1
|
Bartholome O, Neirinckx V, De La Brassinne O, Desloovere J, Van Den Ackerveken P, Raedt R, Rogister B. Synaptic Vesicle Glycoprotein 2A Knockout in Parvalbumin and Somatostatin Interneurons Drives Seizures in the Postnatal Mouse Brain. J Neurosci 2025; 45:e1169242024. [PMID: 39753304 DOI: 10.1523/jneurosci.1169-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/15/2024] [Accepted: 12/10/2024] [Indexed: 02/21/2025] Open
Abstract
Synaptic vesicle glycoprotein 2A (SV2A) is a presynaptic protein targeted by the antiseizure drug levetiracetam. One or more of the three SV2 genes is expressed in all neurons and is essential to normal neurotransmission. Loss of SV2A results in a seizure phenotype in mice and mutations in humans are also linked to congenital seizures. How SV2A action impacts the epileptic phenotype remains unclear, especially among the diverse neuronal populations that regulate network excitability. This study explored how brain structure and function are affected by SV2A conditional knock-out (SV2A-cKO) in specific neural cell subtypes. We show that SV2A-cKO in all neurons of the postnatal brain triggers lethal seizures, suggesting that the seizures observed in earlier knock-out models were not due to aberrant brain development. Similar lethal seizures are detected in mice in which the loss of SV2A is limited to GABAergic neurons, whereas loss in excitatory neurons produces no noticeable phenotype. No apparent gender difference was ever observed. Further investigation revealed that SV2A-cKO in different GABAergic interneuron populations induces seizure, with variable timescales and severity. Most notably SV2A-cKO in parvalbumin interneurons (PV+) leads to lethal seizures in young animals, while SV2A-cKO in somatostatin (SST) inhibitory neurons results in seizures that were scarcely observed only in adult mice. These results support the crucial role SV2A plays in PV and SST interneurons and suggest that the action of levetiracetam may be due largely to effects on a subset of GABAergic interneurons.
Collapse
Affiliation(s)
- Odile Bartholome
- Nervous System Disorders and Therapy, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Virginie Neirinckx
- Nervous System Disorders and Therapy, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Orianne De La Brassinne
- Nervous System Disorders and Therapy, GIGA Institute, University of Liège, Liège 4000, Belgium
| | | | | | | | - Bernard Rogister
- Nervous System Disorders and Therapy, GIGA Institute, University of Liège, Liège 4000, Belgium
- Neurology Department, CHU, Academic Hospital, University of Liège, Liège 4000 Belgium
| |
Collapse
|
2
|
Song C, Zhao Y, Zhang J, Dong Z, Kang X, Pan Y, Du J, Gao Y, Zhang H, Xi Y, Ding H, Kuang F, Wang W, Luo C, Zhang Z, Zhao Q, Yang J, Jiang W, Wu S, Gao F. Spatial Distribution of Parvalbumin-Positive Fibers in the Mouse Brain and Their Alterations in Mouse Models of Temporal Lobe Epilepsy and Parkinson's Disease. Neurosci Bull 2023; 39:1683-1702. [PMID: 37523099 PMCID: PMC10603013 DOI: 10.1007/s12264-023-01083-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/27/2023] [Indexed: 08/01/2023] Open
Abstract
Parvalbumin interneurons belong to the major types of GABAergic interneurons. Although the distribution and pathological alterations of parvalbumin interneuron somata have been widely studied, the distribution and vulnerability of the neurites and fibers extending from parvalbumin interneurons have not been detailly interrogated. Through the Cre recombinase-reporter system, we visualized parvalbumin-positive fibers and thoroughly investigated their spatial distribution in the mouse brain. We found that parvalbumin fibers are widely distributed in the brain with specific morphological characteristics in different regions, among which the cortex and thalamus exhibited the most intense parvalbumin signals. In regions such as the striatum and optic tract, even long-range thick parvalbumin projections were detected. Furthermore, in mouse models of temporal lobe epilepsy and Parkinson's disease, parvalbumin fibers suffered both massive and subtle morphological alterations. Our study provides an overview of parvalbumin fibers in the brain and emphasizes the potential pathological implications of parvalbumin fiber alterations.
Collapse
Affiliation(s)
- Changgeng Song
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yan Zhao
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Jiajia Zhang
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ziyi Dong
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Xin Kang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuqi Pan
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Jinle Du
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yiting Gao
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Haifeng Zhang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ye Xi
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Hui Ding
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Fang Kuang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Wenting Wang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ceng Luo
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhengping Zhang
- Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710054, China
| | - Qinpeng Zhao
- Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710054, China
| | - Jiazhou Yang
- The Medical College of Yan'an University, Yan'an, 716000, China
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Shengxi Wu
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Fang Gao
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
3
|
Ábrahám H, Kojima H, Götzer K, Molnár A, Tornóczky T, Seress L. Development of parvalbumin-immunoreactive neurons in the postnatal human hippocampal formation. Front Neuroanat 2023; 17:1058370. [PMID: 36816519 PMCID: PMC9932602 DOI: 10.3389/fnana.2023.1058370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction: Parvalbumin (PV) is a calcium-binding protein present in fast-spiking GABAergic neurons, such as basket and axo-axonic cells. Previous studies in non-human primates reported prenatal expression of PV in the temporal archicortex including entorhinal cortex and hippocampal formation. In contrast, PV-immunoreactivity was observed only postnatally in the human entorhinal cortex. Regarding PV expression in the human hippocampal formation, no information is available. Methods: In this study, the neurochemical maturation of PV-immunoreactive interneurons was studied in the postnatal developing human hippocampal formation. Results: Before birth, no PV-immunoreactive neurons could be detected in the human hippocampus. At birth, only a few PV-immunoreactive neurons were visible in Ammon's horn. The first PV-immunoreactive cells in the hilus of the dentate gyrus appeared at the age of 1 month. Even at the age of 5 months, only a few PV-immunopositive cells were present in the dentate hilus. The number of cells and their dendritic and axonal arborization in Ammon's horn and in the dentate gyrus gradually increased with age. Even at the age of 2 years, dendritic tree and axons of PV-immunoreactive neurons were less complex than can be seen in 8 and 11 years old children. Discussion: Our results showed that long-lasting maturation of PV-immunoreactive interneurons follows the developmental sequence of the subfields of the human hippocampal formation and provides further morphological evidence for the long-lasting functional maturation of the human cortex.
Collapse
Affiliation(s)
- Hajnalka Ábrahám
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Pécs, Hungary,Center for Neuroscience, University of Pécs, Pécs, Hungary,Institute for the Psychology of Special Needs, Bárczi Gusztáv Faculty of Special Needs Education, Eötvös Loránd University, Budapest, Hungary,*Correspondence: Hajnalka Ábrahám
| | - Hisae Kojima
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Pécs, Hungary
| | - Katalin Götzer
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Pécs, Hungary
| | - Abigél Molnár
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Pécs, Hungary
| | - Tamás Tornóczky
- Department of Pathology, University of Pécs Medical School, Pécs, Hungary
| | - László Seress
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Pécs, Hungary,Center for Neuroscience, University of Pécs, Pécs, Hungary
| |
Collapse
|
4
|
Seelman A, Vu K, Buckmaster P, Mackie K, Field C, Johnson S, Wyeth M. Cannabinoid receptor 1-labeled boutons in the sclerotic dentate gyrus of epileptic sea lions. Epilepsy Res 2022; 184:106965. [PMID: 35724601 DOI: 10.1016/j.eplepsyres.2022.106965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 11/03/2022]
Abstract
Pathology in the dentate gyrus, including sclerosis, is a hallmark of temporal lobe epilepsy, and reduced inhibition to dentate granule cells may contribute to epileptogenesis. The perisomatic-targeting axonal boutons of parvalbumin-expressing interneurons decrease in proportion with granule cells in temporal lobe epilepsy. In contrast, dendrite-targeting axonal boutons of somatostatin-expressing interneurons sprout exuberantly in temporal lobe epilepsy. A third major class of GABAergic interneurons expresses cannabinoid receptor type 1 (CB1) on their terminal boutons, but there is conflicting evidence as to whether these boutons are increased or decreased in temporal lobe epilepsy. Naturally occurring temporal lobe epilepsy in California sea lions, with unilateral or bilateral sclerosis, offers the benefit of neuroanatomy and neuropathology akin to humans, but with the advantage that the entirety of both hippocampi from control and epileptic brains can be studied. Stereological quantification in the dentate gyrus revealed that sclerotic hippocampi from epileptic sea lions had fewer CB1-labeled boutons than controls. However, the reduction in the number of granule cells was greater, resulting in increased CB1-labeled boutons per granule cell in sclerotic hippocampi at temporal levels. This suggests that although CB1-expressing boutons are decreased in sclerotic dentate gyri, surviving cells have enhanced innervation from these boutons in epileptic sea lions.
Collapse
Affiliation(s)
- Amanda Seelman
- Department of Comparative Medicine, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA; College of Veterinary Medicine, Western University of Health Sciences, East 2nd Street, Pomona, CA 91766, USA
| | - Kristina Vu
- Department of Comparative Medicine, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA; College of Veterinary Medicine, Cornell University, 602 Tower Rd, Ithaca, NY 14853, USA
| | - Paul Buckmaster
- Department of Comparative Medicine, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Ken Mackie
- Department of Psychological & Brain Sciences, Indiana University, 1101 E 10th Street, Bloomington, IN 47405, USA; Gill Centre for Biomolecular Science, Indiana University, 702 North Walnut Grove Avenue, Bloomington, IN 47405, USA
| | - Cara Field
- The Marine Mammal Center, 2000 Bunker Road, Sausalito, CA 94965, USA
| | - Shawn Johnson
- The Marine Mammal Center, 2000 Bunker Road, Sausalito, CA 94965, USA
| | - Megan Wyeth
- Department of Comparative Medicine, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Mátyás A, Borbély E, Mihály A. Hippocampal Sclerosis in Pilocarpine Epilepsy: Survival of Peptide-Containing Neurons and Learning and Memory Disturbances in the Adult NMRI Strain Mouse. Int J Mol Sci 2021; 23:ijms23010204. [PMID: 35008630 PMCID: PMC8745054 DOI: 10.3390/ijms23010204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/28/2022] Open
Abstract
The present experiments reveal the alterations of the hippocampal neuronal populations in chronic epilepsy. The mice were injected with a single dose of pilocarpine. They had status epilepticus and spontaneously recurrent motor seizures. Three months after pilocarpine treatment, the animals were investigated with the Barnes maze to determine their learning and memory capabilities. Their hippocampi were analyzed 2 weeks later (at 3.5 months) with standard immunohistochemical methods and cell counting. Every animal displayed hippocampal sclerosis. The neuronal loss was evaluated with neuronal-N immunostaining, and the activation of the microglia was measured with Iba1 immunohistochemistry. The neuropeptide Y, parvalbumin, and calretinin immunoreactive structures were qualitatively and quantitatively analyzed in the hippocampal formation. The results were compared statistically to the results of the control mice. We detected neuronal loss and strongly activated microglia populations. Neuropeptide Y was significantly upregulated in the sprouting axons. The number of parvalbumin- and calretinin-containing interneurons decreased significantly in the Ammon’s horn and dentate gyrus. The epileptic animals displayed significantly worse learning and memory functions. We concluded that degeneration of the principal neurons, a numerical decrease of PV-containing GABAergic neurons, and strong peptidergic axonal sprouting were responsible for the loss of the hippocampal learning and memory functions.
Collapse
Affiliation(s)
- Adrienne Mátyás
- Department of Anatomy, Albert Szent-Györgyi Faculty of Medicine, University of Szeged, Kossuth L. sgt. 38, H-6724 Szeged, Hungary;
| | - Emőke Borbély
- Department of Medical Chemistry, University of Szeged, Dóm tér. 8, H-6720 Szeged, Hungary;
- Professional Pedagogical Service of Csongrád-Csanád County, Űrhajós u. 4, H-6723 Szeged, Hungary
| | - András Mihály
- Department of Anatomy, Albert Szent-Györgyi Faculty of Medicine, University of Szeged, Kossuth L. sgt. 38, H-6724 Szeged, Hungary;
- Correspondence:
| |
Collapse
|
6
|
Heylen L, Pham DH, De Meulemeester AS, Samarut É, Skiba A, Copmans D, Kazwiny Y, Vanden Berghe P, de Witte PAM, Siekierska A. Pericardial Injection of Kainic Acid Induces a Chronic Epileptic State in Larval Zebrafish. Front Mol Neurosci 2021; 14:753936. [PMID: 34720874 PMCID: PMC8551382 DOI: 10.3389/fnmol.2021.753936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is a common disorder of the brain characterized by spontaneous recurrent seizures, which develop gradually during a process called epileptogenesis. The mechanistic processes underlying the changes of brain tissue and networks toward increased seizure susceptibility are not fully understood. In rodents, injection of kainic acid (KA) ultimately leads to the development of spontaneous epileptic seizures, reflecting similar neuropathological characteristics as seen in patients with temporal lobe epilepsy (TLE). Although this model has significantly contributed to increased knowledge of epileptogenesis, it is technically demanding, costly to operate and hence not suitable for high-throughput screening of anti-epileptic drugs (AEDs). Zebrafish, a vertebrate with complementary advantages to rodents, is an established animal model for epilepsy research. Here, we generated a novel KA-induced epilepsy model in zebrafish larvae that we functionally and pharmacologically validated. KA was administered by pericardial injection at an early zebrafish larval stage. The epileptic phenotype induced was examined by quantification of seizure-like behavior using automated video recording, and of epileptiform brain activity measured via local field potential (LFP) recordings. We also assessed GFP-labeled GABAergic and RFP-labeled glutamatergic neurons in double transgenic KA-injected zebrafish larvae, and examined the GABA and glutamate levels in the larval heads by liquid chromatography with tandem mass spectrometry detection (LC-MS/MS). Finally, KA-injected larvae were exposed to five commonly used AEDs by immersion for pharmacological characterization of the model. Shortly after injection, KA induced a massive damage and inflammation in the zebrafish brain and seizure-like locomotor behavior. An abnormal reorganization of brain circuits was observed, a decrease in both GABAergic and glutamatergic neuronal population and their associated neurotransmitters. Importantly, these changes were accompanied by spontaneous and continuous epileptiform brain discharges starting after a short latency period, as seen in KA rodent models and reminiscent of human pathology. Three out of five AEDs tested rescued LFP abnormalities but did not affect the seizure-like behavior. Taken together, for the first time we describe a chemically-induced larval zebrafish epilepsy model offering unique insights into studying epileptogenic processes in vivo and suitable for high-throughput AED screening purposes and rapid genetic investigations.
Collapse
Affiliation(s)
- Lise Heylen
- Laboratory for Molecular Biodiscovery, KU Leuven, Leuven, Belgium
| | - Duc-Hung Pham
- Laboratory for Molecular Biodiscovery, KU Leuven, Leuven, Belgium
| | | | - Éric Samarut
- Department of Neurosciences, Research Center of the University of Montreal Hospital Center, University of Montreal, Montreal, QC, Canada.,Modelis Inc., Montreal, QC, Canada
| | - Adrianna Skiba
- Laboratory for Molecular Biodiscovery, KU Leuven, Leuven, Belgium
| | - Daniëlle Copmans
- Laboratory for Molecular Biodiscovery, KU Leuven, Leuven, Belgium
| | - Youcef Kazwiny
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
7
|
Santos VR, Melo IS, Pacheco ALD, Castro OWD. Life and death in the hippocampus: What's bad? Epilepsy Behav 2021; 121:106595. [PMID: 31759972 DOI: 10.1016/j.yebeh.2019.106595] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 01/13/2023]
Abstract
The hippocampal formation is crucial for the generation and regulation of several brain functions, including memory and learning processes; however, it is vulnerable to neurological disorders, such as epilepsy. Temporal lobe epilepsy (TLE), the most common type of epilepsy, changes the hippocampal circuitry and excitability, under the contribution of both neuronal degeneration and abnormal neurogenesis. Classically, neurodegeneration affects sensitive areas of the hippocampus, such as dentate gyrus (DG) hilus, as well as specific fields of the Ammon's horn, CA3, and CA1. In addition, the proliferation, migration, and abnormal integration of newly generated hippocampal granular cells (GCs) into the brain characterize TLE neurogenesis. Robust studies over the years have intensely discussed the effects of death and life in the hippocampus, though there are still questions to be answered about their possible benefits and risks. Here, we review the impacts of death and life in the hippocampus, discussing its influence on TLE, providing new perspectives or insights for the implementation of new possible therapeutic targets. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Victor Rodrigues Santos
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil.
| | - Igor Santana Melo
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, Brazil
| | | | - Olagide Wagner de Castro
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, Brazil.
| |
Collapse
|
8
|
Wang X, Zhang Y, Cheng W, Gao Y, Li S. Decreased excitatory drive onto hilar neuronal nitric oxide synthase expressing interneurons in chronic models of epilepsy. Brain Res 2021; 1764:147467. [PMID: 33831408 DOI: 10.1016/j.brainres.2021.147467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/29/2022]
Abstract
Excitation-inhibition imbalance of GABAergic interneurons is predisposed to develop chronic temporal lobe epilepsy (TLE). We have previously shown that virtually every neuronal nitric oxide synthase (nNOS)-positive cell is a GABAergic inhibitory interneuron in the denate gyrus. The present study was designed to quantify the number of nNOS-containing hilar interneurons using stereology in pilocapine- and kainic acid (KA)-exposed transgenic adult mice that expressed GFP under the nNOS promoter. In addition, we studied the properties of miniature excitatory postsynaptic current (mEPSC) and paired-pulse response ratio (PPR) of evoked EPSC in nNOS interneurons using whole cell recording techniques. Results showed that there were fewer nNOS-immunoreactive interneurons of chronically epileptic animals. Importantly, patch-clamp recordings revealed reduction in mEPSC frequency, indicating diminished global excitatory input. In contrast, PPR of evoked EPSC following the granule cell layer stimulation was increased in epileptic animals suggesting reduced neurotransmitter release from granule cell input. In summary, we propose that impaired excitatory drive onto hippocampal nNOS interneurons may be implicated in the development of refractory epilepsy.
Collapse
Affiliation(s)
- Xiaona Wang
- Henan Neurodevelopment Engineering Research Center for Children, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Outer Circle Dong Road, Zhengzhou, 450018, Henan, China.
| | - Yaodong Zhang
- Henan Neurodevelopment Engineering Research Center for Children, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Outer Circle Dong Road, Zhengzhou, 450018, Henan, China
| | - Weyland Cheng
- Department of Orthopaedics, Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Outer Circle Dong Road, Zhengzhou 450018, Henan, China
| | - Yinbo Gao
- Henan Neurodevelopment Engineering Research Center for Children, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Outer Circle Dong Road, Zhengzhou, 450018, Henan, China
| | - Shao Li
- Department of Physiology, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| |
Collapse
|
9
|
de Melo IS, Dos Santos YMO, Pacheco ALD, Costa MA, de Oliveira Silva V, Freitas-Santos J, de Melo Bastos Cavalcante C, Silva-Filho RC, Leite ACR, Gitaí DGL, Duzzioni M, Sabino-Silva R, Borbely AU, de Castro OW. Role of Modulation of Hippocampal Glucose Following Pilocarpine-Induced Status Epilepticus. Mol Neurobiol 2021; 58:1217-1236. [PMID: 33123979 DOI: 10.1007/s12035-020-02173-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023]
Abstract
Status epilepticus (SE) is defined as continuous and self-sustaining seizures, which trigger hippocampal neurodegeneration, mitochondrial dysfunction, oxidative stress, and energy failure. During SE, the neurons become overexcited, increasing energy consumption. Glucose uptake is increased via the sodium glucose cotransporter 1 (SGLT1) in the hippocampus under epileptic conditions. In addition, modulation of glucose can prevent neuronal damage caused by SE. Here, we evaluated the effect of increased glucose availability in behavior of limbic seizures, memory dysfunction, neurodegeneration process, neuronal activity, and SGLT1 expression. Vehicle (VEH, saline 0.9%, 1 μL) or glucose (GLU; 1, 2 or 3 mM, 1 μL) were administered into hippocampus of male Wistar rats (Rattus norvegicus) before or after pilocarpine to induce SE. Behavioral analysis of seizures was performed for 90 min during SE. The memory and learning processes were analyzed by the inhibitory avoidance test. After 24 h of SE, neurodegeneration process, neuronal activity, and SGLT1 expression were evaluated in hippocampal and extrahippocampal regions. Modulation of hippocampal glucose did not protect memory dysfunction followed by SE. Our results showed that the administration of glucose after pilocarpine reduced the severity of seizures, as well as the number of limbic seizures. Similarly, glucose after SE reduced cell death and neuronal activity in hippocampus, subiculum, thalamus, amygdala, and cortical areas. Finally, glucose infusion elevated the SGLT1 expression in hippocampus. Taken together our data suggest that possibly the administration of intrahippocampal glucose protects brain in the earlier stage of epileptogenic processes via an important support of SGLT1.
Collapse
Affiliation(s)
- Igor Santana de Melo
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | | | - Amanda Larissa Dias Pacheco
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Maisa Araújo Costa
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Vanessa de Oliveira Silva
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Jucilene Freitas-Santos
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | | | - Reginaldo Correia Silva-Filho
- Bioenergetics Laboratory, Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Ana Catarina Rezende Leite
- Bioenergetics Laboratory, Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Daniel Góes Leite Gitaí
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Marcelo Duzzioni
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Robinson Sabino-Silva
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia, MG, Brazil
| | - Alexandre Urban Borbely
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Olagide Wagner de Castro
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil.
| |
Collapse
|
10
|
Ábrahám H, Molnár JE, Sóki N, Gyimesi C, Horváth Z, Janszky J, Dóczi T, Seress L. Etiology-related Degree of Sprouting of Parvalbumin-immunoreactive Axons in the Human Dentate Gyrus in Temporal Lobe Epilepsy. Neuroscience 2020; 448:55-70. [PMID: 32931846 DOI: 10.1016/j.neuroscience.2020.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/22/2020] [Accepted: 09/05/2020] [Indexed: 11/16/2022]
Abstract
In the present study, we examined parvalbumin-immunoreactive cells and axons in the dentate gyrus of surgically resected tissues of therapy-resistant temporal lobe epilepsy (TLE) patients with different etiologies. Based on MRI results, five groups of patients were formed: (1) hippocampal sclerosis (HS), (2) malformation of cortical development, (3) malformation of cortical development + HS, (4) tumor-induced TLE, (5) patients with negative MRI result. Four control samples were also included in the study. Parvalbumin-immunoreactive cells were observed mostly in subgranular location in the dentate hilus in controls, in tumor-induced TLE, in malformation of cortical development and in MR-negative cases. In patients with HS, significant decrease in the number of hilar parvalbumin-immunoreactive cells and large numbers of ectopic parvalbumin-containing neurons were detected in the dentate gyrus' molecular layer. The ratio of ectopic/normally-located cells was significantly higher in HS than in other TLE groups. In patients with HS, robust sprouting of parvalbumin-immunoreactive axons were frequently visible in the molecular layer. The extent of sprouting was significantly higher in TLE patients with HS than in other groups. Strong sprouting of parvalbumin-immunoreactive axons were frequently observed in patients who had childhood febrile seizure. Significant correlation was found between the level of sprouting of axons and the ratio of ectopic/normally-located parvalbumin-containing cells. Electron microscopy demonstrated that sprouted parvalbumin-immunoreactive axons terminate on proximal and distal dendritic shafts as well as on dendritic spines of granule cells. Our results indicate alteration of target profile of parvalbumin-immunoreactive neurons in HS that contributes to the known synaptic remodeling in TLE.
Collapse
Affiliation(s)
- Hajnalka Ábrahám
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Szigeti u 12., Pécs 7624, Hungary.
| | - Judit E Molnár
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Szigeti u 12., Pécs 7624, Hungary
| | - Noémi Sóki
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Szigeti u 12., Pécs 7624, Hungary
| | - Csilla Gyimesi
- Department of Neurology, University of Pécs Medical School, Rét u. 2., Pécs 7623, Hungary
| | - Zsolt Horváth
- Department of Neurosurgery, University of Pécs Medical School, Rét u. 2., Pécs 7623, Hungary
| | - József Janszky
- Department of Neurology, University of Pécs Medical School, Rét u. 2., Pécs 7623, Hungary
| | - Tamás Dóczi
- Department of Neurosurgery, University of Pécs Medical School, Rét u. 2., Pécs 7623, Hungary
| | - László Seress
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Szigeti u 12., Pécs 7624, Hungary
| |
Collapse
|
11
|
Bartholome O, de la Brassinne Bonardeaux O, Neirinckx V, Rogister B. A Composite Sketch of Fast-Spiking Parvalbumin-Positive Neurons. Cereb Cortex Commun 2020; 1:tgaa026. [PMID: 34296100 PMCID: PMC8153048 DOI: 10.1093/texcom/tgaa026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 01/28/2023] Open
Abstract
Parvalbumin-positive neurons are inhibitory neurons that release GABA and are mostly represented by fast-spiking basket or chandelier cells. They constitute a minor neuronal population, yet their peculiar profiles allow them to react quickly to any event in the brain under normal or pathological conditions. In this review, we will summarize the current knowledge about the fundamentals of fast-spiking parvalbumin-positive neurons, focusing on their morphology and specific channel/protein content. Next, we will explore their development, maturation, and migration in the brain. Finally, we will unravel their potential contribution to the physiopathology of epilepsy.
Collapse
Affiliation(s)
| | | | | | - Bernard Rogister
- GIGA-Neurosciences, University of Liege, 4000 Liège, Belgium
- Neurology Department, CHU, Academic Hospital, University of Liege, 4000 Liège, Belgium
| |
Collapse
|
12
|
ROCK/PKA Inhibition Rescues Hippocampal Hyperexcitability and GABAergic Neuron Alterations in a Oligophrenin-1 Knock-Out Mouse Model of X-Linked Intellectual Disability. J Neurosci 2020; 40:2776-2788. [PMID: 32098904 DOI: 10.1523/jneurosci.0462-19.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 01/19/2023] Open
Abstract
Oligophrenin-1 (Ophn1) encodes a Rho GTPase activating protein whose mutations cause X-linked intellectual disability (XLID) in humans. Loss of function of Ophn1 leads to impairments in the maturation and function of excitatory and inhibitory synapses, causing deficits in synaptic structure, function and plasticity. Epilepsy is a frequent comorbidity in patients with Ophn1-dependent XLID, but the cellular bases of hyperexcitability are poorly understood. Here we report that male mice knock-out (KO) for Ophn1 display hippocampal epileptiform alterations, which are associated with changes in parvalbumin-, somatostatin- and neuropeptide Y-positive interneurons. Because loss of function of Ophn1 is related to enhanced activity of Rho-associated protein kinase (ROCK) and protein kinase A (PKA), we attempted to rescue Ophn1-dependent pathological phenotypes by treatment with the ROCK/PKA inhibitor fasudil. While acute administration of fasudil had no impact on seizure activity, seven weeks of treatment in adulthood were able to correct electrographic, neuroanatomical and synaptic alterations of Ophn1 deficient mice. These data demonstrate that hyperexcitability and the associated changes in GABAergic markers can be rescued at the adult stage in Ophn1-dependent XLID through ROCK/PKA inhibition.SIGNIFICANCE STATEMENT In this study we demonstrate enhanced seizure propensity and impairments in hippocampal GABAergic circuitry in Ophn1 mouse model of X-linked intellectual disability (XLID). Importantly, the enhanced susceptibility to seizures, accompanied by an alteration of GABAergic markers were rescued by Rho-associated protein kinase (ROCK)/protein kinase A (PKA) inhibitor fasudil, a drug already tested on humans. Because seizures can significantly impact the quality of life of XLID patients, the present data suggest a potential therapeutic pathway to correct alterations in GABAergic networks and dampen pathological hyperexcitability in adults with XLID.
Collapse
|
13
|
Chang BS, Krishnan V, Dulla CG, Jette N, Marsh ED, Dacks PA, Whittemore V, Poduri A. Epilepsy Benchmarks Area I: Understanding the Causes of the Epilepsies and Epilepsy-Related Neurologic, Psychiatric, and Somatic Conditions. Epilepsy Curr 2020; 20:5S-13S. [PMID: 31965828 PMCID: PMC7031801 DOI: 10.1177/1535759719895280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The 2014 NINDS Benchmarks for Epilepsy Research included area I: Understand the causes of the epilepsies and epilepsy-related neurologic, psychiatric, and somatic conditions. In preparation for the 2020 Curing Epilepsies Conference, where the Benchmarks will be revised, this review will cover scientific progress toward that Benchmark, with emphasize on studies since 2016.
Collapse
Affiliation(s)
- Bernard S Chang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Vaishnav Krishnan
- Departments of Neurology, Neuroscience and Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Chris G Dulla
- Department of Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Nathalie Jette
- Department of Neurology, Icahn School of Medicine at Mt. Sinai, New York, NY, USA.,Department of Population Health Science and Policy, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Eric D Marsh
- Department of Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | | - Vicky Whittemore
- Division of Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MA, USA
| | - Annapurna Poduri
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|