1
|
Clain J, Couret D, Bringart M, Meilhac O, Lefebvre d’Hellencourt C, Diotel N. Effect of metabolic disorders on reactive gliosis and glial scarring at the early subacute phase of stroke in a mouse model of diabetes and obesity. IBRO Neurosci Rep 2025; 18:16-30. [DOI: 10.1016/j.ibneur.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
2
|
Dong X, Dong W, Guo X. Diagnosis of acute hyperglycemia based on data-driven prediction models. SLAS Technol 2024; 29:100182. [PMID: 39209117 DOI: 10.1016/j.slast.2024.100182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/09/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Acute hyperglycemia is a common endocrine and metabolic disorder that seriously threatens the health and life of patients. Exploring effective diagnostic methods and treatment strategies for acute hyperglycemia to improve treatment quality and patient satisfaction is currently one of the hotspots and difficulties in medical research. This article introduced a method for diagnosing acute hyperglycemia based on data-driven prediction models. In the experiment, clinical data from 1000 patients with acute hyperglycemia were collected. Through data cleaning and feature engineering, 10 features related to acute hyperglycemia were selected, including BMI (Body Mass Index), TG (triacylglycerol), HDL-C (High-density lipoprotein cholesterol), etc. The support vector machine (SVM) model was used for training and testing. The experimental results showed that the SVM model can effectively predict the occurrence of acute hyperglycemia, with an average accuracy of 96 %, a recall rate of 84 %, and an F1 value of 89 %. The diagnostic method for acute hyperglycemia based on data-driven prediction models has a certain reference value, which can be used as a clinical auxiliary diagnostic tool to improve the early diagnosis and treatment success rate of acute hyperglycemia patients.
Collapse
Affiliation(s)
- Xinxin Dong
- Department of Geriatrics, General Hospital of Taiyuan Iron Steel (Group) Co., Ltd, Taiyuan 030003, Shanxi, China
| | - Wenping Dong
- Department of Geriatrics, General Hospital of Taiyuan Iron Steel (Group) Co., Ltd, Taiyuan 030003, Shanxi, China.
| | - Xueshan Guo
- Department of Operations Management, General Hospital of Taiyuan Iron Steel (Group) Co., Ltd, Taiyuan 030003, Shanxi, China
| |
Collapse
|
3
|
Savaliya R, Chavda V, Patel B, Brahmbhatt R, Figueiredo EG, Chaurasia B. Post-ischemic scars and 'The micro-metabolic-glia-cerebral changes": do we know everything? Neurosurg Rev 2024; 47:455. [PMID: 39168927 DOI: 10.1007/s10143-024-02721-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/05/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Affiliation(s)
- Rutvik Savaliya
- Department of Medicine, Multispecialty, Trauma and ICCU Centre, Sardar Hospital, Ahmadabad, Gujarat, India
| | - Vishal Chavda
- Department of Medicine, Multispecialty, Trauma and ICCU Centre, Sardar Hospital, Ahmadabad, Gujarat, India
- Department of Critical Care, Multispecialty, Trauma and ICCU Centre, Sardar Hospital, Ahmadabad, Gujarat, India
| | - Bipin Patel
- Department of Medicine, Multispecialty, Trauma and ICCU Centre, Sardar Hospital, Ahmadabad, Gujarat, India
- Department of Critical Care, Multispecialty, Trauma and ICCU Centre, Sardar Hospital, Ahmadabad, Gujarat, India
| | - Raxit Brahmbhatt
- Department of Medicine, Multispecialty, Trauma and ICCU Centre, Sardar Hospital, Ahmadabad, Gujarat, India
- Department of Critical Care, Multispecialty, Trauma and ICCU Centre, Sardar Hospital, Ahmadabad, Gujarat, India
| | - Eberval G Figueiredo
- Neurology and Neurosurgery Department, Hospital Das Clinicas FMUSP, University of Sao Paulo, Sao Paulo, Brazil
| | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj, Nepal.
| |
Collapse
|
4
|
Clain J, Couret D, Bringart M, Lecadieu A, Meilhac O, Lefebvre d'Hellencourt C, Diotel N. Metabolic disorders exacerbate the formation of glial scar after stroke. Eur J Neurosci 2024; 59:3009-3029. [PMID: 38576159 DOI: 10.1111/ejn.16325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024]
Abstract
Metabolic disorders are risk factors for stroke exacerbating subsequent complications. Rapidly after brain injury, a glial scar forms, preventing excessive inflammation and limiting axonal regeneration. Despite the growing interest in wound healing following brain injury, the formation of a glial scar in the context of metabolic disorders is poorly documented. In this study, we used db/db mice to investigate the impact of metabolic perturbations on brain repair mechanisms, with a focus on glial scarring. First, we confirmed the development of obesity, poor glucose regulation, hyperglycaemia and liver steatosis in these mice. Then, we observed that 3 days after a 30-min middle cerebral artery occlusion (MCAO), db/db mice had larger infarct area compared with their control counterparts. We next investigated reactive gliosis and glial scar formation in db/+ and db/db mice. We demonstrated that astrogliosis and microgliosis were exacerbated 3 days after stroke in db/db mice. Furthermore, we also showed that the synthesis of extracellular matrix (ECM) proteins (i.e., chondroitin sulphate proteoglycan, collagen IV and tenascin C) was increased in db/db mice. Consequently, we demonstrated for the first time that metabolic disorders impair reactive gliosis post-stroke and increase ECM deposition. Given that the damage size is known to influence glial scar, this study now raises the question of the direct impact of hyperglycaemia/obesity on reactive gliosis and glia scar. It paves the way to promote the development of new therapies targeting glial scar formation to improve functional recovery after stroke in the context of metabolic disorders.
Collapse
Affiliation(s)
- Julien Clain
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
| | - David Couret
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
- CHU de La Réunion, Saint-Denis, France
| | - Matthieu Bringart
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
| | - Arnaud Lecadieu
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
- CHU de La Réunion, Saint-Denis, France
| | - Olivier Meilhac
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
- CHU de La Réunion, Saint-Denis, France
| | - Christian Lefebvre d'Hellencourt
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
| | - Nicolas Diotel
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
| |
Collapse
|
5
|
Shaheryar ZA, Khan MA, Hameed H, Mushtaq MN, Muhammad S, Shazly GA, Irfan A, Jardan YAB. Natural Fatty Acid Guards against Brain Endothelial Cell Death and Microvascular Pathology following Ischemic Insult in the Presence of Acute Hyperglycemia. Biomedicines 2023; 11:3342. [PMID: 38137563 PMCID: PMC10742291 DOI: 10.3390/biomedicines11123342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Ischemic stroke is worsened by the presence of sudden high blood sugar levels, even in individuals without pre-existing diabetes. This elevated glucose concentration hampers the ability of energy-starved brain cells to efficiently use it as a source of energy. Consequently, this leads to the production of abundant amounts of toxic glucose metabolites, which trigger oxidative stress in the brain milieu, particularly in the microvasculature of the brain. A prominent feature of this oxidative stress is the demise of endothelial cells, causing detrimental changes in blood vessels, including a reduction in their vascular diameter, a decreased efficiency of vessel proliferation, and the impaired integrity of tight junctions. These vascular pathologies contributed to an increase in the volume of damaged tissues (infarct), an exacerbation of brain swelling (edema), and a decline in cognitive and motor functions. In a mouse model of ischemic stroke with induced acute hyperglycemia, a naturally occurring saturated fatty acid provides protective cover to the microvasculature by preventing damage related to oxidative stress. Our current research revealed that lauric acid (LA) attenuated infarct volume and reduced brain edema by reducing endothelial cell death, enhancing vessels' diameter, promoting vascular angiogenesis, and stabilizing barrier functions. Animals administered with this natural compound showed a significant reduction in 4-HNE-positive vessels. In conclusion, natural saturated fatty acids help to preserve brain microvascular functions following ischemic insults in the presence of acute hyperglycemia.
Collapse
Affiliation(s)
| | - Mahtab Ahmad Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore 54000, Pakistan
| | - Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore 54000, Pakistan
| | | | - Sajjad Muhammad
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, FI-00029 Helsinki, Finland
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, Moorenstrasse-5, 40225 Düsseldorf, Germany
| | - Gamal A. Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Simon Machado R, Mathias K, Joaquim L, Willig de Quadros R, Petronilho F, Tezza Rezin G. From diabetic hyperglycemia to cerebrovascular Damage: A narrative review. Brain Res 2023; 1821:148611. [PMID: 37793604 DOI: 10.1016/j.brainres.2023.148611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/04/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023]
Abstract
Diabetes mellitus is a globally significant disease that can lead to systemic complications, particularly vascular damage, including cardiovascular and cerebrovascular diseases of relevance. The physiological changes resulting from the imbalance in blood glucose levels play a crucial role in initiating vascular endothelial damage. Elevated glucose levels can also penetrate the central nervous system, triggering diabetic encephalopathy characterized by oxidative damage to brain components and activation of alternative and neurotoxic pathways. This brain damage increases the risk of ischemic stroke, a leading cause of mortality worldwide and a major cause of disability among surviving patients. The aim of this review is to highlight important pathways related to hyperglycemic damage that extend to the brain and result in vascular dysfunction, ultimately leading to the occurrence of a stroke. Understanding how diabetes mellitus contributes to the development of ischemic stroke and its impact on patient outcomes is crucial for implementing therapeutic strategies that reduce the incidence of diabetes mellitus and its complications, ultimately decreasing morbidity and mortality associated with the disease.
Collapse
Affiliation(s)
- Richard Simon Machado
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil.
| | - Khiany Mathias
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Larissa Joaquim
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Rafaella Willig de Quadros
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| |
Collapse
|
7
|
Shaheryar ZA, Khan MA, Hameed H, Zaidi SAA, Anjum I, Rahman MSU. Lauric acid provides neuroprotection against oxidative stress in mouse model of hyperglycaemic stroke. Eur J Pharmacol 2023; 956:175990. [PMID: 37572940 DOI: 10.1016/j.ejphar.2023.175990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023]
Abstract
During ischemic stroke, higher glucose level linked worse outcomes were reported even in patients without pre-existing diabetes. Evidence suggest that such worse stroke outcomes were mainly due to production of reactive, toxic glucose metabolites that expands oxidative damage inside the brain. As a consequence of high oxidative stress, microvasculature structures and tight junctions compromised their functionally, infarct volume expands and brain edema exacerbates. In a mouse model of ischemic stroke with induced acute hyperglycaemia, Lauric acid (LA) as a natural saturated fatty acid demonstrated neuroprotection by attenuating infarct volume and brain edema. In addition, in the ipsilateral hyperglycaemic brain, the LA significantly increased the expression of tight junction representative protein (occludin) as well as anti-oxidative markers; Manganese superoxide dismutase (Mn) SOD, Extracellular superoxide dismutase (Ec-SOD) and nuclear factor-erythroid factor 2-related factor 2 (Nrf2) in the ipsilateral region against hyperglycemic ischemic stroke. LA treated animals showed a significant reduction in the production of lipid peroxidation products (4-HNE) in the microvascular structures, maintained the blood brain barrier (BBB) integrity. LA linked neuroprotective outcomes were further confirmed by behavioral tests, where functional outcomes and motor coordination were improved significantly. Furthermore, LA treatment enhanced food intake, decreased mortality rate, and net body weight loss. Conclusively, LA modulated ischemic insult exacerbated by hyperglycemia and provided neuroprotection.
Collapse
Affiliation(s)
| | - Mahtab Ahmad Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan.
| | - Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan.
| | - Syed Awais Ali Zaidi
- Department of Pharmacy, The Sahara University Narowal, Narowal, 51600, Pakistan.
| | - Irfan Anjum
- Faculty of Pharmacy, The University of Lahore, Lahore, 54000, Pakistan; Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-E-Milat University, Islamabad, Pakistan.
| | | |
Collapse
|
8
|
Blocking P2RX7 Attenuates Ferroptosis in Endothelium and Reduces HG-induced Hemorrhagic Transformation After MCAO by Inhibiting ERK1/2 and P53 Signaling Pathways. Mol Neurobiol 2023; 60:460-479. [PMID: 36282438 DOI: 10.1007/s12035-022-03092-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/14/2022] [Indexed: 02/08/2023]
Abstract
Hyperglycemia is a risk factor for poor prognosis after acute ischemic stroke and promote the occurrence of hemorrhagic transformation (HT). The activation of P2RX7 play an important role in endotheliocyte damage and BBB disruption. Ferroptosis is a novel pattern of programmed cell death caused by the accumulation of intracellular iron and lipid peroxidation, resulting in ROS production and cell death. This study is to explore the mechanism of P2RX7 in reducing HT pathogenesis after acute ischemic stroke through regulating endotheliocyte ferroptosis. Male SD rats were performed to establish middle cerebral artery occlusion (MCAO) model injected with 50% high glucose (HG) and HUVECs were subjected to OGD/R treated with high glucose (30 mM) for establishing HT model in vivo and in vitro. P2RX7 inhibitor (BBG), and P2RX7 small interfering RNAs (siRNA) were used to investigate the role of P2RX7 in BBB after MCAO in vivo and OGD/R in vitro, respectively. The neurological deficits, infarct volume, degree of intracranial hemorrhage, integrity of the BBB, immunoblotting, and immunofluorescence were evaluated at 24 h after MCAO. Our study found that the level of P2RX7 was gradually increased after MCAO and/or treated with HG. Our results showed that treatment with HG after MCAO can aggravate neurological deficits, infarct volume, oxidative stress, iron accumulation, and BBB injury in HT model, and HG-induced HUVECs damage. The inhibition of P2RX7 reversed the damage effect of HG, significantly downregulated the expression level of P53, HO-1, and p-ERK1/2 and upregulated the level of SLC7A11 and GPX4, which implicated that P2RX7 inhibition could attenuate oxidative stress and ferroptosis of endothelium in vivo and in vitro. Our data provided evidence that the P2RX7 play an important role in HG-associated oxidative stress, endothelial damage, and BBB disruption, which regulates HG-induced HT by ERK1/2 and P53 signaling pathways after MCAO.
Collapse
|
9
|
Wu Q, Wei C, Guo S, Liu J, Xiao H, Wu S, Wu B, Liu M. Acute iron overload aggravates blood-brain barrier disruption and hemorrhagic transformation after transient focal ischemia in rats with hyperglycemia. IBRO Neurosci Rep 2022; 13:87-95. [PMID: 35847179 PMCID: PMC9284446 DOI: 10.1016/j.ibneur.2022.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Qian Wu
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Chenchen Wei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Siqi Guo
- West China School of Clinical Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Junfeng Liu
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hengyi Xiao
- Lab for Aging Research, Center for Medical Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Simiao Wu
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Bo Wu
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ming Liu
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Correspondence to: Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu 610041, Sichuan Province, China.
| |
Collapse
|
10
|
Glucose to Platelet Ratio: A Potential Predictor of Hemorrhagic Transformation in Patients with Acute Ischemic Stroke. Brain Sci 2022; 12:brainsci12091170. [PMID: 36138906 PMCID: PMC9496698 DOI: 10.3390/brainsci12091170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/20/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
Glucose and platelet are two easily obtained clinical indicators; the present research aimed to demonstrate their association with hemorrhagic transformation (HT) in acute ischemic stroke (AIS) patients without thrombolytic or thrombectomy therapy. This was a single-center retrospective study. Patients who were diagnosed with HT after AIS were included in the HT group. Meanwhile, using the propensity score matching (PSM) approach, with a ratio of 1:2, matched patients without HT were included in the non-HT group. Serum G/P levels were measured on the first morning after admission (at least eight hours after the last meal). Characteristics were compared between the two groups. Multivariate logistic regression was used to determine the independent relationship between G/P and HT after AIS, with G/P being divided into quartiles. From January 2013 to March 2022, we consecutively included 643 AIS patients with HT (426/643 [66.25%] with HI and 217/643 [33.75%] with PH), and 1282 AIS patients without HT, at the First Affiliated Hospital of Wenzhou Medical University. The HT group had higher G/P levels than the non-HT group (0.04 ± 0.02 vs. 0.03 ± 0.02, p < 0.001). However, there was no difference in G/P levels between HI and PH subgroups (0.04 ± 0.02 vs. 0.04 ± 0.02, p > 0.05). Moreover, the G/P levels were divided into quartiles (Q1 ≤ 0.022; Q2 = 0.023−0.028; Q3 = 0.029−0.039; Q4 ≥ 0.040), with Q1 being settled as the reference layer. After controlling the confounders, multivariate regression analyses showed that the Q4 layer (Q4: G/P ≥ 0.040) was independently associated with elevated HT risk (odds ratio [OR] = 1.85, 95% CI = 1.31−2.63, p < 0.001). G/P levels on admission were independently associated with HT risk in AIS patients. In clinical practice, adequate attention should be paid to AIS patients with elevated G/P levels (G/P ≥ 0.040).
Collapse
|
11
|
Luo R, Chen L, Song X, Zhang X, Xu W, Han D, Zuo J, Hu W, Shi Y, Cao Y, Ma R, Liu C, Xu C, Li Z, Li X. Possible Role of GnIH as a Novel Link between Hyperphagia-Induced Obesity-Related Metabolic Derangements and Hypogonadism in Male Mice. Int J Mol Sci 2022; 23:ijms23158066. [PMID: 35897643 PMCID: PMC9332143 DOI: 10.3390/ijms23158066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 02/05/2023] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a reproductive inhibitor and an endogenous orexigenic neuropeptide that may be involved in energy homeostasis and reproduction. However, whether GnIH is a molecular signal link of metabolism and the reproductive system, and thus, regulates reproductive activity as a function of the energy state, is still unknown. In the present study, we investigated the involvement of GnIH in glycolipid metabolism and reproduction in vivo, and in the coupling between these two processes in the testis level. Our results showed that chronic intraperitoneal injection of GnIH into male mice not only increased food intake and altered meal microstructure but also significantly elevated body mass due to the increased mass of liver and epididymal white adipose tissue (eWAT), despite the loss of testicular weight. Furthermore, chronic intraperitoneal administration of GnIH to male mice resulted in obesity-related glycolipid metabolic derangements, showing hyperlipidemia, hyperglycemia, glucose intolerance, and insulin resistance through changes in the expression of glucose and lipid metabolism-related genes in the pancreas and eWAT, respectively. Interestingly, the expression of GnIH and GPR147 was markedly increased in the testis of mice under conditions of energy imbalance, such as fasting, acute hypoglycemia, and hyperglycemia. In addition, chronic GnIH injection markedly inhibited glucose and lipid metabolism of mice testis while significantly decreasing testosterone synthesis and sperm quality, inducing hypogonadism. These observations indicated that orexigenic GnIH triggers hyperphagia-induced obesity-related metabolic derangements and hypogonadism in male mice, suggesting that GnIH is an emerging candidate for coupling metabolism and fertility by involvement in obesity and metabolic disorder-induced reproductive dysfunction of the testes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Xun Li
- Correspondence: ; Tel.: +86-0771-3235635
| |
Collapse
|
12
|
Clain J, Couret D, Planesse C, Krejbich-Trotot P, Meilhac O, Lefebvre d’Hellencourt C, Viranaicken W, Diotel N. Distribution of Adiponectin Receptors in the Brain of Adult Mouse: Effect of a Single Dose of the Adiponectin Receptor Agonist, AdipoRON, on Ischemic Stroke. Brain Sci 2022; 12:brainsci12050680. [PMID: 35625066 PMCID: PMC9139333 DOI: 10.3390/brainsci12050680] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/08/2022] [Accepted: 05/16/2022] [Indexed: 12/10/2022] Open
Abstract
Adiponectin exhibits pleiotropic effects, including anti-inflammatory, anti-apoptotic, anti-oxidant, and neuroprotective ones. Although some studies have documented brain expression in different rodent models of its receptors, AdipoR1 and AdipoR2, their global distribution remains incomplete. Here, we demonstrated that both AdipoR are widely distributed in the brains of adult mice. Furthermore, by double immunostaining studies, we showed that AdipoR1 and AdipoR2 are mainly expressed in neurons and blood vessels. Then, considering the wide distribution of both receptors and the neuroprotective effects of adiponectin, we tested the therapeutic effect of a single injection of the adiponectin receptor agonist, AdipoRON (5 mg.kg−1), 24 h after stroke in a model of middle cerebral artery occlusion technique (MCAO). Under our experimental conditions, we demonstrated that AdipoRON did not modulate the infarct volume, cell death, neuroinflammatory parameters including microglia activation and oxidative stress. This study suggests that a protocol based on multiple injections of AdipoRON at a higher dose after MCAO could be considered to promote the therapeutic properties of AdipoRON on the brain repair mechanism and recovery.
Collapse
Affiliation(s)
- Julien Clain
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Plateforme CYROI, 97490 Sainte-Clotilde, France; (J.C.); (D.C.); (C.P.); (O.M.); (C.L.d.)
| | - David Couret
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Plateforme CYROI, 97490 Sainte-Clotilde, France; (J.C.); (D.C.); (C.P.); (O.M.); (C.L.d.)
- CHU de La Réunion, 97400 Saint-Denis, France
| | - Cynthia Planesse
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Plateforme CYROI, 97490 Sainte-Clotilde, France; (J.C.); (D.C.); (C.P.); (O.M.); (C.L.d.)
| | - Pascale Krejbich-Trotot
- Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM, UMR 1187, CNRS UMR9192, IRD UMR249, Université de La Réunion, 94791 Sainte-Clotilde, France;
| | - Olivier Meilhac
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Plateforme CYROI, 97490 Sainte-Clotilde, France; (J.C.); (D.C.); (C.P.); (O.M.); (C.L.d.)
- CHU de La Réunion, 97400 Saint-Denis, France
| | - Christian Lefebvre d’Hellencourt
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Plateforme CYROI, 97490 Sainte-Clotilde, France; (J.C.); (D.C.); (C.P.); (O.M.); (C.L.d.)
| | - Wildriss Viranaicken
- Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM, UMR 1187, CNRS UMR9192, IRD UMR249, Université de La Réunion, 94791 Sainte-Clotilde, France;
- Correspondence: (W.V.); (N.D.)
| | - Nicolas Diotel
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Plateforme CYROI, 97490 Sainte-Clotilde, France; (J.C.); (D.C.); (C.P.); (O.M.); (C.L.d.)
- Correspondence: (W.V.); (N.D.)
| |
Collapse
|
13
|
Ghaddar B, Diotel N. Zebrafish: A New Promise to Study the Impact of Metabolic Disorders on the Brain. Int J Mol Sci 2022; 23:ijms23105372. [PMID: 35628176 PMCID: PMC9141892 DOI: 10.3390/ijms23105372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
Zebrafish has become a popular model to study many physiological and pathophysiological processes in humans. In recent years, it has rapidly emerged in the study of metabolic disorders, namely, obesity and diabetes, as the regulatory mechanisms and metabolic pathways of glucose and lipid homeostasis are highly conserved between fish and mammals. Zebrafish is also widely used in the field of neurosciences to study brain plasticity and regenerative mechanisms due to the high maintenance and activity of neural stem cells during adulthood. Recently, a large body of evidence has established that metabolic disorders can alter brain homeostasis, leading to neuro-inflammation and oxidative stress and causing decreased neurogenesis. To date, these pathological metabolic conditions are also risk factors for the development of cognitive dysfunctions and neurodegenerative diseases. In this review, we first aim to describe the main metabolic models established in zebrafish to demonstrate their similarities with their respective mammalian/human counterparts. Then, in the second part, we report the impact of metabolic disorders (obesity and diabetes) on brain homeostasis with a particular focus on the blood-brain barrier, neuro-inflammation, oxidative stress, cognitive functions and brain plasticity. Finally, we propose interesting signaling pathways and regulatory mechanisms to be explored in order to better understand how metabolic disorders can negatively impact neural stem cell activity.
Collapse
|
14
|
Antioxidant Polyphenols of Antirhea borbonica Medicinal Plant and Caffeic Acid Reduce Cerebrovascular, Inflammatory and Metabolic Disorders Aggravated by High-Fat Diet-Induced Obesity in a Mouse Model of Stroke. Antioxidants (Basel) 2022; 11:antiox11050858. [PMID: 35624723 PMCID: PMC9138119 DOI: 10.3390/antiox11050858] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Metabolic disorders related to obesity and type 2 diabetes are associated with aggravated cerebrovascular damages during stroke. In particular, hyperglycemia alters redox and inflammatory status, leading to cerebral endothelial cell dysfunction, blood–brain barrier (BBB) disruption and brain homeostasis loss. Polyphenols constitute the most abundant dietary antioxidants and exert anti-inflammatory effects that may improve cerebrovascular complications in stroke. This study evaluated the effects of the characterized polyphenol-rich extract of Antirhea borbonica medicinal plant and its major constituent caffeic acid on a high-fat diet (HFD)-induced obesity mouse model during ischemic stroke, and murine bEnd3 cerebral endothelial cells in high glucose condition. In vivo, polyphenols administered by oral gavage for 12 weeks attenuated insulin resistance, hyperglycemia, hyperinsulinemia and dyslipidemia caused by HFD-induced obesity. Polyphenols limited brain infarct, hemorrhagic transformation and BBB disruption aggravated by obesity during stroke. Polyphenols exhibited anti-inflammatory and antioxidant properties by reducing IL-1β, IL-6, MCP-1, TNF-α and Nrf2 overproduction as well as total SOD activity elevation at the cerebral or peripheral levels in obese mice. In vitro, polyphenols decreased MMP-2 activity that correlated with MCP-1 secretion and ROS intracellular levels in hyperglycemic condition. Protective effects of polyphenols were linked to their bioavailability with evidence for circulating metabolites including caffeic acid, quercetin and hippuric acid. Altogether, these findings show that antioxidant polyphenols reduced cerebrovascular, inflammatory and metabolic disorders aggravated by obesity in a mouse model of stroke. It will be relevant to assess polyphenol-based strategies to improve the clinical consequences of stroke in the context of obesity and diabetes.
Collapse
|
15
|
Wang A, Cui T, Wang C, Zhu Q, Zhang X, Li S, Yang Y, Shang W, Wu B. Prognostic Significance of Admission Glucose Combined with Hemoglobin A1c in Acute Ischemic Stroke Patients with Reperfusion Therapy. Brain Sci 2022; 12:brainsci12020294. [PMID: 35204058 PMCID: PMC8869904 DOI: 10.3390/brainsci12020294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Elevated admission glucose and hemoglobin A1c (HbA1c) levels have been suggested to be associated with 90-day functional outcomes in acute ischemic stroke (AIS) patients with endovascular thrombectomy (EVT). However, whether the prognostic significance of admission glucose and that of HbA1c have a joint effect on patients with intravascular thrombolysis (IVT) and/or EVT remains unclear. This study aimed to explore the association between admission glucose combined with HbA1c and outcomes in patients with reperfusion therapy. Methods: Consecutive AIS patients treated with IVT and/or EVT between 2 January 2018 and 27 February 2021 in West China hospital were enrolled. Admission glucose and HbA1c levels were measured at admission. Participants were divided into four groups according to admission glucose level (categorical variable: <7.8 and ≥7.8 mmol/L) and HbA1c level (categorical variable: <6.5% and ≥6.5%): normal glucose and normal HbA1c (NGNA), normal glucose and high HbA1c (NGHA), high glucose and normal HbA1c (HGNA), and high glucose and high HbA1c (HGHA). The primary outcome was an unfavorable functional outcome defined as a modified Rankin Scale (mRS) ≥ 3. The secondary outcome was all-cause mortality at 90 days. Results: A total of 519 patients (mean age, 69.0 ± 13.4 years; 53.8% males) were included. Patients in the HGHA group had a significantly increased risk of unfavorable functional outcome (OR, 1.81; 95%CI, 1.01–3.23) and mortality (OR, 1.75; 95%CI, 1.01–3.06) at 90 days compared with those in the NGNA group after adjustment for confounders. There was no significant association between NGHA (OR, 0.43; 95%CI, 0.12–1.53) or HGNA (OR, 1.46; 95%CI, 0.84–2.56) and outcomes compared to the NGNA group. Conclusion: The combination of high admission glucose and high HbA1c level was significantly associated with unfavorable functional outcome and mortality at 90 days in AIS patients with reperfusion therapy.
Collapse
Affiliation(s)
- Anmo Wang
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China; (A.W.); (T.C.); (X.Z.); (S.L.); (Y.Y.); (W.S.)
| | - Ting Cui
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China; (A.W.); (T.C.); (X.Z.); (S.L.); (Y.Y.); (W.S.)
| | - Changyi Wang
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Qiange Zhu
- The Second Department of Neurology, Shanxi Provincial People’s Hospital, Xi’an 710068, China;
| | - Xuening Zhang
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China; (A.W.); (T.C.); (X.Z.); (S.L.); (Y.Y.); (W.S.)
| | - Shucheng Li
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China; (A.W.); (T.C.); (X.Z.); (S.L.); (Y.Y.); (W.S.)
| | - Yuan Yang
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China; (A.W.); (T.C.); (X.Z.); (S.L.); (Y.Y.); (W.S.)
| | - Wenzuo Shang
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China; (A.W.); (T.C.); (X.Z.); (S.L.); (Y.Y.); (W.S.)
| | - Bo Wu
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China; (A.W.); (T.C.); (X.Z.); (S.L.); (Y.Y.); (W.S.)
- Correspondence: ; Tel.: +86-189-8060-2142
| |
Collapse
|
16
|
Acute Hyperglycemia Exacerbates Hemorrhagic Transformation after Embolic Stroke and Reperfusion with tPA: A Possible Role of TXNIP-NLRP3 Inflammasome. J Stroke Cerebrovasc Dis 2022; 31:106226. [PMID: 34847489 PMCID: PMC8792268 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVES Acute hyperglycemia (HG) exacerbates reperfusion injury after stroke. Our recent studies showed that acute HG upregulates thioredoxin-interacting protein (TXNIP) expression, which in turn induces inflammation and neurovascular damage in a suture model of ischemic stroke. The aim of the present study was to investigate the effect of acute HG on TXNIP-associated neurovascular damage, in a more clinically relevant murine model of embolic stroke and intravenous tissue plasminogen activator (IV-tPA) reperfusion. MATERIALS AND METHODS HG was induced in adult male mice, by intraperitoneal injection of 20% glucose. This was followed by embolic middle cerebral artery occlusion (eMCAO), with or without IV-tPA (10 mg/kg) given 3 h post embolization. Brain infarction, edema, hemoglobin content, expression of matrix metalloproteinase (MMP-9), vascular endothelial growth factor A (VEGFA), tight junction proteins (claudin-5, occluding, and zonula occludens-1), TXNIP, and NOD-like receptor protein3 (NLRP3)-inflammasome activation were evaluated at 24 h after eMCAO. RESULTS HG alone significantly increased TXNIP in the brain after eMCAO, and this was associated with exacerbated hemorrhagic transformation (HT; as measured by hemoglobin content). IV-tPA in HG conditions showed a trend to decrease infarct volume, but worsened HT after eMCAO, suggesting that HG reduces the therapeutic efficacy of IV-tPA. Further, HG and tPA-reperfusion did not show significant differences in expression of MMP-9, VEGFA, junction proteins, and NLRP3 inflammasome activation between the groups. CONCLUSION The current findings suggest a potential role for TXNIP in the occurrence of HT in hyperglycemic conditions following eMCAO. Further studies are needed to understand the precise role of vascular TXNIP on HG/tPA-induced neurovascular damage after stroke.
Collapse
|
17
|
Schmitner N, Recheis C, Thönig J, Kimmel RA. Differential Responses of Neural Retina Progenitor Populations to Chronic Hyperglycemia. Cells 2021; 10:cells10113265. [PMID: 34831487 PMCID: PMC8622914 DOI: 10.3390/cells10113265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 12/30/2022] Open
Abstract
Diabetic retinopathy is a frequent complication of longstanding diabetes, which comprises a complex interplay of microvascular abnormalities and neurodegeneration. Zebrafish harboring a homozygous mutation in the pancreatic transcription factor pdx1 display a diabetic phenotype with survival into adulthood, and are therefore uniquely suitable among zebrafish models for studying pathologies associated with persistent diabetic conditions. We have previously shown that, starting at three months of age, pdx1 mutants exhibit not only vascular but also neuro-retinal pathologies manifesting as photoreceptor dysfunction and loss, similar to human diabetic retinopathy. Here, we further characterize injury and regenerative responses and examine the effects on progenitor cell populations. Consistent with a negative impact of hyperglycemia on neurogenesis, stem cells of the ciliary marginal zone show an exacerbation of aging-related proliferative decline. In contrast to the robust Müller glial cell proliferation seen following acute retinal injury, the pdx1 mutant shows replenishment of both rod and cone photoreceptors from slow-cycling, neurod-expressing progenitors which first accumulate in the inner nuclear layer. Overall, we demonstrate a diabetic retinopathy model which shows pathological features of the human disease evolving alongside an ongoing restorative process that replaces lost photoreceptors, at the same time suggesting an unappreciated phenotypic continuum between multipotent and photoreceptor-committed progenitors.
Collapse
|
18
|
Couret D, Planesse C, Patche J, Diotel N, Nativel B, Bourane S, Meilhac O. Lack of Neuroprotective Effects of High-Density Lipoprotein Therapy in Stroke under Acute Hyperglycemic Conditions. Molecules 2021; 26:molecules26216365. [PMID: 34770774 PMCID: PMC8588473 DOI: 10.3390/molecules26216365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 01/01/2023] Open
Abstract
Introduction: The pleiotropic protective effects of high-density lipoproteins (HDLs) on cerebral ischemia have never been tested under acute hyperglycemic conditions. The aim of this study is to evaluate the potential neuroprotective effect of HDL intracarotid injection in a mouse model of middle cerebral artery occlusion (MCAO) under hyperglycemic conditions. Methods: Forty-two mice were randomized to receive either an intracarotid injection of HDLs or saline. Acute hyperglycemia was induced by an intraperitoneal injection of glucose (2.2 g/kg) 20 min before MCAO. Infarct size (2,3,5-triphenyltetrazolium chloride (TTC)-staining), blood–brain barrier leakage (IgG infiltration), and hemorrhagic changes (hemoglobin assay by ELISA and hemorrhagic transformation score) were analyzed 24 h post-stroke. Brain tissue inflammation (IL-6 by ELISA, neutrophil infiltration and myeloperoxidase by immunohisto-fluorescence) and apoptosis (caspase 3 activation) were also assessed. Results: Intraperitoneal D-glucose injection allowed HDL- and saline-treated groups to reach a blood glucose level of 300 mg/dl in the acute phase of cerebral ischemia. HDL injection did not significantly reduce mortality (19% versus 29% in the saline-injected group) or cerebral infarct size (p = 0.25). Hemorrhagic transformations and inflammation parameters were not different between the two groups. In addition, HDL did not inhibit apoptosis under acute hyperglycemic conditions. Conclusion: We observed a nonsignificant decrease in cerebral infarct size in the HDL group. The deleterious consequences of reperfusion such as hemorrhagic transformation or inflammation were not improved by HDL infusion. In acute hyperglycemia, HDLs are not potent enough to counteract the adverse effects of hyperglycemia. The addition of antioxidants to therapeutic HDLs could improve their neuroprotective capacity.
Collapse
Affiliation(s)
- David Couret
- UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de la Réunion, Inserm, Plateforme CYROI, F-97490 Sainte-Clotilde, France; (C.P.); (J.P.); (N.D.); (B.N.); (S.B.); (O.M.)
- Service de Neuroréanimation, Centre Hospitalo-Universitaire de La Réunion, 97410 Saint-Pierre de La Réunion, France
- Correspondence: ; Tel.: +33-262-(0)-35-90-00
| | - Cynthia Planesse
- UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de la Réunion, Inserm, Plateforme CYROI, F-97490 Sainte-Clotilde, France; (C.P.); (J.P.); (N.D.); (B.N.); (S.B.); (O.M.)
| | - Jessica Patche
- UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de la Réunion, Inserm, Plateforme CYROI, F-97490 Sainte-Clotilde, France; (C.P.); (J.P.); (N.D.); (B.N.); (S.B.); (O.M.)
| | - Nicolas Diotel
- UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de la Réunion, Inserm, Plateforme CYROI, F-97490 Sainte-Clotilde, France; (C.P.); (J.P.); (N.D.); (B.N.); (S.B.); (O.M.)
| | - Brice Nativel
- UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de la Réunion, Inserm, Plateforme CYROI, F-97490 Sainte-Clotilde, France; (C.P.); (J.P.); (N.D.); (B.N.); (S.B.); (O.M.)
| | - Steeve Bourane
- UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de la Réunion, Inserm, Plateforme CYROI, F-97490 Sainte-Clotilde, France; (C.P.); (J.P.); (N.D.); (B.N.); (S.B.); (O.M.)
| | - Olivier Meilhac
- UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de la Réunion, Inserm, Plateforme CYROI, F-97490 Sainte-Clotilde, France; (C.P.); (J.P.); (N.D.); (B.N.); (S.B.); (O.M.)
- CIC-EC 1410, Centre Hospitalo-Universitaire de La Réunion, 97410 Saint-Pierre de La Réunion, France
| |
Collapse
|
19
|
Salman M, Ismael S, Li L, Ahmed HA, Puchowicz MA, Ishrat T. Endothelial Thioredoxin-Interacting Protein Depletion Reduces Hemorrhagic Transformation in Hyperglycemic Mice after Embolic Stroke and Thrombolytic Therapy. Pharmaceuticals (Basel) 2021; 14:ph14100983. [PMID: 34681207 PMCID: PMC8537904 DOI: 10.3390/ph14100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/03/2022] Open
Abstract
We hypothesize that endothelial-specific thioredoxin-interacting protein knock-out (EC-TXNIP KO) mice will be more resistant to the neurovascular damage (hemorrhagic-transformation-HT) associated with hyperglycemia (HG) in embolic stroke. Adult-male EC-TXNIP KO and wild-type (WT) littermate mice were injected with-streptozotocin (40 mg/kg, i.p.) for five consecutive days to induce diabetes. Four-weeks after confirming HG, mice were subjected to embolic middle cerebral artery occlusion (eMCAO) followed by tissue plasminogen activator (tPA)-reperfusion (10 mg/kg at 3 h post-eMCAO). After the neurological assessment, animals were sacrificed at 24 h for neurovascular stroke outcomes. There were no differences in cerebrovascular anatomy between the strains. Infarct size, edema, and HT as indicated by hemoglobin (Hb)-the content was significantly higher in HG-WT mice, with or without tPA-reperfusion, compared to normoglycemic WT mice. Hyperglycemic EC-TXNIP KO mice treated with tPA tended to show lower Hb-content, edema, infarct area, and less hemorrhagic score compared to WT hyperglycemic mice. EC-TXNIP KO mice showed decreased expression of inflammatory mediators, apoptosis-associated proteins, and nitrotyrosine levels. Further, vascular endothelial growth factor-A and matrix-metalloproteinases (MMP-9/MMP-3), which degrade junction proteins and increase blood-brain-barrier permeability, were decreased in EC-TXNIP KO mice. Together, these findings suggest that vascular-TXNIP could be a novel therapeutic target for neurovascular damage after stroke.
Collapse
Affiliation(s)
- Mohd. Salman
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.S.); (S.I.); (L.L.); (H.A.A.)
| | - Saifudeen Ismael
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.S.); (S.I.); (L.L.); (H.A.A.)
| | - Lexiao Li
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.S.); (S.I.); (L.L.); (H.A.A.)
| | - Heba A. Ahmed
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.S.); (S.I.); (L.L.); (H.A.A.)
| | - Michelle A. Puchowicz
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.S.); (S.I.); (L.L.); (H.A.A.)
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Correspondence: ; Tel.: +901-448-2178; Fax:-901-448-7193
| |
Collapse
|
20
|
He D, Guo Y, Zhang Y, Zhao J, Wu L, Yu Z, Qu W, Luo X. Thromboelastography predicts dual antiplatelet therapy-related hemorrhage in patients with acute ischemic stroke. J Neurointerv Surg 2021; 14:672-676. [PMID: 34326196 PMCID: PMC9209664 DOI: 10.1136/neurintsurg-2021-017615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/11/2021] [Indexed: 12/27/2022]
Abstract
Background Stratification of the risk of hemorrhage in patients with acute ischemic stroke following dual antiplatelet therapy (DAPT) is challenging. It remains unclear whether thromboelastography (TEG) can be used to predict DAPT-related hemorrhagic events. Objective The present study aims to discover predictors for hemorrhage events after DAPT based on parameters such as TEG. Methods A total of 859 patients with acute ischemic stroke who received DAPT were recruited consecutively. Demographic, clinical, and neuroimaging characteristics were evaluated at baseline; TEG parameters were obtained 7 days later after DAPT. Hemorrhagic events were monitored about 1 month after the stroke. Results Of the patients, 61 (7.1%) had hemorrhagic events. Patients in the hemorrhage group had a lower adenosine diphosphate (ADP)-induced platelet-fibrin clot maximum amplitude and a higher ADP inhibition rate (ADP%) than those in the non-hemorrhage group (p<0.05). ADP% was confirmed as an independent predictor of hemorrhagic events with an optimal cut-off point of 83.3% (area under the curve (AUC) = 0.665, 95% CI 0.573 to 0.767, p<0.01). We constructed a logistic model based on D-dimer, National Institutes of Health Stroke Scale scores, and ADP% to predict hemorrhagic events in patients with acute ischemic stroke during DAPT (AUC=0.720, 95% CI 0.625 to 0.858, p<0.01), with a sensitivity of 72.1% and a specificity of 76.5%. Conclusions Monitoring changes of TEG parameters helps to guide personalized DAPT for patients with ischemic stroke. A 30–82.3% range of ADP% is recommended for DAPT treatment.
Collapse
Affiliation(s)
- Dan He
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, Guangdong, China
| | - Yinping Guo
- Department of Neurology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Zhang
- Department of Neurology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Zhao
- Department of Neurology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lingshan Wu
- Department of Neurology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiyuan Yu
- Department of Neurology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wensheng Qu
- Department of Neurology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiang Luo
- Department of Neurology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
21
|
Nativel B, Ramin-Mangata S, Couret D, Planesse C, Roche M, Gallo A, Meilhac O, Lambert G, Bourane S. PCSK9 (Proprotein Convertase Subtilisin Kexin Type 9) Inhibition in Hyperglycemic Mice Increases the Risk of Hemorrhagic Transformation of Ischemic Stroke. Stroke 2021; 52:e545-e547. [PMID: 34315254 DOI: 10.1161/strokeaha.121.035677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Brice Nativel
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France (B.N., S.R.-M., D.C., C.P., M.R., A.G., O.M., G.L., S.B.)
| | - Stéphane Ramin-Mangata
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France (B.N., S.R.-M., D.C., C.P., M.R., A.G., O.M., G.L., S.B.)
| | - David Couret
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France (B.N., S.R.-M., D.C., C.P., M.R., A.G., O.M., G.L., S.B.).,CHU de La Réunion, Saint-Pierre de la Réunion, France (D.C., O.M.)
| | - Cynthia Planesse
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France (B.N., S.R.-M., D.C., C.P., M.R., A.G., O.M., G.L., S.B.)
| | - Mathias Roche
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France (B.N., S.R.-M., D.C., C.P., M.R., A.G., O.M., G.L., S.B.)
| | - Antonio Gallo
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France (B.N., S.R.-M., D.C., C.P., M.R., A.G., O.M., G.L., S.B.)
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France (B.N., S.R.-M., D.C., C.P., M.R., A.G., O.M., G.L., S.B.).,CHU de La Réunion, Saint-Pierre de la Réunion, France (D.C., O.M.)
| | - Gilles Lambert
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France (B.N., S.R.-M., D.C., C.P., M.R., A.G., O.M., G.L., S.B.)
| | - Steeve Bourane
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France (B.N., S.R.-M., D.C., C.P., M.R., A.G., O.M., G.L., S.B.)
| |
Collapse
|
22
|
Spronk E, Sykes G, Falcione S, Munsterman D, Joy T, Kamtchum-Tatuene J, Jickling GC. Hemorrhagic Transformation in Ischemic Stroke and the Role of Inflammation. Front Neurol 2021; 12:661955. [PMID: 34054705 PMCID: PMC8160112 DOI: 10.3389/fneur.2021.661955] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/29/2021] [Indexed: 01/01/2023] Open
Abstract
Hemorrhagic transformation (HT) is a common complication in patients with acute ischemic stroke. It occurs when peripheral blood extravasates across a disrupted blood brain barrier (BBB) into the brain following ischemic stroke. Preventing HT is important as it worsens stroke outcome and increases mortality. Factors associated with increased risk of HT include stroke severity, reperfusion therapy (thrombolysis and thrombectomy), hypertension, hyperglycemia, and age. Inflammation and the immune system are important contributors to BBB disruption and HT and are associated with many of the risk factors for HT. In this review, we present the relationship of inflammation and immune activation to HT in the context of reperfusion therapy, hypertension, hyperglycemia, and age. Differences in inflammatory pathways relating to HT are discussed. The role of inflammation to stratify the risk of HT and therapies targeting the immune system to reduce the risk of HT are presented.
Collapse
Affiliation(s)
- Elena Spronk
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Gina Sykes
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Sarina Falcione
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Danielle Munsterman
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Twinkle Joy
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Joseph Kamtchum-Tatuene
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Glen C Jickling
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
23
|
Grisotto C, Taïlé J, Planesse C, Diotel N, Gonthier MP, Meilhac O, Couret D. High-Fat Diet Aggravates Cerebral Infarct, Hemorrhagic Transformation and Neuroinflammation in a Mouse Stroke Model. Int J Mol Sci 2021; 22:4571. [PMID: 33925459 PMCID: PMC8123851 DOI: 10.3390/ijms22094571] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Stroke in context of type 2 diabetes (T2D) is associated with a poorer outcome than in non-diabetic conditions. We aimed at creating a new reproducible mouse model of stroke in impaired glucose tolerance conditions induced by high-fat diet. METHODS Adult C57BL6 mice were fed for 2 months with either normal diet (ND) or high-fat diet (HFD). We used a model of Middle Cerebral Artery Occlusion (MCAO) for 90 min. Oral Glucose Tolerance Test (OGTT) and Insulin Tolerance Test (ITT) were used to assess pre-diabetic status. Brain infarct volume, hemorrhagic transformation (HT) as well as systemic and cerebral inflammatory markers were evaluated. RESULTS HFD was associated with an increased body weight and glycemia following OGTT. The HFD group presented a significant increase in brain infarct volume (38.7 (IQR 30-46.7%) vs. 28.45 (IQR 21-30%); p = 0.016) and HT (HFD: 2 (IQR 1-5) vs. ND: 0 (IQR 0-1); p = 0.012) and higher levels of IL-6 and MCP-1 in infarcted hemisphere compared to the ND group. CONCLUSION Two months of HFD in adult mice were sufficient to alter the lipid profile and the control of hyperglycemia. These metabolic perturbations were significantly associated with increased infarct volume and hemorrhagic complications.
Collapse
Affiliation(s)
- Coline Grisotto
- Diabète Athérothrombose Thérapies Réunion Océan Indien, INSERM, UMR 1188, Université de La Réunion, 2 rue Maxime Rivière, 97400 Sainte-Clotilde, La Réunion, France; (C.G.); (J.T.); (C.P.); (N.D.); (M.-P.G.); (O.M.)
- CHU de la Réunion, Service de Neuroréanimation, 97410 Saint-Pierre de la Réunion, La Réunion, France
| | - Janice Taïlé
- Diabète Athérothrombose Thérapies Réunion Océan Indien, INSERM, UMR 1188, Université de La Réunion, 2 rue Maxime Rivière, 97400 Sainte-Clotilde, La Réunion, France; (C.G.); (J.T.); (C.P.); (N.D.); (M.-P.G.); (O.M.)
| | - Cynthia Planesse
- Diabète Athérothrombose Thérapies Réunion Océan Indien, INSERM, UMR 1188, Université de La Réunion, 2 rue Maxime Rivière, 97400 Sainte-Clotilde, La Réunion, France; (C.G.); (J.T.); (C.P.); (N.D.); (M.-P.G.); (O.M.)
| | - Nicolas Diotel
- Diabète Athérothrombose Thérapies Réunion Océan Indien, INSERM, UMR 1188, Université de La Réunion, 2 rue Maxime Rivière, 97400 Sainte-Clotilde, La Réunion, France; (C.G.); (J.T.); (C.P.); (N.D.); (M.-P.G.); (O.M.)
| | - Marie-Paule Gonthier
- Diabète Athérothrombose Thérapies Réunion Océan Indien, INSERM, UMR 1188, Université de La Réunion, 2 rue Maxime Rivière, 97400 Sainte-Clotilde, La Réunion, France; (C.G.); (J.T.); (C.P.); (N.D.); (M.-P.G.); (O.M.)
| | - Olivier Meilhac
- Diabète Athérothrombose Thérapies Réunion Océan Indien, INSERM, UMR 1188, Université de La Réunion, 2 rue Maxime Rivière, 97400 Sainte-Clotilde, La Réunion, France; (C.G.); (J.T.); (C.P.); (N.D.); (M.-P.G.); (O.M.)
- CHU de la Réunion, 97400 Saint-Denis de la Réunion, La Réunion, France
| | - David Couret
- Diabète Athérothrombose Thérapies Réunion Océan Indien, INSERM, UMR 1188, Université de La Réunion, 2 rue Maxime Rivière, 97400 Sainte-Clotilde, La Réunion, France; (C.G.); (J.T.); (C.P.); (N.D.); (M.-P.G.); (O.M.)
- CHU de la Réunion, Service de Neuroréanimation, 97410 Saint-Pierre de la Réunion, La Réunion, France
| |
Collapse
|
24
|
Xu X, Zhu L, Xue K, Liu J, Wang J, Wang G, Gu J, Zhang Y, Li X. Ultrastructural studies of the neurovascular unit reveal enhanced endothelial transcytosis in hyperglycemia‐enhanced hemorrhagic transformation after stroke. CNS Neurosci Ther 2021. [PMCID: PMC7804894 DOI: 10.1111/cns.13571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aims Pre‐existing hyperglycemia (HG) aggravates the breakdown of blood–brain barrier (BBB) and increases the risk of hemorrhagic transformation (HT) after acute ischemic stroke in both animal models and patients. To date, HG‐induced ultrastructural changes of brain microvascular endothelial cells (BMECs) and the mechanisms underlying HG‐enhanced HT after ischemic stroke are poorly understood. Methods We used a mouse model of mild brain ischemia/reperfusion to investigate HG‐induced ultrastructural changes of BMECs that contribute to the impairment of BBB integrity after stroke. Adult male mice received systemic glucose administration 15 min before middle cerebral artery occlusion (MCAO) for 20 min. Ultrastructural characteristics of BMECs were evaluated using two‐dimensional and three‐dimensional electron microscopy and quantitatively analyzed. Results Mice with acute HG had exacerbated BBB disruption and larger brain infarcts compared to mice with normoglycemia (NG) after MCAO and 4 h of reperfusion, as assessed by brain extravasation of the Evans blue dye and microtubule‐associated protein 2 immunostaining. Electron microscopy further revealed that HG mice had more endothelial vesicles in the striatal neurovascular unit than NG mice, which may account for their deterioration of BBB impairment. In contrast with enhanced endothelial transcytosis, paracellular tight junction ultrastructure was not disrupted after this mild ischemia/reperfusion insult or altered upon HG. Consistent with the observed increase of endothelial vesicles, transcytosis‐related proteins caveolin‐1, clathrin, and hypoxia‐inducible factor (HIF)‐1α were upregulated by HG after MCAO and reperfusion. Conclusion Our study provides solid structural evidence to understand the role of endothelial transcytosis in HG‐elicited BBB hyperpermeability. Enhanced transcytosis occurs prior to the physical breakdown of BMECs and is a promising therapeutic target to preserve BBB integrity.
Collapse
Affiliation(s)
- Xiaomin Xu
- Institute of Special Environmental Medicine and Department of Neurology of Affiliated Hospital Co‐innovation Center of Neuroregeneration Nantong University Nantong China
- Qidong Women's and Children's Health Qidong China
| | - Liuqi Zhu
- Institute of Special Environmental Medicine and Department of Neurology of Affiliated Hospital Co‐innovation Center of Neuroregeneration Nantong University Nantong China
| | - Ke Xue
- Institute of Special Environmental Medicine and Department of Neurology of Affiliated Hospital Co‐innovation Center of Neuroregeneration Nantong University Nantong China
| | - Jiayi Liu
- Institute of Special Environmental Medicine and Department of Neurology of Affiliated Hospital Co‐innovation Center of Neuroregeneration Nantong University Nantong China
| | - Jian Wang
- Institute of Special Environmental Medicine and Department of Neurology of Affiliated Hospital Co‐innovation Center of Neuroregeneration Nantong University Nantong China
| | - Guohua Wang
- Institute of Special Environmental Medicine and Department of Neurology of Affiliated Hospital Co‐innovation Center of Neuroregeneration Nantong University Nantong China
| | - Jin‐hua Gu
- Institute of Special Environmental Medicine and Department of Neurology of Affiliated Hospital Co‐innovation Center of Neuroregeneration Nantong University Nantong China
| | - Yunfeng Zhang
- Institute of Special Environmental Medicine and Department of Neurology of Affiliated Hospital Co‐innovation Center of Neuroregeneration Nantong University Nantong China
| | - Xia Li
- Institute of Special Environmental Medicine and Department of Neurology of Affiliated Hospital Co‐innovation Center of Neuroregeneration Nantong University Nantong China
| |
Collapse
|
25
|
Liu C, Xie J, Sun S, Li H, Li T, Jiang C, Chen X, Wang J, Le A, Wang J, Li Z, Wang J, Wang W. Hemorrhagic Transformation After Tissue Plasminogen Activator Treatment in Acute Ischemic Stroke. Cell Mol Neurobiol 2020; 42:621-646. [PMID: 33125600 DOI: 10.1007/s10571-020-00985-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022]
Abstract
Hemorrhagic transformation (HT) is a common complication after thrombolysis with recombinant tissue-type plasminogen activator (rt-PA) in ischemic stroke. In this article, recent research progress of HT in vivo and in vitro studies was reviewed. We have discussed new potential mechanisms and possible experimental models of HT development, as well as possible biomarkers and treatment methods. Meanwhile, we compared and analyzed rodent models, large animal models and in vitro BBB models of HT, and the limitations of these models were discussed. The molecular mechanism of HT was investigated in terms of BBB disruption, rt-PA neurotoxicity and the effect of neuroinflammation, matrix metalloproteinases, reactive oxygen species. The clinical features to predict HT were represented including blood biomarkers and clinical factors. Recent progress in neuroprotective strategies to improve HT after stroke treated with rt-PA is outlined. Further efforts need to be made to reduce the risk of HT after rt-PA therapy and improve the clinical prognosis of patients with ischemic stroke.
Collapse
Affiliation(s)
- Chengli Liu
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jie Xie
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Shanshan Sun
- Department of Ultrasound Imaging, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Hui Li
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Tianyu Li
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Xuemei Chen
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Henan, 450000, People's Republic of China
| | - Junmin Wang
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Henan, 450000, People's Republic of China
| | - Anh Le
- Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Jiarui Wang
- The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Zhanfei Li
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jian Wang
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Henan, 450000, People's Republic of China.
| | - Wei Wang
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
26
|
Arcambal A, Taïlé J, Couret D, Planesse C, Veeren B, Diotel N, Gauvin-Bialecki A, Meilhac O, Gonthier MP. Protective Effects of Antioxidant Polyphenols against Hyperglycemia-Mediated Alterations in Cerebral Endothelial Cells and a Mouse Stroke Model. Mol Nutr Food Res 2020; 64:e1900779. [PMID: 32447828 DOI: 10.1002/mnfr.201900779] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 03/08/2020] [Indexed: 12/15/2022]
Abstract
SCOPE Hyperglycemia alters cerebral endothelial cell and blood-brain barrier functions, aggravating cerebrovascular complications such as stroke during diabetes. Redox and inflammatory changes play a causal role. This study evaluates polyphenol protective effects in cerebral endothelial cells and a mouse stroke model during hyperglycemia. METHODS AND RESULTS Murine bEnd.3 cerebral endothelial cells and a mouse stroke model are exposed to a characterized, polyphenol-rich extract of Antirhea borbonica or its predominant constituent caffeic acid, during hyperglycemia. Polyphenol effects on redox, inflammatory and vasoactive markers, infarct volume, and hemorrhagic transformation are determined. In vitro, polyphenols improve reactive oxygen species levels, Cu/Zn superoxide dismutase activity, and both NAPDH oxidase 4 and nuclear factor erythroid 2-related factor 2 (Nrf2) gene expression deregulated by high glucose. Polyphenols reduce Nrf2 nuclear translocation and counteract nuclear factor-ĸappa B activation, interleukin-6 secretion, and the altered production of vasoactive markers mediated by high glucose. In vivo, polyphenols reduce cerebral infarct volume and hemorrhagic transformation aggravated by hyperglycemia. Polyphenols attenuate redox changes, increase vascular endothelial-Cadherin production, and decrease neuro-inflammation in the infarcted hemisphere. CONCLUSION Polyphenols protect against hyperglycemia-mediated alterations in cerebral endothelial cells and a mouse stroke model. It is relevant to assess polyphenol benefits to improve cerebrovascular damages during diabetes.
Collapse
Affiliation(s)
- Angélique Arcambal
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France
| | - Janice Taïlé
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France
| | - David Couret
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France.,CHU de La Réunion, Saint-Pierre, La Réunion, 97410, France
| | - Cynthia Planesse
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France
| | - Bryan Veeren
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France
| | - Anne Gauvin-Bialecki
- Université de La Réunion, EA 2212 Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments (LCSNSA), Saint-Denis, La Réunion, 97490, France
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France.,CHU de La Réunion, Saint-Pierre, La Réunion, 97410, France
| | - Marie-Paule Gonthier
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France
| |
Collapse
|
27
|
Jiang RH, Zu QQ, Xu XQ, Wang B, Ding Y, Wang J, Liu S, Shi HB. A Canine Model of Hemorrhagic Transformation Using Recombinant Tissue Plasminogen Activator Administration After Acute Ischemic Stroke. Front Neurol 2019; 10:673. [PMID: 31293509 PMCID: PMC6603151 DOI: 10.3389/fneur.2019.00673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/10/2019] [Indexed: 11/13/2022] Open
Abstract
Early reperfusion of occluded arteries via recombinant tissue plasminogen activator (rtPA) administration is considered to be an effective strategy for the treatment of acute ischemic stroke. However, delayed administration of rtPA may cause severe hemorrhagic transformation (HT) and undesirable neurological outcomes. The current study aims to establish a canine HT model using rtPA administration and to investigate the potential mechanisms underlying HT. Following anesthesia, two autologous clots were injected into the middle cerebral artery (MCA) to induce ischemic stroke. To induce reperfusion, rtPA (2 mg/kg) was administrated intravenously 4.5 h after the establishment of stroke. The occurrence of HT was determined by computed tomography (CT) and by pathological assessment. Transmission electron microscopy was utilized to assess blood-brain barrier (BBB) damage. The expression of matrix metalloprotein 9 (MMP-9) was analyzed by enzyme linked immunosorbent assay (ELISA), immunofluorescence (IF), and western blot. Administration of rtPA 4.5 h after stroke induced reperfusion in 73.9% of the canines, caused evident HT, and did not improve neurological outcomes compared to canines that did not receive rtPA. There was a significant increase in expression of MMP-9 after rtPA administration, accompanied by BBB disruption. We have established a canine HT model that closely mimics human HT by using rtPA administration after the induction of middle cerebral artery occlusion (MCAO) with autologous clots. Our data suggest that a potential mechanism underlying rtPA-caused HT may be related to BBB dysfunction induced by an increase in MMP-9 expression.
Collapse
Affiliation(s)
- Run-Hao Jiang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qing-Quan Zu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Charles T. Dotter Department of Interventional Radiology, Oregon Health and Science University, Portland, OR, United States
| | - Xiao-Quan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bin Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ye Ding
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jun Wang
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Sheng Liu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hai-Bin Shi
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
28
|
Rastegar S, Parimisetty A, Cassam Sulliman N, Narra SS, Weber S, Rastegar M, Viranaicken W, Couret D, Planesse C, Strähle U, Meilhac O, Lefebvre d'Hellencourt C, Diotel N. Expression of adiponectin receptors in the brain of adult zebrafish and mouse: Links with neurogenic niches and brain repair. J Comp Neurol 2019; 527:2317-2333. [DOI: 10.1002/cne.24669] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/18/2019] [Accepted: 02/26/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Sepand Rastegar
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology Eggenstein‐Leopoldshafen Germany
| | - Avinash Parimisetty
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Nora Cassam Sulliman
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Sai Sandhya Narra
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Sabrina Weber
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology Eggenstein‐Leopoldshafen Germany
| | - Maryam Rastegar
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology Eggenstein‐Leopoldshafen Germany
| | - Wildriss Viranaicken
- Université de La Réunion, INSERM, UMR 1187, Processus Infectieux en Milieu Insulaire Tropical (PIMIT), CNRS UMR9192, IRD UMR249 Saint‐Denis de La Réunion France
| | - David Couret
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
- CHU de La Réunion Saint‐Denis France
| | - Cynthia Planesse
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Uwe Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology Eggenstein‐Leopoldshafen Germany
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
- CHU de La Réunion Saint‐Denis France
| | - Christian Lefebvre d'Hellencourt
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| |
Collapse
|
29
|
Chen Z, Guo H, Lu Z, Sun K, Jin Q. Hyperglycemia aggravates spinal cord injury through endoplasmic reticulum stress mediated neuronal apoptosis, gliosis and activation. Biomed Pharmacother 2019; 112:108672. [PMID: 30784940 DOI: 10.1016/j.biopha.2019.108672] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 01/29/2019] [Accepted: 02/05/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hyperglycemia has been shown to influence prognostic outcome of spinal cord injury (SCI). However, the corresponding mechanism is not very clear. AIM This study is expected to explore the role of endoplasmic reticulum (ER) stress in hyperglycemia aggravated SCI. METHODS Hyperglycemia was established in rats by intraperitoneal (i.p.) injection of streptozotocin. SCI was performed at the T10 of spinal cord through weight dropping. ER stress was suppressed by oral gavage of 4-PBA. ER stress, histological change of the injured spinal cords, neuronal apoptosis, demyelination, glial proliferation, inflammatory factor production, blood-spinal cord barrier (BSCB) permeability, TJ (Occludin, Claudin5) and AJ (β-catenin, P120) protein degradation, and locomotor recovery were determined using western blotting, immunohistochemistry, HE staining, Evan's Blue assay, BBB scores and inclined plane test, respectively. In vitro, rat spinal cord neurons cells (RSCNCs) and cerebral microvascular endothelial cells (RCMECs) were stimulated with high glucose (HG) and/or thapsigargin (TG). The effects of HG and/or TG on RSCNCs apoptosis, and AJ and TJ expression by RCMECs were evaluated with flow cytometry and western blotting, respectively. RESULTS Hyperglycemic rats exhibited enhanced ER stress, increased neuronal apoptosis, aggravated demyelination, increased glial proliferation and inflammatory factors secretion, more serious BSCB disruption and disturbed locomotor recovery. ER stress inhibition alleviated hyperglycemia induced adverse effect on neuronal apoptosis and BSCB permeability, whereas showed little influence on glial activation and inflammation. CONCLUSION ER stress was aggravated in hyperglycemic rats after SCI, and subsequently promoted neuronal apoptosis and BSCB disruption in rats.
Collapse
Affiliation(s)
- Zhirong Chen
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Haohui Guo
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Zhidong Lu
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Kening Sun
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Qunhua Jin
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|