1
|
Pietsch C, Konrad J, Wernicke von Siebenthal E, Pawlak P. Multiple faces of stress in the zebrafish ( Danio rerio) brain. Front Physiol 2024; 15:1373234. [PMID: 38711953 PMCID: PMC11070943 DOI: 10.3389/fphys.2024.1373234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/19/2024] [Indexed: 05/08/2024] Open
Abstract
The changing expressions of certain genes as a consequence of exposure to stressors has not been studied in detail in the fish brain. Therefore, a stress trial with zebrafish was conducted, aiming at identifying relevant gene regulation pathways in different regions of the brain. As acute stressors within this trial, feed rewarding, feed restriction, and air exposure have been used. The gene expression data from the experimental fish brains have been analyzed by means of principal component analyses (PCAs), whereby the individual genes have been compiled according to the regulation pathways in the brain. The results did not indicate a mutual response across the treatment and gender groups. To evaluate whether a similar sample structure belonging to a large sample size would have allowed the classification of the gene expression patterns according to the treatments, the data have been bootstrapped and used for building random forest models. These revealed a high accuracy of the classifications, but different genes in the female and male zebrafish were found to have contributed to the classification algorithms the most. These analyses showed that less than eight genes are, in most cases, sufficient for an accurate classification. Moreover, mainly genes belonging to the stress axis, to the isotocin regulation pathways, or to the serotonergic pathways had the strongest influence on the outcome of the classification models.
Collapse
Affiliation(s)
- Constanze Pietsch
- School of Agricultural, Forest and Food Sciences (HAFL), University of Applied Sciences Bern (BFH), Zollikofen, Switzerland
| | - Jonathan Konrad
- School of Agricultural, Forest and Food Sciences (HAFL), University of Applied Sciences Bern (BFH), Zollikofen, Switzerland
| | - Elena Wernicke von Siebenthal
- School of Agricultural, Forest and Food Sciences (HAFL), University of Applied Sciences Bern (BFH), Zollikofen, Switzerland
| | - Paulina Pawlak
- School of Agricultural, Forest and Food Sciences (HAFL), University of Applied Sciences Bern (BFH), Zollikofen, Switzerland
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Biradar A, Ganesh CB. Serotonin-immunoreactivity in the brain of the cichlid fish Oreochromis mossambicus. Anat Rec (Hoboken) 2024; 307:320-344. [PMID: 36938774 DOI: 10.1002/ar.25204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/21/2023]
Abstract
Serotonin (5-HT) is an evolutionarily conserved monoaminergic neurotransmitter found in the central nervous system and peripheral nervous system across invertebrates and vertebrates. Although the distribution of 5-HT-immunoreactive (5-HT-ir) neurons is investigated in various fish species, the organization of these neurons in cichlid fishes is poorly understood. These fish are known for their adaptability to diverse environments, food habits, and complex mating and breeding behaviors, including parental care. In this paper, we describe the organization of 5-HT-ir neurons in the brain of the cichlid fish Oreochromis mossambicus. Aggregations of 5-HT-ir neurons were spotted in the granule cell layer of the olfactory bulb and near the ventricular border in the preoptic area and magnocellular subdivisions of the nucleus preopticus. Although the presence of 5-HT-ir cells and fibers in the hypothalamic and thalamic regions, cerebellum, and raphe nuclei was comparable to that of other teleosts, the current study reveals the occurrence of 5-HT-ir cells and fibers for the first time in some areas, such as the nucleus posterior tuberis, nucleus oculomotorius, and nucleus paracommissuralis in the tilapia. While the presence of 5-HT-ir cells and fibers in gustatory centers suggests a role for serotonin in the processing of gustatory signals, distinctive pattern of 5-HT immunoreactivity was seen in the telencephalon, pretectal areas, mesencephalic, and rhombencephalic regions, suggesting a cichlid fish specific organization of the serotonergic system. In conclusion, the 5-HT system in the tilapia brain may serve several neuroendocrine and neuromodulatory roles, including regulation of reproduction and sensorimotor processes.
Collapse
Affiliation(s)
- Ashwini Biradar
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad, India
| | - C B Ganesh
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad, India
| |
Collapse
|
3
|
Schuppe ER, Ballagh I, Akbari N, Fang W, Perelmuter JT, Radtke CH, Marchaterre MA, Bass AH. Midbrain node for context-specific vocalisation in fish. Nat Commun 2024; 15:189. [PMID: 38167237 PMCID: PMC10762186 DOI: 10.1038/s41467-023-43794-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
Vocalizations communicate information indicative of behavioural state across divergent social contexts. Yet, how brain regions actively pattern the acoustic features of context-specific vocal signals remains largely unexplored. The midbrain periaqueductal gray (PAG) is a major site for initiating vocalization among mammals, including primates. We show that PAG neurons in a highly vocal fish species (Porichthys notatus) are activated in distinct patterns during agonistic versus courtship calling by males, with few co-activated during a non-vocal behaviour, foraging. Pharmacological manipulations within vocally active PAG, but not hindbrain, sites evoke vocal network output to sonic muscles matching the temporal features of courtship and agonistic calls, showing that a balance of inhibitory and excitatory dynamics is likely necessary for patterning different call types. Collectively, these findings support the hypothesis that vocal species of fish and mammals share functionally comparable PAG nodes that in some species can influence the acoustic structure of social context-specific vocal signals.
Collapse
Affiliation(s)
- Eric R Schuppe
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
- Department of Physiology, University of California San Francisco School of Medicine, San Francisco, CA, 94305, USA
| | - Irene Ballagh
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
- Department of Zoology, The University of British Columbia, Vancouver, V6T 1Z4, BC, Canada
| | - Najva Akbari
- Department of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
- Department of Biology, Stanford University, Palo Alto, CA, 94305, USA
| | - Wenxuan Fang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
- Graduate Program in Neuroscience, The University of British Columbia, Vancouver, V6T 1Z4, BC, Canada
| | | | - Caleb H Radtke
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | | | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
4
|
Mueller T. The Everted Amygdala of Ray-Finned Fish: Zebrafish Makes a Case. BRAIN, BEHAVIOR AND EVOLUTION 2022; 97:321-335. [PMID: 35760049 DOI: 10.1159/000525669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
The amygdala, a complex array of nuclei in the forebrain, controls emotions and emotion-related behaviors in vertebrates. Current research aims to understand the amygdala's evolution in ray-finned fish such as zebrafish because of the region's relevance for social behavior and human psychiatric disorders. Clear-cut molecular definitions of the amygdala and its evolutionary-developmental relationship to the one of mammals are critical for zebrafish models of affective disorders and autism. In this review, I argue that the prosomeric model and a focus on the olfactory system's organization provide ideal tools for discovering deep ancestral relationships between the emotional systems of zebrafish and mammals. The review's focus is on the "extended amygdala," which refers to subpallial amygdaloid territories including the central (autonomic) and the medial (olfactory) amygdala required for reproductive and social behaviors. Amphibians, sauropsids, and lungfish share many characteristics with the basic amygdala ground plan of mammals, as molecular and hodological studies have shown. Further exploration of the evolution of the amygdala in basally derived fish vertebrates requires researchers to test these "tetrapod-based" concepts. Historically, this has been a daunting task because the forebrains of basally derived fish vertebrates look very different from those of more familiar tetrapod ones. An extreme case are ray-finned fish (Actinopterygii) like zebrafish because their telencephalon develops through a distinct outward-growing process called eversion. To this day, scientists have struggled to determine how the everted telencephalon compares to non-actinopterygian vertebrates. Using the teleost zebrafish as a genetic model, comparative neurologists began to establish quantifiable molecular definitions that allow direct comparisons between ray-finned fish and tetrapods. In this review, I discuss how the most recent discovery of the zebrafish amygdala ground plan offers an opportunity to identify the developmental constraints of amygdala evolution and function. In addition, I explain how the zebrafish prethalamic eminence (PThE) topologically relates to the medial amygdala proper and the nucleus of the lateral olfactory tract (nLOT). In fact, I consider these previously misinterpreted olfactory structures the most critical missing evolutionary links between actinopterygian and tetrapod amygdalae. In this context, I will also explain why recognizing both the PThE and the nLOT is crucial to understanding the telencephalon eversion. Recognizing these anatomical hallmarks allows direct comparisons of the amygdalae of zebrafish and mammals. Ultimately, the new concepts of the zebrafish amygdala will overcome current dogmas and reach a holistic understanding of amygdala circuits of cognition and emotion in actinopterygians.
Collapse
Affiliation(s)
- Thomas Mueller
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
5
|
Schuppe ER, Zhang MD, Perelmuter JT, Marchaterre MA, Bass AH. Oxytocin-like receptor expression in evolutionarily conserved nodes of a vocal network associated with male courtship in a teleost fish. J Comp Neurol 2022; 530:903-922. [PMID: 34614539 PMCID: PMC8898023 DOI: 10.1002/cne.25257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 12/19/2022]
Abstract
Neuropeptides, including oxytocin-like peptides, are a conserved group of hormones that regulate a wide range of social behaviors, including vocal communication. In the current study, we evaluate whether putative brain sites for the actions of isotocin (IT), the oxytocin (OT) homolog of teleost fishes are associated with vocal courtship and circuitry in the plainfin midshipman fish (Porichthys notatus). During the breeding season, nesting males produce advertisement calls known as "hums" to acoustically court females at night and attract them to nests. We first identify IT receptor (ITR) mRNA in evolutionarily conserved regions of the forebrain preoptic area (POA), anterior hypothalamus (AH), and midbrain periaqueductal gray (PAG), and in two topographically separate populations within the hindbrain vocal pattern generator- duration-coding vocal prepacemaker (VPP) and amplitude-coding vocal motor nuclei (VMN) that also innervate vocal muscles. We also verify that ITR expression overlaps known distribution sites of OT-like immunoreactive fibers. Next, using phosphorylated ribosomal subunit 6 (pS6) as a marker for activated neurons, we demonstrate that ITR-containing neurons in the anterior parvocellular POA, AH, PAG, VPP, and VMN are activated in humming males. Posterior parvocellular and magno/gigantocellular divisions of the POA remain constitutively active in nonhumming males that are also in a reproductive state. Together with prior studies of midshipman fish and other vertebrates, our findings suggest that IT-signaling influences male courtship behavior, in part, by acting on brain regions that broadly influence behavioral state (POA) as well as the initiation (POA and PAG) and temporal structure (VPP and VMN) of advertisement hums.
Collapse
Affiliation(s)
| | | | | | | | - Andrew H. Bass
- Department of Neurobiology and Behavior, Cornell University
| |
Collapse
|
6
|
Azeredo R, Machado M, Pereiro P, Barany A, Mancera JM, Costas B. Acute Inflammation Induces Neuroendocrine and Opioid Receptor Genes Responses in the Seabass Dicentrarchus labrax Brain. BIOLOGY 2022; 11:biology11030364. [PMID: 35336737 PMCID: PMC8945561 DOI: 10.3390/biology11030364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 12/05/2022]
Abstract
Simple Summary It is generally accepted (in mammals and in teleost fish, too) that stressful conditions affect the performance of an immune response. What is still far from being known is at what extend does an immune process affects the neuroendocrine system. Vaccination for instance, is nowadays a common practice in aquaculture and little is known about its physiological implications other than immunization. Here is a first approach to the study of the European seabass’ brain gene expression patterns in response to a peripheral inflammatory process. Genes related to the stress response were focused, along with those related to the opioid system. Increased expression of certain genes suggests the activation of a stress response triggered by inflammatory signals. Additionally, contrasting expression patterns of the same gene (increased vs decreased) in the different brain regions (as well as the time needed for changes to happen) point at different functions. These results clearly show the reactivity of different brain responses to an immune response, highlighting the importance of further studies on downstream implications (behavior, feeding, welfare, reproduction). Abstract In fish, as observed in mammals, any stressful event affects the immune system to a larger or shorter extent. The neuroendocrine-immune axis is a bi-directional network of mobile compounds and their receptors that are shared between both systems (neuroendocrine and immune) and that regulate their respective responses. However, how and to what extent immunity modulates the neuroendocrine system is not yet fully elucidated. This study was carried out to understand better central gene expression response patterns in a high-valued farmed fish species to an acute peripheral inflammation, focusing on genes related to the hypothalamus-pituitary-interrenal axis and the opioid system. European seabass, Dicentrarchus labrax, were intra-peritoneally injected with either Freund’s Incomplete Adjuvant to induce a local inflammatory response or Hanks Balances Salt Solution to serve as the control. An undisturbed group was also included to take into account the effects due to handling procedures. To evaluate the outcomes of an acute immune response, fish were sampled at 4, 24, 48, and 72 h post-injection. The brain was sampled and dissected for isolation of different regions: telencephalon, optic tectum, hypothalamus, and pituitary gland. The expression of several genes related to the neuroendocrine response was measured by real-time PCR. Data were statistically analyzed by ANOVA and discriminant analyses to obtain these genes’ responsiveness for the different brain regions. Serotonergic receptors were upregulated in the telencephalon, whereas the optic tectum inhibited these transcription genes. The hypothalamus showed a somewhat delayed response in which serotonin and glucocorticoid receptors were concerned. Still, the hypothalamic corticotropin-releasing hormone played an important role in differentiating fish undergoing an inflammatory response from those not under such conditions. Opioid receptors gene expression increased in both the hypothalamus and the telencephalon, while in the optic tectum, most were downregulated. However, no changes in the pituitary gland were observed. The different brain regions under immune stimulation demonstrated clear, distinct responses regarding gene transcription rates as well as the time period needed for the effect to occur. Further, more integrative studies are required to associate functions to the evaluated genes more safely and better understand the triggering mechanisms.
Collapse
Affiliation(s)
- Rita Azeredo
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.M.); (P.P.)
- Correspondence: (R.A.); (B.C.)
| | - Marina Machado
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.M.); (P.P.)
| | - Patricia Pereiro
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.M.); (P.P.)
- Instituto de Investigaciones Marinas (IIM-CSIC), 36208 Vigo, Spain
| | - Andre Barany
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), University of Cadiz, 11519 Puerto Real, Spain; (A.B.); (J.M.M.)
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), University of Cadiz, 11519 Puerto Real, Spain; (A.B.); (J.M.M.)
| | - Benjamín Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.M.); (P.P.)
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade do Porto, 4050-313 Porto, Portugal
- Correspondence: (R.A.); (B.C.)
| |
Collapse
|
7
|
Serotonin (5-hydroxytryptamine)-immunoreactive neurons in the brain of the viviparous fish Gambusia affinis. J Chem Neuroanat 2021; 118:102033. [PMID: 34563637 DOI: 10.1016/j.jchemneu.2021.102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 11/23/2022]
Abstract
The monoaminergic neurotransmitter serotonin (5-HT) acts as a neuromodulator and is associated with a wide range of functions in fish. In this investigation, 5-HT immunoreactivity was studied in the central nervous system (CNS) of the viviparous mosquitofish Gambusia affinis. 5-HT-immunoreactive (5-HT-ir) cells/fibres were observed throughout the subdivisions of ventral and dorsal telencephalon including the olfactory bulb. Several intensely stained 5-HT-ir cells and/or fibres were detected in different areas of the hypothalamus as well as the proximal pars distalis of the pituitary gland. 5-HT-ir cells were restricted to the dorsal and ventral part of the pretectal diencephalic cluster, but only fibres were detected in the anterior, ventromedial and posterior subdivisions of the thalamic nucleus and in the preglomerular complex. In the mesencephalon, 5-HT-ir perikarya, and fibres were seen in the optic tectum, midbrain tegmentum and torus semicircularis. A cluster of prominently labelled 5-HT-ir neurons was observed in the superior raphe nucleus, whereas numerous 5-HT-ir fibres were distributed throughout the rhombencephalic divisions. In addition, a bundle of rostrocaudally running 5-HT-ir fibres was noticed in the spinal cord. This is the first detailed neuroanatomical study in a viviparous teleost, reporting a widespread distribution of 5-HT-ir somata and fibres in the CNS. The results of this study provide new insights into the evolutionarily well conserved nature of the monoaminergic system in the CNS of vertebrates and suggest a role for 5-HT in regulation of several physiological, behavioural and neuroendocrine functions in viviparous teleosts.
Collapse
|
8
|
Dunlap KD, Koukos HM, Chagnaud BP, Zakon HH, Bass AH. Vocal and Electric Fish: Revisiting a Comparison of Two Teleost Models in the Neuroethology of Social Behavior. Front Neural Circuits 2021; 15:713105. [PMID: 34489647 PMCID: PMC8418312 DOI: 10.3389/fncir.2021.713105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/12/2021] [Indexed: 11/30/2022] Open
Abstract
The communication behaviors of vocal fish and electric fish are among the vertebrate social behaviors best understood at the level of neural circuits. Both forms of signaling rely on midbrain inputs to hindbrain pattern generators that activate peripheral effectors (sonic muscles and electrocytes) to produce pulsatile signals that are modulated by frequency/repetition rate, amplitude and call duration. To generate signals that vary by sex, male phenotype, and social context, these circuits are responsive to a wide range of hormones and neuromodulators acting on different timescales at multiple loci. Bass and Zakon (2005) reviewed the behavioral neuroendocrinology of these two teleost groups, comparing how the regulation of their communication systems have both converged and diverged during their parallel evolution. Here, we revisit this comparison and review the complementary developments over the past 16 years. We (a) summarize recent work that expands our knowledge of the neural circuits underlying these two communication systems, (b) review parallel studies on the action of neuromodulators (e.g., serotonin, AVT, melatonin), brain steroidogenesis (via aromatase), and social stimuli on the output of these circuits, (c) highlight recent transcriptomic studies that illustrate how contemporary molecular methods have elucidated the genetic regulation of social behavior in these fish, and (d) describe recent studies of mochokid catfish, which use both vocal and electric communication, and that use both vocal and electric communication and consider how these two systems are spliced together in the same species. Finally, we offer avenues for future research to further probe how similarities and differences between these two communication systems emerge over ontogeny and evolution.
Collapse
Affiliation(s)
- Kent D Dunlap
- Department of Biology, Trinity College, Hartford, CT, United States
| | - Haley M Koukos
- Department of Biology, Trinity College, Hartford, CT, United States
| | - Boris P Chagnaud
- Institute of Biology, Karl-Franzens-University Graz, Graz, Austria
| | - Harold H Zakon
- Department of Neuroscience, University of Texas at Austin, Austin, TX, United States.,Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, United States
| |
Collapse
|
9
|
Chivite M, Leal E, Míguez JM, Cerdá-Reverter JM. Distribution of two isoforms of tryptophan hydroxylase in the brain of rainbow trout (Oncorhynchus mykiss). An in situ hybridization study. Brain Struct Funct 2021; 226:2265-2278. [PMID: 34213591 PMCID: PMC8354878 DOI: 10.1007/s00429-021-02322-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/15/2021] [Indexed: 11/02/2022]
Abstract
Serotonin (5-HT) is one of the principal neurotransmitters in the nervous system of vertebrates. It is initially synthesized by hydroxylation of tryptophan (Trp) by means of tryptophan hydroxylase or TPH which is the rate-limiting enzyme in the production of 5-HT. In most vertebrates, there are two isoforms of TPH present, TPH1 and TPH2, which exhibit different catalytic or substrate specificity as well as different expression domains. Studies carried out in mammals show that only tph2 is expressed in the brain whereas tph1-mRNA is primarily localized in the enterochromaffin cells and pineal gland. A large number of neurons are also considered to be serotonergic or "pseudo-serotonergic" as they accumulate and release 5-HT yet do not produce it as no amine-synthetic enzymes are expressed, yet a combination of 5-HT transporters is observed. Therefore, tph expression is considered to be the only specific marker of 5-HT-producing neurons that can discriminate true 5-HT from pseudo-serotonergic neurons. This work examined in situ hybridization to study the mRNA distribution of one paralogue for tph1 and tph2 in the central nervous system of rainbow trout. Results show a segregated expression for both paralogues that predominantly match previous immunocytochemical studies. This study thus adds valuable information to the scarce analyses focusing on the central distribution of the expression of serotonergic markers, particularly tphs, in the vertebrate brain thus characterizing the true serotonergic brain territories.
Collapse
Affiliation(s)
- Mauro Chivite
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, 36310, Vigo, Spain
| | - Esther Leal
- Food Intake Control Group, Departamento de Fisiología y Biotecnología de Peces, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), 12595, Castellón, Spain
| | - Jesús M Míguez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, 36310, Vigo, Spain
| | - Jose Miguel Cerdá-Reverter
- Food Intake Control Group, Departamento de Fisiología y Biotecnología de Peces, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), 12595, Castellón, Spain.
| |
Collapse
|
10
|
5-HT neurons of the medullary raphe contribute to respiratory control in toads. Respir Physiol Neurobiol 2021; 293:103717. [PMID: 34119703 DOI: 10.1016/j.resp.2021.103717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/12/2021] [Accepted: 06/08/2021] [Indexed: 11/23/2022]
Abstract
Air-breathing vertebrates undergo respiratory adjustments when faced with disturbances in the gas composition of the environment. In mammals, the medullary raphe nuclei are involved in the neuronal pathway that mediates the ventilatory responses to hypoxia and hypercarbia. We investigate whether the serotoninergic neurons of the medullary raphe nuclei of toads (Rhinella diptycha) play a functional role in respiratory control during resting conditions (room air), hypercarbia (5% CO2), and hypoxia (5% O2). The raphe nuclei were located and identified based on the location of the serotoninergic neurons in the brainstem. We then lesioned the medullary raphe (raphe pallidus, obscurus and magnus) with anti-SERT-SAP and measured ventilation in both control and lesioned groups and we observed that serotonin (5-HT) specific chemical lesions of the medullary raphe caused reduced respiratory responses to both hypercarbia and hypoxia. In summary, we report that the serotoninergic neurons of the medullary raphe of the cururu toad Rhinella diptycha participate in the chemoreflex responses during hypercarbia and hypoxia, but not during resting conditions. This current evidence in anurans, together with the available data in mammals, brings insights to the evolution of brain sites, such as the medullary raphe, involved in the ventilatory chemoreflex in vertebrates.
Collapse
|