
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | | | | | | | | |
Collapse
|
2
|
Meregalli C, Monza L, Jongen JLM. A mechanistic understanding of the relationship between skin innervation and chemotherapy-induced neuropathic pain. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2022; 3:1066069. [PMID: 36582196 PMCID: PMC9792502 DOI: 10.3389/fpain.2022.1066069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
Neuropathic pain is a frequent complication of chemotherapy-induced peripheral neurotoxicity (CIPN). Chemotherapy-induced peripheral neuropathies may serve as a model to study mechanisms of neuropathic pain, since several other common causes of peripheral neuropathy like painful diabetic neuropathy may be due to both neuropathic and non-neuropathic pain mechanisms like ischemia and inflammation. Experimental studies are ideally suited to study changes in morphology, phenotype and electrophysiologic characteristics of primary afferent neurons that are affected by chemotherapy and to correlate these changes to behaviors reflective of evoked pain, mainly hyperalgesia and allodynia. However, hyperalgesia and allodynia may only represent one aspect of human pain, i.e., the sensory-discriminative component, while patients with CIPN often describe their pain using words like annoying, tiring and dreadful, which are affective-emotional descriptors that cannot be tested in experimental animals. To understand why some patients with CIPN develop neuropathic pain and others not, and which are the components of neuropathic pain that they are experiencing, experimental and clinical pain research should be combined. Emerging evidence suggests that changes in subsets of primary afferent nerve fibers may contribute to specific aspects of neuropathic pain in both preclinical models and in patients with CIPN. In addition, the role of cutaneous neuroimmune interactions is considered. Since obtaining dorsal root ganglia and peripheral nerves in patients is problematic, analyses performed on skin biopsies from preclinical models as well as patients provide an opportunity to study changes in primary afferent nerve fibers and to associate these changes to human pain. In addition, other biomarkers of small fiber damage in CIPN, like corneal confocal microscope and quantitative sensory testing, may be considered.
Collapse
Affiliation(s)
- Cristina Meregalli
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy,Correspondence: Cristina Meregalli
| | - Laura Monza
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Joost L. M. Jongen
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| |
Collapse
|
3
|
Yeh HY, Lee JC, Chi HH, Chen CC, Liu Q, Yen CT. Longitudinal intravital imaging nerve degeneration and sprouting in the toes of spared nerve injured mice. J Comp Neurol 2021; 529:3247-3264. [PMID: 33880774 DOI: 10.1002/cne.25162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/26/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022]
Abstract
Neuropathic pain is pain caused by damage to the somatosensory nervous system. Both degenerating injured nerves and neighboring sprouting nerves can contribute to neuropathic pain. However, the mesoscale changes in cutaneous nerve fibers over time after the loss of the parent nerve has not been investigated in detail. In this study, we followed the changes in nerve fibers longitudinally in the toe tips of mice that had undergone spared nerve injury (SNI). Nav1.8-tdTomato, Thy1-GFP and MrgD-GFP mice were used to observe the small and large cutaneous nerve fibers. We found that peripheral nerve plexuses degenerated within 3 days of nerve injury, and free nerve endings in the epidermis degenerated within 2 days. The timing of degeneration paralleled the initiation of mechanical hypersensitivity. We also found that some of the Nav1.8-positive nerve plexuses and free nerve endings in the fifth toe survived, and sprouting occurred mostly from 7 to 28 days. The timing of the sprouting of nerve fibers in the fifth toe paralleled the maintenance phase of mechanical hypersensitivity. Our results support the hypotheses that both injured and intact nerve fibers participate in neuropathic pain, and that, specifically, nerve degeneration is related to the initiation of evoked pain and nerve sprouting is related to the maintenance of evoked pain.
Collapse
Affiliation(s)
- Han-Yuan Yeh
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Jye-Chang Lee
- Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Han-Hsiung Chi
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chih-Cheng Chen
- Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Qin Liu
- Department of Anesthesiology and the Center for the Study of Itch, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chen-Tung Yen
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
4
|
Karlsson P, Provitera V, Caporaso G, Stancanelli A, Saltalamacchia AM, Borreca I, Manganelli F, Santoro L, Jensen TS, Nolano M. Increased peptidergic fibers as a potential cutaneous marker of pain in diabetic small fiber neuropathy. Pain 2021; 162:778-786. [PMID: 32833793 DOI: 10.1097/j.pain.0000000000002054] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/12/2020] [Indexed: 12/14/2022]
Abstract
ABSTRACT Diabetic polyneuropathy (DPN) is a common complication of diabetes and is often associated with neuropathic pain. The mechanisms underlying development and maintenance of painful DPN are largely unknown, and quantification of intraepidermal nerve fiber density from skin biopsy, one of the neuropathological gold standard when diagnosing DPN, does not differentiate between patients with and without pain. Identification of possible pain pathophysiological biomarkers in patients with painful DPN may increase our knowledge of mechanisms behind neuropathic pain. Animal models of painful DPN have been shown to have an increased density of peptidergic nerve fibers (substance P and calcitonin gene-related peptide). In this study, we performed a detailed skin biopsy analysis in a well-characterized group of DPN patients with primarily small fiber involvement, with and without pain, and in healthy controls and test for correlation between skin biopsy findings and pain intensity and quantitative sensory testing. We found that although there was no difference in intraepidermal nerve fiber density using protein gene product 9.5 between patients with and without pain, patients with pain had increased density of dermal peptidergic fibers containing substance P and calcitonin gene-related peptide compared with patients with painless DPN and healthy controls. Peptidergic nerve fiber density correlated with pain ratings in patients with pain (R = 0.33; P = 0.019), but not with quantitative sensory testing results. In this article, we show, for the first time in humans, an increased density of dermal peptidergic fibers in painful DPN. These findings provide new insight in the pathophysiological mechanisms of pain in diabetes and open the research towards new therapeutic targets.
Collapse
Affiliation(s)
- Pall Karlsson
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Core Center for Molecular Morphology, Section for Stereology and Microscopy , Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Vincenzo Provitera
- Istituti Clinici Scientifici Maugeri IRCCS, Department of Neurology, Institute of Telese Terme, Italy
| | - Giuseppe Caporaso
- Istituti Clinici Scientifici Maugeri IRCCS, Department of Neurology, Institute of Telese Terme, Italy
| | - Annamaria Stancanelli
- Istituti Clinici Scientifici Maugeri IRCCS, Department of Neurology, Institute of Telese Terme, Italy
| | - Anna Maria Saltalamacchia
- Istituti Clinici Scientifici Maugeri IRCCS, Department of Neurology, Institute of Telese Terme, Italy
| | - Ilaria Borreca
- Istituti Clinici Scientifici Maugeri IRCCS, Department of Neurology, Institute of Telese Terme, Italy
| | - Fiore Manganelli
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Lucio Santoro
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Troels Staehelin Jensen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Maria Nolano
- Istituti Clinici Scientifici Maugeri IRCCS, Department of Neurology, Institute of Telese Terme, Italy
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
5
|
Du J, Fang J, Xiang X, Yu J, Le X, Liang Y, Jin X, Fang J. Effects of low- and high-frequency electroacupuncture on protein expression and distribution of TRPV1 and P2X3 in rats with peripheral nerve injury. Acupunct Med 2020; 39:478-490. [PMID: 33334124 DOI: 10.1177/0964528420968845] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Whether electroacupuncture (EA) stimulation at different frequencies has a similar effect on spared nerve injury (SNI) as other neuropathic pain models, and how EA at different frequencies causes distinct analgesic effects on neuropathic pain is still not clear. METHODS Adult male Sprague-Dawley rats were randomly divided into sham SNI, SNI, 2 Hz, 100 Hz and sham EA groups. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were measured. EA was performed once a day on days 1 to 14 after SNI. The expressions of transient receptor potential cation subfamily V member 1 (TRPV1) and peripheral purinergic P2X receptor 3 (P2X3) were determined by western blotting and immunofluorescence. TRPV1 siRNA and P2X3 siRNA were administered by intrathecal injection. TRPV1 or P2X3 agonists were combined with EA. RESULTS There were significant decreases in PWT, but no changes in PWL in the 14 days after SNI. EA using 2- or 100-Hz stimulation similarly increased PWT at every time point. The cytosol protein expression of P2X3 in the L4-L6 dorsal root ganglia (DRG) increased, but the expression of TRPV1 decreased in the SNI model. Both these effects were ameliorated by EA, with 2-Hz stimulation having a stronger effect than 100-Hz stimulation. Blocking either TRPV1 or P2X3 specific siRNAs attenuated the decreased PWT induced by SNI. Administration of either a TRPV1 or P2X3 agonist inhibited EA analgesia. CONCLUSION 2- and 100-Hz EA similarly induced analgesic effects in SNI. This effect was related to up-regulation and down-regulation, respectively, of cytosol protein expression of P2X3 and TRPV1 in L4-L6 DRG, with 2 Hz having a better effect than 100 Hz.
Collapse
Affiliation(s)
- Junying Du
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Junfan Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Xuaner Xiang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Jie Yu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Xiaoqin Le
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Yi Liang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Xiaoming Jin
- Department of Anatomy and Cell Biology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| |
Collapse
|
6
|
Fight fire with fire: Neurobiology of capsaicin-induced analgesia for chronic pain. Pharmacol Ther 2020; 220:107743. [PMID: 33181192 DOI: 10.1016/j.pharmthera.2020.107743] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
Capsaicin, the pungent ingredient in chili peppers, produces intense burning pain in humans. Capsaicin selectively activates the transient receptor potential vanilloid 1 (TRPV1), which is enriched in nociceptive primary afferents, and underpins the mechanism for capsaicin-induced burning pain. Paradoxically, capsaicin has long been used as an analgesic. The development of topical patches and injectable formulations containing capsaicin has led to application in clinical settings to treat chronic pain conditions, such as neuropathic pain and the potential to treat osteoarthritis. More detailed determination of the neurobiological mechanisms of capsaicin-induced analgesia should provide the logical rationale for capsaicin therapy and help to overcome the treatment's limitations, which include individual differences in treatment outcome and procedural discomfort. Low concentrations of capsaicin induce short-term defunctionalization of nociceptor terminals. This phenomenon is reversible within hours and, hence, likely does not account for the clinical benefit. By contrast, high concentrations of capsaicin lead to long-term defunctionalization mediated by the ablation of TRPV1-expressing afferent terminals, resulting in long-lasting analgesia persisting for several months. Recent studies have shown that capsaicin-induced Ca2+/calpain-mediated ablation of axonal terminals is necessary to produce long-lasting analgesia in a mouse model of neuropathic pain. In combination with calpain, axonal mitochondrial dysfunction and microtubule disorganization may also contribute to the longer-term effects of capsaicin. The analgesic effects subside over time in association with the regeneration of the ablated afferent terminals. Further determination of the neurobiological mechanisms of capsaicin-induced analgesia should lead to more efficacious non-opioidergic analgesic options with fewer adverse side effects.
Collapse
|
7
|
Russell AL, Kopsky DJ, Hesselink JMK. Phenytoin Cream for the Treatment of Sciatic Pain: Clinical Effects and Theoretical Considerations: Case Report. J Pain Palliat Care Pharmacother 2020; 34:99-105. [PMID: 32118498 DOI: 10.1080/15360288.2020.1733169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Chronic sciatic pain is difficult to treat. Patients often suffer from considerable pain and are severely hampered in their everyday activities. Most pharmacologic analgesic treatments have disappointing effects, and often are limited due to adverse events. New treatments are therefore needed. Surprisingly we found fast pain reduction after applying topical phenytoin cream at the painful dermatome in a 55-year-old patient suffering from sciatic pain due to pathology of a disc. This patient was treatment resistant for 13 years. Prescribing topical analgesic cream seemed to us at first sight quite counter-intuitive. The clear response in a treatment-resistant patient however provoked us to look deeper in the pathophysiology of sciatic nerve impingement. Recently it has been documented that proximal nerve lesions are followed by small fiber pathology in the skin. This might be a responsible peripheral wind-up generator for the chronification of pain in sciatic nerve compression. Topical application of the broad-acting voltage-gated sodium channel blocker phenytoin could reduce neuropathic pain in our case completely, supporting a peripheral mechanism of action for phenytoin cream in sciatic pain.
Collapse
|
8
|
Bechakra M, Nieuwenhoff MD, Rosmalen JV, Groeneveld GJ, J P M Huygen F, Zeeuw CID, Doorn PAV, Jongen JLM. Pain-related changes in cutaneous innervation of patients suffering from bortezomib-induced, diabetic or chronic idiopathic axonal polyneuropathy. Brain Res 2020; 1730:146621. [PMID: 31926911 DOI: 10.1016/j.brainres.2019.146621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 09/03/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022]
Abstract
Consistent associations between the severity of neuropathic pain and cutaneous innervation have not been described. We collected demographic and clinical data, McGill Pain Questionnaires (MPQ) and skin biopsies processed for PGP9.5 and CGRP immunohistochemistry from patients with bortezomib-induced peripheral neuropathy (BiPN; n = 22), painful diabetic neuropathy (PDN; n = 16), chronic idiopathic axonal polyneuropathy (CIAP; n = 16) and 17 age-matched healthy volunteers. Duration of neuropathic symptoms was significantly shorter in patients with BiPN in comparison with PDN and CIAP patients. BiPN was characterized by a significant increase in epidermal axonal swellings and upper dermis nerve fiber densities (UDNFD) and a decrease in subepidermal nerve fiber densities (SENFD) of PGP9.5-positive fibers and of PGP9.5 containing structures that did not show CGRP labeling, presumably non-peptidergic fibers. In PDN and CIAP patients, intraepidermal nerve fiber densities (IENFD) and SENFD of PGP9.5-positive and of non-peptidergic fibers were decreased in comparison with healthy volunteers. Significant unadjusted associations between IENFD and SENFD of CGRP-positive, i.e. peptidergic, fibers and the MPQ sensory-discriminative, as well as between UDNFD of PGP9.5-positive fibers and the MPQ evaluative/affective component of neuropathic pain, were found in BiPN and CIAP patients. No significant associations were found in PDN patients. Cutaneous innervation changes in BiPN confirm characteristic features of early, whereas those in CIAP and PDN are in line with late forms of neuropathic pathology. Our results allude to a distinct role for non-peptidergic nociceptors in BiPN and CIAP patients. The lack of significant associations in PDN may be caused by mixed ischemic and purely neuropathic pain pathology.
Collapse
Affiliation(s)
- Malik Bechakra
- Dept. of Neurology, Erasmus MC, Dr. Molewaterplein 40, 3015GD Rotterdam, the Netherlands; Dept. of Neuroscience, Erasmus MC, Dr. Molewaterplein 50, 3015GE Rotterdam, the Netherlands
| | - Mariska D Nieuwenhoff
- Dept. of Anesthesiology, Erasmus MC, Dr. Molewaterplein 40, 3015GD Rotterdam, the Netherlands
| | - Joost van Rosmalen
- Dept. of Biostatistics, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | | | - Frank J P M Huygen
- Dept. of Anesthesiology, Erasmus MC, Dr. Molewaterplein 40, 3015GD Rotterdam, the Netherlands
| | - Chris I de Zeeuw
- Dept. of Neuroscience, Erasmus MC, Dr. Molewaterplein 50, 3015GE Rotterdam, the Netherlands; Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Pieter A van Doorn
- Dept. of Neurology, Erasmus MC, Dr. Molewaterplein 40, 3015GD Rotterdam, the Netherlands
| | - Joost L M Jongen
- Dept. of Neurology, Erasmus MC, Dr. Molewaterplein 40, 3015GD Rotterdam, the Netherlands.
| |
Collapse
|
9
|
Bechakra M, Nieuwenhoff MD, van Rosmalen J, Groeneveld GJ, Scheltens-de Boer M, Sonneveld P, van Doorn PA, de Zeeuw CI, Jongen JL. Clinical, electrophysiological, and cutaneous innervation changes in patients with bortezomib-induced peripheral neuropathy reveal insight into mechanisms of neuropathic pain. Mol Pain 2018; 14:1744806918797042. [PMID: 30152246 PMCID: PMC6113731 DOI: 10.1177/1744806918797042] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bortezomib is a mainstay of therapy for multiple myeloma, frequently complicated by painful neuropathy. The objective of this study was to describe clinical, electrophysiological, and pathological changes of bortezomib-induced peripheral neuropathy (BiPN) in detail and to correlate pathological changes with pain descriptors. Clinical data, nerve conduction studies, and lower leg skin biopsies were collected from 22 BiPN patients. Skin sections were immunostained using anti-protein gene product 9.5 (PGP9.5) and calcitonin gene-related peptide (CGRP) antibodies. Cumulative bortezomib dose and clinical assessment scales indicated light-moderate sensory neuropathy. Pain intensity >4 (numerical rating scale) was present in 77% of the patients. Median pain intensity and overall McGill Pain Questionnaire (MPQ) sum scores indicated moderate to severe neuropathic pain. Sural nerve sensory nerve action potentials were abnormal in 86%, while intraepidermal nerve fiber densities of PGP9.5 and CGRP were not significantly different from healthy controls. However, subepidermal nerve fiber density (SENFD) of PGP9.5 was significantly decreased and the axonal swelling ratio, a predictor of neuropathy, and upper dermis nerve fiber density (UDNFD) of PGP9.5, presumably representing sprouting of parasympathetic fibers, were significantly increased in BiPN patients. Finally, significant correlations between UDNFD of PGP9.5 versus the evaluative Pain Rating Index (PRI) and number of words count (NWC) of the MPQ, and significant inverse correlations between SENFD/UDNFD of CGRP versus the sensory-discriminative MPQ PRI/NWC were found. BiPN is a sensory neuropathy, in which neuropathic pain is the most striking clinical finding. Bortezomib-induced neuropathic pain may be driven by sprouting of parasympathetic fibers in the upper dermis and impaired regeneration of CGRP fibers in the subepidermal layer.
Collapse
Affiliation(s)
- Malik Bechakra
- 1 Department of Neurology, Erasmus MC, Rotterdam, the Netherlands.,2 Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Mariska D Nieuwenhoff
- 3 Department of Anesthesiology, Erasmus MC, Rotterdam, the Netherlands.,4 Centre for Human Drug Research, Leiden, the Netherlands
| | | | | | | | - Pieter Sonneveld
- 7 Department of Hematology, Erasmus MC, Rotterdam, the Netherlands
| | | | - Chris I de Zeeuw
- 2 Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.,8 Netherlands Institute for Neuroscience, Royal Netherlands Academy for Arts & Sciences, Amsterdam, the Netherlands
| | - Joost Lm Jongen
- 1 Department of Neurology, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|