1
|
Guan L, Qiu M, Li N, Zhou Z, Ye R, Zhong L, Xu Y, Ren J, Liang Y, Shao X, Fang J, Fang J, Du J. Inhibitory gamma-aminobutyric acidergic neurons in the anterior cingulate cortex participate in the comorbidity of pain and emotion. Neural Regen Res 2025; 20:2838-2854. [PMID: 39314159 PMCID: PMC11826466 DOI: 10.4103/nrr.nrr-d-24-00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/19/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Pain is often comorbid with emotional disorders such as anxiety and depression. Hyperexcitability of the anterior cingulate cortex has been implicated in pain and pain-related negative emotions that arise from impairments in inhibitory gamma-aminobutyric acid neurotransmission. This review primarily aims to outline the main circuitry (including the input and output connectivity) of the anterior cingulate cortex and classification and functions of different gamma-aminobutyric acidergic neurons; it also describes the neurotransmitters/neuromodulators affecting these neurons, their intercommunication with other neurons, and their importance in mental comorbidities associated with chronic pain disorders. Improving understanding on their role in pain-related mental comorbidities may facilitate the development of more effective treatments for these conditions. However, the mechanisms that regulate gamma-aminobutyric acidergic systems remain elusive. It is also unclear as to whether the mechanisms are presynaptic or postsynaptic. Further exploration of the complexities of this system may reveal new pathways for research and drug development.
Collapse
Affiliation(s)
- Lu Guan
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Mengting Qiu
- Fuchun Community Health Service Center of Fuyang District, Hangzhou, Zhejiang Province, China
| | - Na Li
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Zhengxiang Zhou
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Ru Ye
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Liyan Zhong
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yashuang Xu
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Junhui Ren
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yi Liang
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Xiaomei Shao
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Junfan Fang
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Junying Du
- Department of Neurobiology and Acupuncture Research, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Zhu P, Shu H, Wang Y, Wang X, Zhao Y, Hu J, Peng J, Shang X, Tian Z, Chen J, Wang T. MAEST: accurately spatial domain detection in spatial transcriptomics with graph masked autoencoder. Brief Bioinform 2025; 26:bbaf086. [PMID: 40052440 PMCID: PMC11886571 DOI: 10.1093/bib/bbaf086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/27/2025] [Accepted: 02/17/2025] [Indexed: 03/10/2025] Open
Abstract
Spatial transcriptomics (ST) technology provides gene expression profiles with spatial context, offering critical insights into cellular interactions and tissue architecture. A core task in ST is spatial domain identification, which involves detecting coherent regions with similar spatial expression patterns. However, existing methods often fail to fully exploit spatial information, leading to limited representational capacity and suboptimal clustering accuracy. Here, we introduce MAEST, a novel graph neural network model designed to address these limitations in ST data. MAEST leverages graph masked autoencoders to denoise and refine representations while incorporating graph contrastive learning to prevent feature collapse and enhance model robustness. By integrating one-hop and multi-hop representations, MAEST effectively captures both local and global spatial relationships, improving clustering precision. Extensive experiments across diverse datasets, including the human brain, mouse hippocampus, olfactory bulb, brain, and embryo, demonstrate that MAEST outperforms seven state-of-the-art methods in spatial domain identification. Furthermore, MAEST showcases its ability to integrate multi-slice data, identifying joint domains across horizontal tissue sections with high accuracy. These results highlight MAEST's versatility and effectiveness in unraveling the spatial organization of complex tissues. The source code of MAEST can be obtained at https://github.com/clearlove2333/MAEST.
Collapse
Affiliation(s)
- Pengfei Zhu
- School of Computer Science, Northwestern Polytechnical University, 1 Dongxiang Road, Xi’an 710072, China
- Key Laboratory of Big Data Storage and Management, Ministry of Industry and Information Technology, Northwestern Polytechnical University, 1 Dongxiang Road, Xi’an 710072, China
| | - Han Shu
- School of Computer Science, Northwestern Polytechnical University, 1 Dongxiang Road, Xi’an 710072, China
- Key Laboratory of Big Data Storage and Management, Ministry of Industry and Information Technology, Northwestern Polytechnical University, 1 Dongxiang Road, Xi’an 710072, China
| | - Yongtian Wang
- School of Computer Science, Northwestern Polytechnical University, 1 Dongxiang Road, Xi’an 710072, China
- Key Laboratory of Big Data Storage and Management, Ministry of Industry and Information Technology, Northwestern Polytechnical University, 1 Dongxiang Road, Xi’an 710072, China
| | - Xiaofeng Wang
- General Surgery Department, The Affiliated Hospital of Northwest University: Xi’an No 3 Hospital, Xi’an 710018, China
| | - Yuan Zhao
- School of Computer Science, Northwestern Polytechnical University, 1 Dongxiang Road, Xi’an 710072, China
- Key Laboratory of Big Data Storage and Management, Ministry of Industry and Information Technology, Northwestern Polytechnical University, 1 Dongxiang Road, Xi’an 710072, China
| | - Jialu Hu
- School of Computer Science, Northwestern Polytechnical University, 1 Dongxiang Road, Xi’an 710072, China
- Key Laboratory of Big Data Storage and Management, Ministry of Industry and Information Technology, Northwestern Polytechnical University, 1 Dongxiang Road, Xi’an 710072, China
| | - Jiajie Peng
- School of Computer Science, Northwestern Polytechnical University, 1 Dongxiang Road, Xi’an 710072, China
- Key Laboratory of Big Data Storage and Management, Ministry of Industry and Information Technology, Northwestern Polytechnical University, 1 Dongxiang Road, Xi’an 710072, China
| | - Xuequn Shang
- School of Computer Science, Northwestern Polytechnical University, 1 Dongxiang Road, Xi’an 710072, China
- Key Laboratory of Big Data Storage and Management, Ministry of Industry and Information Technology, Northwestern Polytechnical University, 1 Dongxiang Road, Xi’an 710072, China
| | - Zhen Tian
- School of Computer Science and Artificial Intelligence, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Jing Chen
- School of Computer Science and Engineering, Xi’an University of Technology, No. 5 South Jinhua Road, Xi’an 710048, China
| | - Tao Wang
- School of Computer Science, Northwestern Polytechnical University, 1 Dongxiang Road, Xi’an 710072, China
- Key Laboratory of Big Data Storage and Management, Ministry of Industry and Information Technology, Northwestern Polytechnical University, 1 Dongxiang Road, Xi’an 710072, China
| |
Collapse
|
3
|
McKinnon C, Mo C, Sherman SM. DISRUPTION OF TRANSTHALAMIC CIRCUITRY FROM PRIMARY VISUAL CORTEX IMPAIRS VISUAL DISCRIMINATION IN MICE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637190. [PMID: 39975026 PMCID: PMC11839038 DOI: 10.1101/2025.02.07.637190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Layer 5 (L5) of the cortex provides strong driving input to higher-order thalamic nuclei, such as the pulvinar in the visual system, forming the basis of cortico-thalamo-cortical (transthalamic) circuits. These circuits provide a communication route between cortical areas in parallel to direct corticocortical connections, but their specific role in perception and behavior remains unclear. Using targeted optogenetic inhibition in mice performing a visual discrimination task, we selectively suppressed the corticothalamic input from L5 cells in primary visual cortex (V1) at their terminals in pulvinar. This suppresses transthalamic circuits from V1; furthermore, any effect on direct corticocortical projections and local V1 circuitry would thus result from transthalamic inputs (e.g., V1 to pulvinar back to V1 (Miller-Hansen and Sherman, 2022). Such suppression of transthalamic processing during visual stimulus presentation of drifting gratings significantly impaired discrimination performance across different orientations. The impact on behavior was specific to the portion of visual space that retinotopically coincided with the V1 L5 corticothalamic inhibition. These results highlight the importance of incorporating L5-initiated transthalamic circuits into cortical processing frameworks, particularly those addressing how the hierarchical propagation of sensory signals supports perceptual decision-making.
Collapse
Affiliation(s)
- C. McKinnon
- Committee on Computational Neuroscience, University of Chicago, Illinois, USA
| | - C. Mo
- Department of Neurobiology, University of Chicago, Illinois, USA
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - S. M. Sherman
- Department of Neurobiology, University of Chicago, Illinois, USA
| |
Collapse
|
4
|
Kondo H, Zaborszky L. Basal Forebrain Projections to the Retrosplenial and Cingulate Cortex in Rats. J Comp Neurol 2025; 533:e70027. [PMID: 39924777 PMCID: PMC11808200 DOI: 10.1002/cne.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 12/26/2024] [Accepted: 01/19/2025] [Indexed: 02/11/2025]
Abstract
The basal forebrain (BF) plays a crucial role in modulating cortical activation through its widespread projections across the cortical mantle. Previous anatomical studies have demonstrated that each cortical region receives a specific projection from the BF. In this study, we examined BF cholinergic and non-cholinergic projections to the retrosplenial cortex (RSC) and anterior cingulate cortex (ACC) using two retrograde tracers, Fast Blue (FB) and Fluoro-Gold (FG), in combination with choline acetyltransferase (ChAT) immunostaining in rats. The RSC and ACC receive cholinergic and non-cholinergic projections mainly from the medial part of the horizontal limb of the diagonal band (HDB) and the vertical limb of the diagonal band (VDB). The main difference of BF projections to the RSC, ACC, and prelimbic cortex (PL) is that the ACC and PL receive projections from the rostral half of the medial globus pallidus (GP), whereas the RSC receives stronger non-cholinergic projections from the VDB and medial septum (MS). As the injection site shifts from rostral (PL) to caudal (RSC) through the ACC, the strong GP and weak MS/VDB projections of non-cholinergic neurons are reversed. Cholinergic projection neurons make up a similar proportion of the total projection neurons in both ACC (37%) and RSC (33%) injections. Double retrograde tracer injections in the RSC and ACC revealed a small number of double-labeled projection neurons in the MS/VDB and HDB. These findings indicate that the ACC and RSC receive both spatially overlapping and differential projections from the BF, with the cholinergic and non-cholinergic projections varying between BF subregions and different rostrocaudal cortical regions.
Collapse
Affiliation(s)
- Hideki Kondo
- Center for Molecular and Behavioral NeuroscienceRutgers, the State University of New JerseyNewarkNew JerseyUSA
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral NeuroscienceRutgers, the State University of New JerseyNewarkNew JerseyUSA
| |
Collapse
|
5
|
Cassidy RM, Macias AV, Lagos WN, Ugorji C, Callaway EM. Complementary Organization of Mouse Driver and Modulator Cortico-thalamo-cortical Circuits. J Neurosci 2025; 45:e1167242024. [PMID: 39824633 PMCID: PMC11780356 DOI: 10.1523/jneurosci.1167-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 01/20/2025] Open
Abstract
Corticocortical (CC) projections in the visual system facilitate hierarchical processing of sensory information. In addition to direct CC connections, indirect cortico-thalamo-cortical (CTC) pathways through the pulvinar nucleus of the thalamus can relay sensory signals and mediate cortical interactions according to behavioral demands. While the pulvinar connects extensively to the entire visual cortex, it is unknown whether transthalamic pathways link all cortical areas or whether they follow systematic organizational rules. Because mouse pulvinar neurons projecting to different areas are spatially intermingled, their input/output relationships have been difficult to characterize using traditional anatomical methods. To determine the organization of CTC circuits, we mapped the higher visual areas (HVAs) of male and female mice with intrinsic signal imaging and targeted five pulvinar→HVA pathways for projection-specific rabies tracing. We aligned postmortem cortical tissue to in vivo maps for precise quantification of the areas and cell types projecting to each pulvinar→HVA population. Layer 5 corticothalamic (L5CT) "driver" inputs to the pulvinar originate predominantly from primary visual cortex (V1), consistent with the CC hierarchy. L5CT inputs from lateral HVAs specifically avoid driving reciprocal connections, consistent with the "no-strong-loops" hypothesis. Conversely, layer 6 corticothalamic (L6CT) "modulator" inputs are distributed across areas and are biased toward reciprocal connections. Unlike previous studies in primates, we find that every HVA receives disynaptic input from the superior colliculus. CTC circuits in the pulvinar thus depend on both target HVA and input cell type, such that driving and modulating higher-order pathways follow complementary connection rules similar to those governing first-order CT circuits.
Collapse
Affiliation(s)
- Rachel M Cassidy
- The Salk Institute for Biological Studies, La Jolla, California 92037
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California 92037
| | - Angel V Macias
- The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Willian N Lagos
- The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Chiamaka Ugorji
- The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Edward M Callaway
- The Salk Institute for Biological Studies, La Jolla, California 92037
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California 92037
| |
Collapse
|
6
|
Bouvier G, Sanzeni A, Hamada E, Brunel N, Scanziani M. Inter- and Intrahemispheric Sources of Vestibular Signals to V1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624137. [PMID: 39605728 PMCID: PMC11601413 DOI: 10.1101/2024.11.18.624137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Head movements are sensed by the vestibular organs. Unlike classical senses, signals from vestibular organs are not conveyed to a dedicated cortical area but are broadcast throughout the cortex. Surprisingly, the routes taken by vestibular signals to reach the cortex are still largely uncharted. Here we show that the primary visual cortex (V1) receives real-time head movement signals - direction, velocity, and acceleration - from the ipsilateral pulvinar and contralateral visual cortex. The ipsilateral pulvinar provides the main head movement signal, with a bias toward contraversive movements (e.g. clockwise movements in left V1). Conversely, the contralateral visual cortex provides head movement signals during ipsiversive movements. Crucially, head movement variables encoded in V1 are already encoded in the pulvinar, suggesting that those variables are computed subcortically. Thus, the convergence of inter- and intrahemispheric signals endows V1 with a rich representation of the animal's head movements.
Collapse
Affiliation(s)
- Guy Bouvier
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Alessandro Sanzeni
- Department of Computing Sciences, Bocconi University, 20100 Milan, Italy
- Center for Theoretical Neuroscience and Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Elizabeth Hamada
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Nicolas Brunel
- Department of Computing Sciences, Bocconi University, 20100 Milan, Italy
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Massimo Scanziani
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Petty GH, Bruno RM. Attentional modulation of secondary somatosensory and visual thalamus of mice. eLife 2024; 13:RP97188. [PMID: 39601499 PMCID: PMC11602186 DOI: 10.7554/elife.97188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
Each sensory modality has its own primary and secondary thalamic nuclei. While the primary thalamic nuclei are well understood to relay sensory information from the periphery to the cortex, the role of secondary sensory nuclei is elusive. We trained head-fixed mice to attend to one sensory modality while ignoring a second modality, namely to attend to touch and ignore vision, or vice versa. Arrays were used to record simultaneously from the secondary somatosensory thalamus (POm) and secondary visual thalamus (LP). In mice trained to respond to tactile stimuli and ignore visual stimuli, POm was robustly activated by touch and largely unresponsive to visual stimuli. A different pattern was observed when mice were trained to respond to visual stimuli and ignore touch, with POm now more robustly activated during visual trials. This POm activity was not explained by differences in movements (i.e. whisking, licking, pupil dilation) resulting from the two tasks. Post hoc histological reconstruction of array tracks through POm revealed that subregions varied in their degree of plasticity. LP exhibited similar phenomena. We conclude that behavioral training reshapes activity in secondary thalamic nuclei. Secondary nuclei respond to the same behaviorally relevant, reward-predicting stimuli regardless of stimulus modality.
Collapse
Affiliation(s)
- Gordon H Petty
- Department of Neuroscience, Columbia UniversityNew YorkUnited States
- Department of Physiology, Anatomy, & Genetics, University of OxfordOxfordUnited Kingdom
| | - Randy M Bruno
- Department of Neuroscience, Columbia UniversityNew YorkUnited States
- Department of Physiology, Anatomy, & Genetics, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
8
|
Leow YN, Barlowe A, Luo C, Osako Y, Jazayeri M, Sur M. Sensory History Drives Adaptive Neural Geometry in LP/Pulvinar-Prefrontal Cortex Circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.16.623977. [PMID: 39605622 PMCID: PMC11601498 DOI: 10.1101/2024.11.16.623977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Prior expectations guide attention and support perceptual filtering for efficient processing during decision-making. Here we show that during a visual discrimination task, mice adaptively use prior stimulus history to guide ongoing choices by estimating differences in evidence between consecutive trials (| Δ Dir |). The thalamic lateral posterior (LP)/pulvinar nucleus provides robust inputs to the Anterior Cingulate Cortex (ACC), which has been implicated in selective attention and predictive processing, but the function of the LP-ACC projection is unknown. We found that optogenetic manipulations of LP-ACC axons disrupted animals' ability to effectively estimate and use information across stimulus history, leading to | Δ Dir |-dependent ipsilateral biases. Two-photon calcium imaging of LP-ACC axons revealed an engagement-dependent low-dimensional organization of stimuli along a curved manifold. This representation was scaled by | Δ Dir | in a manner that emphasized greater deviations from prior evidence. Thus, our work identifies the LP-ACC pathway as essential for selecting and evaluating stimuli relative to prior evidence to guide decisions.
Collapse
|
9
|
Petty GH, Bruno RM. Attentional modulation of secondary somatosensory and visual thalamus of mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586242. [PMID: 38585833 PMCID: PMC10996504 DOI: 10.1101/2024.03.22.586242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Each sensory modality has its own primary and secondary thalamic nuclei. While the primary thalamic nuclei are well understood to relay sensory information from the periphery to the cortex, the role of secondary sensory nuclei is elusive. We trained head-fixed mice to ateend to one sensory modality while ignoring a second modality, namely to ateend to touch and ignore vision, or vice versa. Arrays were used to record simultaneously from secondary somatosensory thalamus (POm) and secondary visual thalamus (LP). In mice trained to respond to tactile stimuli and ignore visual stimuli, POm was robustly activated by touch and largely unresponsive to visual stimuli. A different pateern was observed when mice were trained to respond to visual stimuli and ignore touch, with POm now more robustly activated during visual trials. This POm activity was not explained by differences in movements (i.e., whisking, licking, pupil dilation) resulting from the two tasks. Post hoc histological reconstruction of array tracks through POm revealed that subregions varied in their degree of plasticity. LP exhibited similar phenomena. We conclude that behavioral training reshapes activity in secondary thalamic nuclei. Secondary nuclei respond to the same behaviorally relevant, reward-predicting stimuli regardless of stimulus modality.
Collapse
Affiliation(s)
- Gordon H Petty
- Department of Neuroscience, Columbia University, New York, NY 10027 USA
- Department of Physiology, Anatomy, & Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Randy M Bruno
- Department of Neuroscience, Columbia University, New York, NY 10027 USA
- Department of Physiology, Anatomy, & Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
10
|
Nakamura H, Ohta K. Understanding subcortical projections to the lateral posterior thalamic nucleus and its subregions using retrograde neural tracing. Front Neuroanat 2024; 18:1430636. [PMID: 39170852 PMCID: PMC11335648 DOI: 10.3389/fnana.2024.1430636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
The rat lateral posterior thalamic nucleus (LP) is composed of the rostromedial (LPrm), lateral (LPl), and caudomedial parts, with LPrm and LPl being areas involved in information processing within the visual cortex. Nevertheless, the specific differences in the subcortical projections to the LPrm and LPl remain elusive. In this study, we aimed to reveal the subcortical regions that project axon fibers to the LPl and LPrm using a retrograde neural tracer, Fluorogold (FG). After FG injection into the LPrm or LPl, the area was visualized immunohistochemically. Retrogradely labeled neurons from the LPrm were distributed in the retina and the region from the diencephalon to the medulla oblongata. Diencephalic labeling was found in the reticular thalamic nucleus (Rt), zona incerta (ZI), ventral lateral geniculate nucleus (LGv), intergeniculate leaflet (IGL), and hypothalamus. In the midbrain, prominent labeling was found in the periaqueductal gray (PAG) and deep layers of the superior colliculus. Additionally, retrograde labeling was observed in the cerebellar and trigeminal nuclei. When injected into the LPl, several cell bodies were labeled in the visual-related regions, including the retina, LGv, IGL, and olivary pretectal nucleus (OPT), as well as in the Rt and anterior pretectal nucleus (APT). Less labeling was found in the cerebellum and medulla oblongata. When the number of retrogradely labeled neurons from the LPrm or LPl was compared as a percentage of total subcortical labeling, a larger percentage of subcortical inputs to the LPl included projections from the APT, OPT, and Rt, whereas a large proportion of subcortical inputs to the LPrm originated from the ZI, reticular formation, and PAG. These results suggest that LPrm not only has visual but also multiple sensory-and motor-related functions, whereas the LPl takes part in a more visual-specific role. This study enhances our understanding of subcortical neural circuits in the thalamus and may contribute to our exploration of the mechanisms and disorders related to sensory perception and sensory-motor integration.
Collapse
Affiliation(s)
- Hisashi Nakamura
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Japan
| | - Keisuke Ohta
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Japan
- Advanced Imaging Research Center, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
11
|
Lindsay AJ, Gallello I, Caracheo BF, Seamans JK. Reconfiguration of Behavioral Signals in the Anterior Cingulate Cortex Based on Emotional State. J Neurosci 2024; 44:e1670232024. [PMID: 38637155 PMCID: PMC11154859 DOI: 10.1523/jneurosci.1670-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024] Open
Abstract
Behaviors and their execution depend on the context and emotional state in which they are performed. The contextual modulation of behavior likely relies on regions such as the anterior cingulate cortex (ACC) that multiplex information about emotional/autonomic states and behaviors. The objective of the present study was to understand how the representations of behaviors by ACC neurons become modified when performed in different emotional states. A pipeline of machine learning techniques was developed to categorize and classify complex, spontaneous behaviors in male rats from the video. This pipeline, termed Hierarchical Unsupervised Behavioural Discovery Tool (HUB-DT), discovered a range of statistically separable behaviors during a task in which motivationally significant outcomes were delivered in blocks of trials that created three unique "emotional contexts." HUB-DT was capable of detecting behaviors specific to each emotional context and was able to identify and segregate the portions of a neural signal related to a behavior and to emotional context. Overall, ∼10× as many neurons responded to behaviors in a contextually dependent versus a fixed manner, highlighting the extreme impact of emotional state on representations of behaviors that were precisely defined based on detailed analyses of limb kinematics. This type of modulation may be a key mechanism that allows the ACC to modify the behavioral output based on emotional states and contextual demands.
Collapse
Affiliation(s)
- Adrian J Lindsay
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T2B5, Canada
| | - Isabella Gallello
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T2B5, Canada
| | - Barak F Caracheo
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T2B5, Canada
| | - Jeremy K Seamans
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T2B5, Canada
| |
Collapse
|
12
|
Ugolini G, Graf W. Pathways from the superior colliculus and the nucleus of the optic tract to the posterior parietal cortex in macaque monkeys: Functional frameworks for representation updating and online movement guidance. Eur J Neurosci 2024; 59:2792-2825. [PMID: 38544445 DOI: 10.1111/ejn.16314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 05/22/2024]
Abstract
The posterior parietal cortex (PPC) integrates multisensory and motor-related information for generating and updating body representations and movement plans. We used retrograde transneuronal transfer of rabies virus combined with a conventional tracer in macaque monkeys to identify direct and disynaptic pathways to the arm-related rostral medial intraparietal area (MIP), the ventral lateral intraparietal area (LIPv), belonging to the parietal eye field, and the pursuit-related lateral subdivision of the medial superior temporal area (MSTl). We found that these areas receive major disynaptic pathways via the thalamus from the nucleus of the optic tract (NOT) and the superior colliculus (SC), mainly ipsilaterally. NOT pathways, targeting MSTl most prominently, serve to process the sensory consequences of slow eye movements for which the NOT is the key sensorimotor interface. They potentially contribute to the directional asymmetry of the pursuit and optokinetic systems. MSTl and LIPv receive feedforward inputs from SC visual layers, which are potential correlates for fast detection of motion, perceptual saccadic suppression and visual spatial attention. MSTl is the target of efference copy pathways from saccade- and head-related compartments of SC motor layers and head-related reticulospinal neurons. They are potential sources of extraretinal signals related to eye and head movement in MSTl visual-tracking neurons. LIPv and rostral MIP receive efference copy pathways from all SC motor layers, providing online estimates of eye, head and arm movements. Our findings have important implications for understanding the role of the PPC in representation updating, internal models for online movement guidance, eye-hand coordination and optic ataxia.
Collapse
Affiliation(s)
- Gabriella Ugolini
- Paris-Saclay Institute of Neuroscience (NeuroPSI), UMR9197 CNRS - Université Paris-Saclay, Campus CEA Saclay, Saclay, France
| | - Werner Graf
- Department of Physiology and Biophysics, Howard University, Washington, DC, USA
| |
Collapse
|
13
|
Dinh TNA, Moon HS, Kim SG. Separation of bimodal fMRI responses in mouse somatosensory areas into V1 and non-V1 contributions. Sci Rep 2024; 14:6302. [PMID: 38491035 PMCID: PMC10943206 DOI: 10.1038/s41598-024-56305-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/05/2024] [Indexed: 03/18/2024] Open
Abstract
Multisensory integration is necessary for the animal to survive in the real world. While conventional methods have been extensively used to investigate the multisensory integration process in various brain areas, its long-range interactions remain less explored. In this study, our goal was to investigate interactions between visual and somatosensory networks on a whole-brain scale using 15.2-T BOLD fMRI. We compared unimodal to bimodal BOLD fMRI responses and dissected potential cross-modal pathways with silencing of primary visual cortex (V1) by optogenetic stimulation of local GABAergic neurons. Our data showed that the influence of visual stimulus on whisker activity is higher than the influence of whisker stimulus on visual activity. Optogenetic silencing of V1 revealed that visual information is conveyed to whisker processing via both V1 and non-V1 pathways. The first-order ventral posteromedial thalamic nucleus (VPM) was functionally affected by non-V1 sources, while the higher-order posterior medial thalamic nucleus (POm) was predominantly modulated by V1 but not non-V1 inputs. The primary somatosensory barrel field (S1BF) was influenced by both V1 and non-V1 inputs. These observations provide valuable insights for into the integration of whisker and visual sensory information.
Collapse
Affiliation(s)
- Thi Ngoc Anh Dinh
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, 16419, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Hyun Seok Moon
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, 16419, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, 16419, South Korea.
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea.
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, South Korea.
| |
Collapse
|
14
|
Cortes N, Ladret HJ, Abbas-Farishta R, Casanova C. The pulvinar as a hub of visual processing and cortical integration. Trends Neurosci 2024; 47:120-134. [PMID: 38143202 DOI: 10.1016/j.tins.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/26/2023] [Accepted: 11/26/2023] [Indexed: 12/26/2023]
Abstract
The pulvinar nucleus of the thalamus is a crucial component of the visual system and plays significant roles in sensory processing and cognitive integration. The pulvinar's extensive connectivity with cortical regions allows for bidirectional communication, contributing to the integration of sensory information across the visual hierarchy. Recent findings underscore the pulvinar's involvement in attentional modulation, feature binding, and predictive coding. In this review, we highlight recent advances in clarifying the pulvinar's circuitry and function. We discuss the contributions of the pulvinar to signal modulation across the global cortical network and place these findings within theoretical frameworks of cortical processing, particularly the global neuronal workspace (GNW) theory and predictive coding.
Collapse
Affiliation(s)
- Nelson Cortes
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montreal, QC, Canada
| | - Hugo J Ladret
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montreal, QC, Canada; Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix-Marseille Université, Marseille, 13005, France
| | - Reza Abbas-Farishta
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montreal, QC, Canada
| | - Christian Casanova
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
15
|
Schneider L, Dominguez-Vargas AU, Gibson L, Wilke M, Kagan I. Visual, delay, and oculomotor timing and tuning in macaque dorsal pulvinar during instructed and free choice memory saccades. Cereb Cortex 2023; 33:10877-10900. [PMID: 37724430 DOI: 10.1093/cercor/bhad333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 07/16/2023] [Accepted: 08/16/2023] [Indexed: 09/20/2023] Open
Abstract
Causal perturbations suggest that primate dorsal pulvinar plays a crucial role in target selection and saccade planning, though its basic neuronal properties remain unclear. Some functional aspects of dorsal pulvinar and interconnected frontoparietal areas-e.g. ipsilesional choice bias after inactivation-are similar. But it is unknown if dorsal pulvinar shares oculomotor properties of cortical circuitry, in particular delay and choice-related activity. We investigated such properties in macaque dorsal pulvinar during instructed and free-choice memory saccades. Most recorded units showed visual (12%), saccade-related (30%), or both types of responses (22%). Visual responses were primarily contralateral; diverse saccade-related responses were predominantly post-saccadic with a weak contralateral bias. Memory delay and pre-saccadic enhancement was infrequent (11-9%)-instead, activity was often suppressed during saccade planning (25%) and further during execution (15%). Surprisingly, only few units exhibited classical visuomotor patterns combining cue and continuous delay activity or pre-saccadic ramping; moreover, most spatially-selective neurons did not encode the upcoming decision during free-choice delay. Thus, in absence of a visible goal, the dorsal pulvinar has a limited role in prospective saccade planning, with patterns partially complementing its frontoparietal partners. Conversely, prevalent visual and post-saccadic responses imply its participation in integrating spatial goals with processing across saccades.
Collapse
Affiliation(s)
- Lukas Schneider
- Decision and Awareness Group, Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Goettingen 37077, Germany
- Department of Cognitive Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, Goettingen 37075, Germany
| | - Adan-Ulises Dominguez-Vargas
- Decision and Awareness Group, Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Goettingen 37077, Germany
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, QC H3C 3J7, Canada
| | - Lydia Gibson
- Decision and Awareness Group, Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Goettingen 37077, Germany
- Department of Cognitive Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, Goettingen 37075, Germany
| | - Melanie Wilke
- Decision and Awareness Group, Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Goettingen 37077, Germany
- Department of Cognitive Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, Goettingen 37075, Germany
- DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Robert-Koch-Str. 40, Göttingen 37075, Germany
- Leibniz ScienceCampus Primate Cognition, Kellnerweg 4, Goettingen 37077, Germany
| | - Igor Kagan
- Decision and Awareness Group, Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Goettingen 37077, Germany
- Leibniz ScienceCampus Primate Cognition, Kellnerweg 4, Goettingen 37077, Germany
| |
Collapse
|
16
|
Markicevic M, Sturman O, Bohacek J, Rudin M, Zerbi V, Fulcher BD, Wenderoth N. Neuromodulation of striatal D1 cells shapes BOLD fluctuations in anatomically connected thalamic and cortical regions. eLife 2023; 12:e78620. [PMID: 37824184 PMCID: PMC10569790 DOI: 10.7554/elife.78620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/21/2023] [Indexed: 10/13/2023] Open
Abstract
Understanding how the brain's macroscale dynamics are shaped by underlying microscale mechanisms is a key problem in neuroscience. In animal models, we can now investigate this relationship in unprecedented detail by directly manipulating cellular-level properties while measuring the whole-brain response using resting-state fMRI. Here, we focused on understanding how blood-oxygen-level-dependent (BOLD) dynamics, measured within a structurally well-defined striato-thalamo-cortical circuit in mice, are shaped by chemogenetically exciting or inhibiting D1 medium spiny neurons (MSNs) of the right dorsomedial caudate putamen (CPdm). We characterize changes in both the BOLD dynamics of individual cortical and subcortical brain areas, and patterns of inter-regional coupling (functional connectivity) between pairs of areas. Using a classification approach based on a large and diverse set of time-series properties, we found that CPdm neuromodulation alters BOLD dynamics within thalamic subregions that project back to dorsomedial striatum. In the cortex, changes in local dynamics were strongest in unimodal regions (which process information from a single sensory modality) and weakened along a hierarchical gradient towards transmodal regions. In contrast, a decrease in functional connectivity was observed only for cortico-striatal connections after D1 excitation. Our results show that targeted cellular-level manipulations affect local BOLD dynamics at the macroscale, such as by making BOLD dynamics more predictable over time by increasing its self-correlation structure. This contributes to ongoing attempts to understand the influence of structure-function relationships in shaping inter-regional communication at subcortical and cortical levels.
Collapse
Affiliation(s)
- Marija Markicevic
- Neural Control of Movement Lab, HEST, ETH ZürichZurichSwitzerland
- Neuroscience Center Zurich, University and ETH ZurichZurichSwitzerland
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale UniversityNew HavenUnited States
| | - Oliver Sturman
- Neuroscience Center Zurich, University and ETH ZurichZurichSwitzerland
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, HEST, ETH ZurichZurichSwitzerland
| | - Johannes Bohacek
- Neuroscience Center Zurich, University and ETH ZurichZurichSwitzerland
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, HEST, ETH ZurichZurichSwitzerland
| | - Markus Rudin
- Institute of Pharmacology and Toxicology, University of ZurichZurichSwitzerland
- Institute for Biomedical Engineering, University and ETH ZurichZurichSwitzerland
| | - Valerio Zerbi
- Neuro-X Institute, School of Engineering (STI), EPFLLausanneSwitzerland
- CIBM Centre for Biomedical ImagingLausanneSwitzerland
| | - Ben D Fulcher
- School of Physics, The University of SydneyCamperdownAustralia
| | - Nicole Wenderoth
- Neural Control of Movement Lab, HEST, ETH ZürichZurichSwitzerland
- Neuroscience Center Zurich, University and ETH ZurichZurichSwitzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE)SingaporeSingapore
| |
Collapse
|
17
|
Uras I, Karayel-Basar M, Sahin B, Baykal AT. Detection of early proteomic alterations in 5xFAD Alzheimer's disease neonatal mouse model via MALDI-MSI. Alzheimers Dement 2023; 19:4572-4589. [PMID: 36934297 DOI: 10.1002/alz.13008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 03/20/2023]
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disorder, characterized by memory deficit and dementia. AD is considered a multifactorial disorder where multiple processes like amyloid-beta and tau accumulation, axonal degeneration, synaptic plasticity, and autophagic processes plays an important role. In this study, the spatial proteomic differences in the neonatal 5xFAD brain tissue were investigated using MALDI-MSI coupled to LC-MS/MS, and the statistically significantly altered proteins were associated with AD. Thirty-five differentially expressed proteins (DEPs) between the brain tissues of neonatal 5xFAD and their littermate mice were detected via MALDI-MSI technique. Among the 35 proteins identified, 26 of them were directly associated with AD. Our results indicated a remarkable resemblance in the protein expression profiles of neonatal 5xFAD brain when compared to AD patient specimens or AD mouse models. These findings showed that the molecular alterations in the AD brain existed even at birth and that some proteins are neurodegenerative presages in neonatal AD brain. HIGHLIGHTS: Spatial proteomic alterations in the 5xFAD mouse brain compared to the littermate. 26 out of 35 differentially expressed proteins associated with Alzheimer's disease (AD). Molecular alterations and neurodegenerative presages in neonatal AD brain. Alterations in the synaptic function an early and common neurobiological thread.
Collapse
Affiliation(s)
- Irep Uras
- Department of Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Merve Karayel-Basar
- Department of Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Betul Sahin
- Acibadem Labmed Clinical Laboratories, Istanbul, Turkey
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
18
|
King CW, Ledochowitsch P, Buice MA, de Vries SEJ. Saccade-Responsive Visual Cortical Neurons Do Not Exhibit Distinct Visual Response Properties. eNeuro 2023; 10:ENEURO.0051-23.2023. [PMID: 37591733 PMCID: PMC10506534 DOI: 10.1523/eneuro.0051-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/05/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023] Open
Abstract
Rapid saccadic eye movements are used by animals to sample different parts of the visual scene. Previous work has investigated neural correlates of these saccades in visual cortical areas such as V1; however, how saccade-responsive neurons are distributed across visual areas, cell types, and cortical layers has remained unknown. Through analyzing 818 1 h experimental sessions from the Allen Brain Observatory, we present a large-scale analysis of saccadic behaviors in head-fixed mice and their neural correlates. We find that saccade-responsive neurons are present across visual cortex, but their distribution varies considerably by transgenically defined cell type, cortical area, and cortical layer. We also find that saccade-responsive neurons do not exhibit distinct visual response properties from the broader neural population, suggesting that the saccadic responses of these neurons are likely not predominantly visually driven. These results provide insight into the roles played by different cell types within a broader, distributed network of sensory and motor interactions.
Collapse
Affiliation(s)
- Chase W King
- MindScope Program, Allen Institute, Seattle, Washington 98109
- Department of Computer Science, University of Washington, Seattle, Washington 98195-2350
| | | | - Michael A Buice
- MindScope Program, Allen Institute, Seattle, Washington 98109
- Department of Applied Mathematics, University of Washington, Seattle, Washington 98195-3925
| | - Saskia E J de Vries
- MindScope Program, Allen Institute, Seattle, Washington 98109
- Department of Physiology & Biophysics, University of Washington, Seattle, Washington 98195-7290
| |
Collapse
|
19
|
Gongwer MW, Klune CB, Couto J, Jin B, Enos AS, Chen R, Friedmann D, DeNardo LA. Brain-Wide Projections and Differential Encoding of Prefrontal Neuronal Classes Underlying Learned and Innate Threat Avoidance. J Neurosci 2023; 43:5810-5830. [PMID: 37491314 PMCID: PMC10423051 DOI: 10.1523/jneurosci.0697-23.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023] Open
Abstract
To understand how the brain produces behavior, we must elucidate the relationships between neuronal connectivity and function. The medial prefrontal cortex (mPFC) is critical for complex functions including decision-making and mood. mPFC projection neurons collateralize extensively, but the relationships between mPFC neuronal activity and brain-wide connectivity are poorly understood. We performed whole-brain connectivity mapping and fiber photometry to better understand the mPFC circuits that control threat avoidance in male and female mice. Using tissue clearing and light sheet fluorescence microscopy (LSFM), we mapped the brain-wide axon collaterals of populations of mPFC neurons that project to nucleus accumbens (NAc), ventral tegmental area (VTA), or contralateral mPFC (cmPFC). We present DeepTraCE (deep learning-based tracing with combined enhancement), for quantifying bulk-labeled axonal projections in images of cleared tissue, and DeepCOUNT (deep-learning based counting of objects via 3D U-net pixel tagging), for quantifying cell bodies. Anatomical maps produced with DeepTraCE aligned with known axonal projection patterns and revealed class-specific topographic projections within regions. Using TRAP2 mice and DeepCOUNT, we analyzed whole-brain functional connectivity underlying threat avoidance. PL was the most highly connected node with functional connections to subsets of PL-cPL, PL-NAc, and PL-VTA target sites. Using fiber photometry, we found that during threat avoidance, cmPFC and NAc-projectors encoded conditioned stimuli, but only when action was required to avoid threats. mPFC-VTA neurons encoded learned but not innate avoidance behaviors. Together our results present new and optimized approaches for quantitative whole-brain analysis and indicate that anatomically defined classes of mPFC neurons have specialized roles in threat avoidance.SIGNIFICANCE STATEMENT Understanding how the brain produces complex behaviors requires detailed knowledge of the relationships between neuronal connectivity and function. The medial prefrontal cortex (mPFC) plays a key role in learning, mood, and decision-making, including evaluating and responding to threats. mPFC dysfunction is strongly linked to fear, anxiety and mood disorders. Although mPFC circuits are clear therapeutic targets, gaps in our understanding of how they produce cognitive and emotional behaviors prevent us from designing effective interventions. To address this, we developed a high-throughput analysis pipeline for quantifying bulk-labeled fluorescent axons [DeepTraCE (deep learning-based tracing with combined enhancement)] or cell bodies [DeepCOUNT (deep-learning based counting of objects via 3D U-net pixel tagging)] in intact cleared brains. Using DeepTraCE, DeepCOUNT, and fiber photometry, we performed detailed anatomic and functional mapping of mPFC neuronal classes, identifying specialized roles in threat avoidance.
Collapse
Affiliation(s)
- Michael W Gongwer
- Department of Physiology
- Neuroscience Interdepartmental Program
- Medical Scientist Training Program
| | | | | | - Benita Jin
- Department of Physiology
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095
| | | | | | | | | |
Collapse
|
20
|
Qadir H, Stewart BW, VanRyzin JW, Wu Q, Chen S, Seminowicz DA, Mathur BN. The mouse claustrum synaptically connects cortical network motifs. Cell Rep 2022; 41:111860. [PMID: 36543121 PMCID: PMC9838879 DOI: 10.1016/j.celrep.2022.111860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/31/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Spatially distant areas of the cerebral cortex coordinate their activity into networks that are integral to cognitive processing. A common structural motif of cortical networks is co-activation of frontal and posterior cortical regions. The neural circuit mechanisms underlying such widespread inter-areal cortical coordination are unclear. Using a discovery based functional magnetic resonance imaging (fMRI) approach in mouse, we observe frontal and posterior cortical regions that demonstrate significant functional connectivity with the subcortical nucleus, the claustrum. Examining whether the claustrum synaptically supports such frontoposterior cortical network architecture, we observe cortico-claustro-cortical circuits reflecting the fMRI data: significant trans-claustral synaptic connectivity from frontal cortices to posteriorly lying sensory and sensory association cortices contralaterally. These data reveal discrete cortical pathways through the claustrum that are positioned to support cortical network motifs central to cognitive control functions and add to the canon of major extended cortico-subcortico-cortical systems in the mammalian brain.
Collapse
Affiliation(s)
- Houman Qadir
- Department of Pharmacology, University of Maryland School of Medicine, HSF III 9179, Baltimore, MD 21201, USA
| | - Brent W. Stewart
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Jonathan W. VanRyzin
- Department of Pharmacology, University of Maryland School of Medicine, HSF III 9179, Baltimore, MD 21201, USA
| | - Qiong Wu
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Shuo Chen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David A. Seminowicz
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA,Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Brian N. Mathur
- Department of Pharmacology, University of Maryland School of Medicine, HSF III 9179, Baltimore, MD 21201, USA,Lead contact,Correspondence:
| |
Collapse
|
21
|
Pfefferbaum A, Sullivan EV, Zahr NM, Pohl KM, Saranathan M. Multi-atlas thalamic nuclei segmentation on standard T1-weighed MRI with application to normal aging. Hum Brain Mapp 2022; 44:612-628. [PMID: 36181510 PMCID: PMC9842912 DOI: 10.1002/hbm.26088] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/15/2022] [Accepted: 09/01/2022] [Indexed: 01/25/2023] Open
Abstract
Specific thalamic nuclei are implicated in healthy aging and age-related neurodegenerative diseases. However, few methods are available for robust automated segmentation of thalamic nuclei. The threefold aims of this study were to validate the use of a modified thalamic nuclei segmentation method on standard T1 MRI data, to apply this method to quantify age-related volume declines, and to test functional meaningfulness by predicting performance on motor testing. A modified version of THalamus Optimized Multi-Atlas Segmentation (THOMAS) generated 22 unilateral thalamic nuclei. For validation, we compared nuclear volumes obtained from THOMAS parcellation of white-matter-nulled (WMn) MRI data to T1 MRI data in 45 participants. To examine the effects of age/sex on thalamic nuclear volumes, T1 MRI available from a second data set of 121 men and 117 women, ages 20-86 years, were segmented using THOMAS. To test for functional ramifications, composite regions and constituent nuclei were correlated with Grooved Pegboard test scores. THOMAS on standard T1 data showed significant quantitative agreement with THOMAS from WMn data, especially for larger nuclei. Sex differences revealing larger volumes in men than women were accounted for by adjustment with supratentorial intracranial volume (sICV). Significant sICV-adjusted correlations between age and thalamic nuclear volumes were detected in 20 of the 22 unilateral nuclei and whole thalamus. Composite Posterior and Ventral regions and Ventral Anterior/Pulvinar nuclei correlated selectively with higher scores from the eye-hand coordination task. These results support the use of THOMAS for standard T1-weighted data as adequately robust for thalamic nuclear parcellation.
Collapse
Affiliation(s)
- Adolf Pfefferbaum
- Center for Health SciencesSRI InternationalMenlo ParkCaliforniaUSA,Department of Psychiatry & Behavioral SciencesStanford University School of MedicineStanfordCaliforniaUSA
| | - Edith V. Sullivan
- Department of Psychiatry & Behavioral SciencesStanford University School of MedicineStanfordCaliforniaUSA
| | - Natalie M. Zahr
- Center for Health SciencesSRI InternationalMenlo ParkCaliforniaUSA,Department of Psychiatry & Behavioral SciencesStanford University School of MedicineStanfordCaliforniaUSA
| | - Kilian M. Pohl
- Center for Health SciencesSRI InternationalMenlo ParkCaliforniaUSA,Department of Psychiatry & Behavioral SciencesStanford University School of MedicineStanfordCaliforniaUSA
| | - Manojkumar Saranathan
- Department of RadiologyUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| |
Collapse
|