1
|
Tsanov M. Differential and complementary roles of medial and lateral septum in the orchestration of limbic oscillations and signal integration. Eur J Neurosci 2017; 48:2783-2794. [DOI: 10.1111/ejn.13746] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Marian Tsanov
- Trinity College Institute of Neuroscience; Trinity College Dublin; Dublin 2 Ireland
| |
Collapse
|
2
|
Kato M, Abe H, Itahashi M, Kikuchihara Y, Kimura M, Mizukami S, Yoshida T, Shibutani M. Maternal exposure to hexachlorophene targets intermediate-stage progenitor cells in the hippocampal neurogenesis involving myelin vacuolation of cholinergic and glutamatergic inputs in mice. J Appl Toxicol 2015; 36:211-22. [PMID: 25943520 DOI: 10.1002/jat.3162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/16/2015] [Accepted: 03/16/2015] [Indexed: 11/11/2022]
Abstract
Hexachlorophene (HCP) has been shown to induce myelin vacuolation due to intramyelinic edema of the nerve fibers in animal neural tissue. We investigated the maternal exposure effect of HCP on hippocampal neurogenesis in the offspring of pregnant mice supplemented with 0 (control), 33 or 100 ppm HCP in diet from gestational day 6 to day 21 after delivery. On postnatal day (PND) 21, offspring as examined in males exhibited decreased granule cell lineage populations expressing paired box 6, sex-determining region Y-box 2 and eomesodermin in the hippocampal subgranular zone (SGZ) accompanied by myelin vacuolation involving white matter tracts of the hippocampal fimbria at ≥ 33 ppm. However, SGZ cellular populations expressing brain lipid binding protein and doublecortin were unchanged at any dose. Transcript expression of cholinergic receptor genes, Chrna4 and Chrnb2, and glutamate receptor genes, Grm1 and Grin2d, examined at 100 ppm, decreased in the dentate gyrus. HCP exposure did not alter the number of proliferating or apoptotic cells in the SGZ, or reelin- or calcium-binding protein-expressing γ-aminobutyric acid (GABA)ergic interneurons in the dentate hilus, on PND 21 and PND 77. All neurogenesis-related changes observed in HCP-exposed offspring on PND 21 disappeared on PND 77, suggesting that maternal HCP exposure at ≥ 33 ppm reversibly decreased type 2 intermediate-stage progenitor cells in the hippocampal neurogenesis. Myelin vacuolation might be responsible for changes in neurogenesis possibly by reducing nerve conduction velocity of cholinergic inputs from the septal-hippocampal pathway to granule cell lineages and/or GABAergic interneurons, and of glutamatergic inputs to granule cell lineages.
Collapse
Affiliation(s)
- Mizuho Kato
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Hajime Abe
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu, Japan
| | - Megu Itahashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu, Japan
| | - Yoh Kikuchihara
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Masayuki Kimura
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu, Japan
| | - Sayaka Mizukami
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| |
Collapse
|
3
|
Itahashi M, Abe H, Tanaka T, Mizukami S, Kimura M, Yoshida T, Shibutani M. Maternal exposure to hexachlorophene targets intermediate-stage progenitor cells of the hippocampal neurogenesis in rat offspring via dysfunction of cholinergic inputs by myelin vacuolation. Toxicology 2015; 328:123-34. [DOI: 10.1016/j.tox.2014.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 12/07/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
|
4
|
Prenatal and postnatal development of synapses and acetylcholinesterase staining in the dentate gyrus of the rhesus monkey. Int J Dev Neurosci 2014; 1:77-97. [PMID: 24875720 DOI: 10.1016/0736-5748(83)90035-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/1982] [Indexed: 11/23/2022] Open
Abstract
Morphogenesis, distribution of cholinergic enzyme acetylcholinesterase and synaptogenesis in the dentate gyrus of the rhesus monkey during the pre- and postnatal periods of development were examined using histological, histochemical and ultrastructural methods. The pattern of neuronal differentiation in the dentate gyrus demonstrated distinct superficial-to-deep and lateral-to-medial gradients. The histochemical reaction for acetylcholinesterase was present on gestation day 120 as minimal staining in the supragranular band and in the inner one-third of the dentate molecular layer. At term, the laminar distribution of the enzyme assumed mature pattern although considerable enhancement in staining intensity was achieved postnatally. At term and at 9 months of postnatal age, the most pronounced enzyme activity was found in the supragranular band and in the inner one-third of the molecular layer. Synaptogenesis in the dentate molecular layer was characterized by the early formation of axo-dendritic contacts on dendritic trunks and branches followed by the appearance of synapses on simple and complex spines. Spines were detected infrequently on gestation day 132. On day 148, they ranged in morphology from short stubby protrusions to pedunculated, triangular processes. The majority of the spines exhibited flat postsynaptic surfaces. Complex, synapse-bearing U- and W-shaped spines were observed rarely at this age but appeared more frequently at term and at 15 months of postnatal age. However, at all ages, including 15 months postnatally, synapses on flat-surfaced simple spines predominated. Most synapses were of the asymmetric variety. With certain exceptions, these features of development of the rhesus dentate gyrus resemble the reported patterns of postnatal ontogenesis of this structure in the rat. However, the ingrowth of cholinergic afferents and the major modifications in synapse structure occur prenatally in the rhesus monkey during the second half of the gestation period. This temporal difference between the two species should receive consideration in the planning of neuroplasticity experiments designed to explore lesion-induced adaptations in afferent growth and synaptogenesis in the rhesus dentate gyrus.
Collapse
|
5
|
Mody I, Soltesz I. Activity‐dependent changes in structure and function of hippocampal neurons. Hippocampus 2013. [DOI: 10.1002/hipo.1993.4500030713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Istvan Mody
- Department of Neurology and Neurological Sciences, Stanford University Medical Center, Stanford, California, U.S.A
| | - Ivan Soltesz
- Department of Neurology and Neurological Sciences, Stanford University Medical Center, Stanford, California, U.S.A
| |
Collapse
|
6
|
Gould TJ, Leach PT. Cellular, molecular, and genetic substrates underlying the impact of nicotine on learning. Neurobiol Learn Mem 2013; 107:108-32. [PMID: 23973448 DOI: 10.1016/j.nlm.2013.08.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 08/13/2013] [Accepted: 08/13/2013] [Indexed: 12/27/2022]
Abstract
Addiction is a chronic disorder marked by long-lasting maladaptive changes in behavior and in reward system function. However, the factors that contribute to the behavioral and biological changes that occur with addiction are complex and go beyond reward. Addiction involves changes in cognitive control and the development of disruptive drug-stimuli associations that can drive behavior. A reason for the strong influence drugs of abuse can exert on cognition may be the striking overlap between the neurobiological substrates of addiction and of learning and memory, especially areas involved in declarative memory. Declarative memories are critically involved in the formation of autobiographical memories, and the ability of drugs of abuse to alter these memories could be particularly detrimental. A key structure in this memory system is the hippocampus, which is critically involved in binding multimodal stimuli together to form complex long-term memories. While all drugs of abuse can alter hippocampal function, this review focuses on nicotine. Addiction to tobacco products is insidious, with the majority of smokers wanting to quit; yet the majority of those that attempt to quit fail. Nicotine addiction is associated with the presence of drug-context and drug-cue associations that trigger drug seeking behavior and altered cognition during periods of abstinence, which contributes to relapse. This suggests that understanding the effects of nicotine on learning and memory will advance understanding and potentially facilitate treating nicotine addiction. The following sections examine: (1) how the effects of nicotine on hippocampus-dependent learning change as nicotine administration transitions from acute to chronic and then to withdrawal from chronic treatment and the potential impact of these changes on addiction, (2) how nicotine usurps the cellular mechanisms of synaptic plasticity, (3) the physiological changes in the hippocampus that may contribute to nicotine withdrawal deficits in learning, and (4) the role of genetics and developmental stage (i.e., adolescence) in these effects.
Collapse
Affiliation(s)
- Thomas J Gould
- Temple University Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, United States.
| | - Prescott T Leach
- Temple University Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| |
Collapse
|
7
|
|
8
|
|
9
|
Abstract
AbstractWe examine two different descriptions of the behavioral functions of the hippocampal system. One emphasizes spatially organized behaviors, especially those using cognitive maps. The other emphasizes memory, particularly working memory, a short-term memory that requires iexible stimulus-response associations and is highly susceptible to interference. The predictive value of the spatial and memory descriptions were evaluated by testing rats with damage to the hippocampal system in a series of experiments, independently manipulating the spatial and memory characteristics of a behavioral task. No dissociations were found when the spatial characteristics of the stimuli to be remembered were changed; lesions produced a similar deficit in both spatial and nonspatial test procedures, indicating that the hippocampus was similarly involved regardless of the spatial nature of the task. In contrast, a marked dissociation was found when the memory requirements were altered. Rats with lesions were able to perform accurately in tasks that could be solved exclusively on the basis of reference memory. They performed at chance levels and showed no signs of recovery even with extensive postoperative training in tasks that required working memory. In one experiment all the characteristics of the reference memory and working memory procedures were identical except the type of memory required. Consequently, the behavioral dissociation cannot be explained by differences in attention, motivation, response inhibition, or the type of stimuli to be remembered. As a result of these experiments we propose that the hippocampus is selectively involved in behaviors that require working memory, irrespective of the type of material (spatial or nonspatial) that is to be processed by that memory.
Collapse
|
10
|
|
11
|
|
12
|
|
13
|
|
14
|
|
15
|
|
16
|
A neuropsychological theory of hippocampal function: Procrustean treatment of inconvenient data. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00062786] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
|
18
|
Hippocampal function: does the working memory hypothesis work? Should we retire the cognitive map theory? Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00062944] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
|
20
|
|
21
|
|
22
|
|
23
|
|
24
|
|
25
|
|
26
|
|
27
|
|
28
|
|
29
|
|
30
|
Saper CB. Diffuse Cortical Projection Systems: Anatomical Organization and Role in Cortical Function. Compr Physiol 2011. [DOI: 10.1002/cphy.cp010506] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Defrance JF, Stanley JC, Marchand JE, Chronister RB. Cholinergic mechanisms and short-term potentiation. CIBA FOUNDATION SYMPOSIUM 2008:109-26. [PMID: 215388 DOI: 10.1002/9780470720394.ch7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acutely prepared rabbits were used to study, electrophysiologically, tetanic and post-tetanic potentiation of the pathway from the medial septal region to hippocampal field CA1. It was found that tetanic potentiation, evoked by short stimulus trains, was maximal at 6--8 Hz. Responses recovered from post-tetanic potentiation in 5--35 seconds. Acetylcholine, physostigmine, and cyclic GMP each had an excitatory effect on pyramidal cell responses when applied in stratum radiatum. The time course studies showed that these effects outlasted the duration of the injection current by many minutes. Phosphodiesterase inhibitors (e.g., isobutyl methyl xanthine) prolonged the time course of recovery with test responses which were post-tetanically potentiated. K+, on the other hand, selectively enhanced tetanic potentiation. It is suggested, with respect to the potentiation phenomena, that K+ acted primarily presynaptically to facilitate transmitter release, whereas cyclic GMP acted primarily postsynaptically for the enhancement of pyramidal cell excitability.
Collapse
|
32
|
Vinogradova OS, Brazhnik ES. Neuronal aspects of septo-hippocampal relations. CIBA FOUNDATION SYMPOSIUM 2008:145-77. [PMID: 215389 DOI: 10.1002/9780470720394.ch8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In unanaesthetized, conscious rabbits, in unstressful conditions, the neurons of the hippocampus and septum were investigated extracellularly during the presentation of a series of varied sensory stimuli. In the normal hippocampus these stimuli evoke habituating reactions of tonic (more usually, inhibitory) type in field CA3, with the addition of 'specific' patterned, and phasic reactions in field CA1. After complete septo-hippocampal disconnection the proportion of tonic (especially, of inhibitory) reactions in the hippocampus decreases. Theta bursts in the neuronal activity are absent; reactions to repeated sensory stimuli do not habituate. After lesion of the cortical perforant path to the hippocampus the majority of reactions in both fields are of tonic type. The proportion of neurons with regular theta bursts increases. Habituation is completely absent. A high correlation appears between the sensory reactions and the effects of midbrain reticular formation stimulation in the same neurons. The combination of both lesions does not significantly change the spontaneous activity of hippocampal neurons (except for the absence of the theta bursts). An increase in the level of activity of hippocampal neurons (by physostigmine), or rhythmic stimulation of the remaining synaptic systems, does not restore their rhythmic theta activity. In the septum deprived of hippocampal input the normal level of reactivity to sensory stimuli and the normal types of reaction are preserved. The proportion of neurons with theta bursts increases. The typical linear and rapid habituation of reactions disappears and is replaced by an unlimited increment in effects during repeated presentations of sensory stimuli. Discussion concerns the synchronizing and inhibitory influences of the septum on the hippocampus, and the role of the hippocampus in the organization of decremental processes (habituation) in the septum and brainstem structures.
Collapse
|
33
|
Lynch G, Rose G, Gall C. Anatomical and functional aspects of the septo-hippocampal projections. CIBA FOUNDATION SYMPOSIUM 2008:5-24. [PMID: 83225 DOI: 10.1002/9780470720394.ch3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The origins, distribution, and cellular targets of the septo-hippocampal projections are reviewed. It appears that the distribution of acetylcholinesterase-positive neurons in the medial septum and diagonal bands and those cells labelled after injections of horseradish peroxidase into the hippocampus coincide; however, the possibility of a non-acetylcholinesterase septal projection remains. Good agreement is found between the distribution of hippocampal acetylcholinesterase and the patterning of silver grains after injection of [3H]leucine into the medial septum. A major target of septal efferents to the hippocampus is the interneuron population; the possibility of septal mediation of intrahippocampal circuitry via this anatomical arrangement is discussed.
Collapse
|
34
|
Goto Y, Niidome T, Hongo H, Akaike A, Kihara T, Sugimoto H. Impaired muscarinic regulation of excitatory synaptic transmission in the APPswe/PS1dE9 mouse model of Alzheimer's disease. Eur J Pharmacol 2008; 583:84-91. [PMID: 18282567 DOI: 10.1016/j.ejphar.2008.01.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 01/07/2008] [Accepted: 01/24/2008] [Indexed: 11/17/2022]
Abstract
Cholinergic hypothesis and amyloid cascade hypothesis are mainly proposed for Alzheimer's disease; however, the relationship between these hypotheses is poorly understood. To address the question of whether amyloid beta-peptide pathology affects cholinergic neurotransmission, we examined the effect of a cholinesterase inhibitor, physostigmine, on field excitatory postsynaptic potentials (EPSPs) evoked by single-pulse stimulation in the CA1 region of the hippocampus of various APPswe/PS1dE9 transgenic mice with different degrees of amyloid beta-peptide pathology. Reduced field EPSPs by physostigmine in transgenic mice at 3 months of age, when the mice had negligible amyloid beta-peptide levels and no amyloid beta-peptide deposits, were indistinguishable from those in age-matched wild-type mice. In contrast, reduced field EPSPs by physostigmine in transgenic mice at 5 months of age, when the mice had low amyloid beta-peptide levels and subtle amyloid beta-peptide deposits, were significantly lower than those in age-matched wild-type mice. Next, we characterized acetylcholine receptors, which play important roles in cholinergic neurotransmission, because physostigmine resulted in increased acetylcholine levels in the synaptic cleft. Different reductions of field EPSPs by physostigmine between transgenic and wild-type mice at 5 months of age were not affected by a nicotinic receptor antagonist, mecamylamine; however, reduced field EPSPs by physostigmine in both transgenic and wild-type mice were restored to basal levels by a muscarinic receptor antagonist, atropine. These results indicate that cholinergic modulation of glutamatergic transmission is already impaired at the onset of the formation of amyloid beta-peptide deposits, and muscarinic receptor dysfunction is one of the causes of this impairment.
Collapse
Affiliation(s)
- Yasuaki Goto
- Department of Neuroscience for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida-Shimoadachi-cho, Sakyo-ku, 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Amaral DG, Scharfman HE, Lavenex P. The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). PROGRESS IN BRAIN RESEARCH 2007; 163:3-22. [PMID: 17765709 PMCID: PMC2492885 DOI: 10.1016/s0079-6123(07)63001-5] [Citation(s) in RCA: 571] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The dentate gyrus is a simple cortical region that is an integral portion of the larger functional brain system called the hippocampal formation. In this review, the fundamental neuroanatomical organization of the dentate gyrus is described, including principal cell types and their connectivity, and a summary of the major extrinsic inputs of the dentate gyrus is provided. Together, this information provides essential information that can serve as an introduction to the dentate gyrus--a "dentate gyrus for dummies."
Collapse
Affiliation(s)
- David G Amaral
- Department of Psychiatry and Behavioral Sciences, The M.I.N.D. Institute and the California National Primate Research Center, UC Davis, Davis, CA, USA.
| | | | | |
Collapse
|
36
|
Abstract
The dentate gyrus is the first stage of the intrahippocampal, excitatory, trisynaptic loop, and a primary target of the majority of entorhinal afferents that terminate in a laminar fashion on granule cell dendrites and carry sensory information of multiple modalities about the external world. The electric activity of the trisynaptic pathway is controlled mainly by different types of local, GABAergic interneurons, and subcortical and commissural afferents. In this chapter we will outline the origin and postsynaptic targets in the dentate gyrus of chemically identified subcortical inputs. These systems are afferents originating from the medial septum/diagonal band of Broca GABAergic and cholinergic neurons, neurochemically distinct types of neurons located in the supramammillary area, serotonergic fibers from the median raphe, noradrenergic afferents from the pontine nucleus, locus ceruleus, dopamine axons originating in the ventral tegmental area, and the commissural projection system. Because of the physiological implications, these afferents are discussed in the context of the glutamatergic innervation of the dentate gyrus. One common feature of the extrinsic dentate afferent systems is that they originate from a relatively small number of neurons. However, the majority of these afferents are able to exert a powerful control over the electrical activity of the hippocampus. This strong influence is due to the fact that the majority of the extrinsic afferents terminate on a relatively small, but specific, populations of neurons that are able to control large areas of the hippocampal formation.
Collapse
Affiliation(s)
- Csaba Leranth
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 333 Cedar Street, FMB 312, New Haven, CT 06520, USA.
| | | |
Collapse
|
37
|
Steffensen SC, Jones MD, Hales K, Allison DW. Dehydroepiandrosterone sulfate and estrone sulfate reduce GABA-recurrent inhibition in the hippocampus via muscarinic acetylcholine receptors. Hippocampus 2006; 16:1080-90. [PMID: 17024678 DOI: 10.1002/hipo.20232] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Several recent studies have established a role for estrogens in ameliorating specific neurodegenerative disorders, mainly those associated with the cholinergic neurons of the basal forebrain and their targets in the cortex and hippocampus. We have previously demonstrated that endogenous and exogenous application of the neurosteroid dehydroepiandrosterone sulfate (DHEAS) markedly reduces GABA-mediated recurrent inhibition and synchronizes hippocampal unit activity to theta rhythm (Steffensen (1995) Hippocampus 5:320-328). In this study, we evaluated the role of muscarinic receptors in mediating the effects of DHEAS and estrone sulfate (ES), the principal circulating estrogen in humans, on short-latency-evoked potential responses, paired-pulse inhibition (PPI), paired-pulse facilitation, and GABA interneuron activity in the dentate gyrus and CA1 subfields of the rat hippocampus. In situ microelectrophoretic application of the muscarinic M2 subtype cholinergic receptor agonist cis-dioxolane, DHEAS, and ES markedly reduced PPI in the dentate and CA1 that was blocked by the M2 receptor antagonist gallamine. Similar to DHEAS, microelectrophoretic administration of ES increased population spike amplitudes, without increasing excitatory transmission, but this effect was not blocked by gallamine. Microelectrophoretic application of cis-dioxolane and ES markedly increased the firing rate of dentate hilar interneurons and CA1 oriens/alveus interneurons and enhanced their synchrony to hippocampal theta rhythm. These findings suggest that select GABA-modulating neurosteroids and neuroactive estrogen sulfates alter septohippocampal cholinergic modulation of hippocampal GABAergic interneurons mediating recurrent, but not feedforward, inhibition of hippocampal principal cell activity.
Collapse
Affiliation(s)
- Scott C Steffensen
- Department of Psychology, Brigham Young University, Provo, Utah 846022, USA.
| | | | | | | |
Collapse
|
38
|
Matsuda S, Kobayashi Y, Ishizuka N. A quantitative analysis of the laminar distribution of synaptic boutons in field CA3 of the rat hippocampus. Neurosci Res 2004; 49:241-52. [PMID: 15140566 DOI: 10.1016/j.neures.2004.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Accepted: 03/03/2004] [Indexed: 11/21/2022]
Abstract
We analyzed the laminar distribution of synaptic boutons in field CA3 of the rat hippocampus using a large montage electron micrograph. The size of boutons and synaptic vesicles was measured using a computer-assisted digitizing system. In all, 3353 synaptic boutons were observed in a 15 microm x 100 microm strip. Of these, 86.3% contained spherical vesicles (S-boutons), 12% contained flat vesicles (F-boutons), and 1.7% were mossy terminals (M-boutons). S-boutons were distributed widely in the strata moleculare (st. Mol), radiatum (st. Rad), and oriens (st. Ori), but there were only a few in the strata lucidum (st. Luc) and pyramidale (st. Pyr). The upper portions of both the st. Rad and Ori contained slightly fewer boutons. In terms of the location of synaptic contacts, 83% of all S-boutons were found on the dendritic spines and the rest were on the dendritic shafts. S-boutons on the dendritic shafts were observed more frequently in the st. Mol than in the other strata. According to the morphometry of the size of synaptic vesicles, S-boutons with small vesicles (mean vesicle area <1109 nm(2)) were located exclusively in the st. Mol, S-boutons with medium-sized vesicles (mean vesicle area 1109-1482 nm(2)) were observed in all strata, and S-boutons with large vesicles (mean vesicle area >1482 nm(2)) were distributed in the st. Luc and Ori, but not in the st. Mol. F-boutons were predominantly distributed in the upper half of the st. Mol and in the area around the st. Pyr, although they were observed in all strata. In the st. Mol, all the F-boutons were in contact with dendritic shafts, while near the st. Pyr, F-boutons were found exclusively on somata, the proximal parts of the dendritic shafts, and the initial segments of axons. The average F-bouton was smaller in the st. Mol (0.23 microm(2)) than near the st. Pyr (0.39 microm(2)). In this synapto-architectural study of the hippocampal CA3 region using large montage electron micrographs, we observed (1) an intimate relationship between synapse distribution and the dendritic structure of pyramidal neurons, (2) the distribution of different types of boutons containing vesicles of various size, and (3) two different plausible foci of postsynaptic inhibition where F-boutons were distributed densely, and (4) estimated the input ratios of pyramidal neurons.
Collapse
Affiliation(s)
- Seiji Matsuda
- Department of Anatomy, Ehime University School of Medicine, Shigenobu, Ehime 791-02, Japan.
| | | | | |
Collapse
|
39
|
Ayala-Grosso C, Tam J, Xanthoudakis S, Bureau Y, Roy S, Nicholson DW, Robertson GS. Effects of fimbria-fornix transection on calpain and choline acetyl transferase activities in the septohippocampal pathway. Neuroscience 2004; 126:927-40. [PMID: 15207327 DOI: 10.1016/j.neuroscience.2004.04.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 03/28/2004] [Accepted: 04/22/2004] [Indexed: 01/09/2023]
Abstract
The ability of fimbria-fornix bilateral axotomy to elicit calpain and caspase-3 activation in the rat septohippocampal pathway was determined using antibodies that selectively recognize either calpain- or caspase-cleaved products of the cytoskeletal protein alphaII-spectrin. Radioenzymatically determined choline acetyl transferase (ChAT) activity was elevated in the septum at day 5, but reduced in the dorsal hippocampus at days 3, 5 and 7, after axotomy. Prominent accumulation of calpain-, but not caspase-3-, cleaved spectrin proteolytic fragments was observed in both the septum and dorsal hippocampus 1-7 days after axotomy. ChAT-positive neuronal cell bodies in the septum also displayed calpain-cleaved spectrin indicating that calpain activation occurred in cholinergic septal neurons as a consequence of transection of the septohippocampal pathway. Calpain-cleaved alphaII-spectrin immunoreactivity was observed in cholinergic fibers coursing through the fimbria-fornix, but not in pyramidal neurons of the dorsal hippocampus, suggesting that degenerating cholinergic nerve terminals were the source of calpain activity in the dorsal hippocampus following axotomy. Accumulation of calpain-cleaved spectrin proteolytic fragments in the dorsal hippocampus and septum at day 5 after axotomy was reduced by i.c.v. administration of two calpain inhibitors. Calpain inhibition partially reduced the elevation of ChAT activity in the septum produced by transection but failed to decrease the loss of ChAT activity in the dorsal hippocampus following axotomy. These findings suggest that calpain activation contributes to the cholinergic cell body response and hippocampal axonal cytoskeletal degradation produced by transection of the septohippocampal pathway.
Collapse
Affiliation(s)
- C Ayala-Grosso
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Sciences Building, 3655 Promenade Sir-William-Osler, Montreal, Canada H3G 1Y6
| | | | | | | | | | | | | |
Collapse
|
40
|
Colgin LL, Kramár EA, Gall CM, Lynch G. Septal modulation of excitatory transmission in hippocampus. J Neurophysiol 2003; 90:2358-66. [PMID: 12840078 DOI: 10.1152/jn.00262.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Application of the acetylcholinesterase inhibitor physostigmine to conventional hippocampal slices caused a significant reduction of field excitatory postsynaptic potentials (EPSPs) elicited by single pulse stimulation to the medial perforant path. Similar but smaller effects were obtained in the lateral perforant path and other excitatory pathways within hippocampus. The reductions were blocked by atropine, were not accompanied by evident changes in the EPSP waveform, and were eliminated by lesions to the cholinergic septo-hippocampal projections. Antidromic responses to mossy fiber stimulation, recorded in stratum granulosum, were not affected by the drug. However, paired-pulse facilitation was reliably increased, indicating that the depressed synaptic responses were secondary to reductions in transmitter release. The absence of cholinergic axo-axonic connections in the molecular layer suggests that physostigmine reduces presynaptic release by increasing retrograde signaling from the granule cells. In accord with this, an antagonist of the CB1 cannabinoid receptor eliminated the effects of physostigmine on synaptic responses, while an antagonist of the presynaptically located m2 muscarinic acetylcholine receptor did not. This is in contrast to previously reported effects involving application of cholinergic agonists, in which presynaptic inhibition likely results from direct activation of presynaptically located muscarinic receptors. In summary, it is proposed that the cholinergic inputs from the septum to the middle molecular layer modulate, via endocannabinoid release, the potency of the primary excitatory afferent of hippocampus.
Collapse
Affiliation(s)
- Laura Lee Colgin
- Department of Psychiatry and Human Behavior, University of California, Irvine, California 92612, USA.
| | | | | | | |
Collapse
|
41
|
Abstract
Tests were made for use-dependent plasticity in the cholinergic projections to hippocampus. Transient infusion of the cholinergic agonist carbachol into hippocampal slices induced rhythmic activity that persisted for hours after washout. Comparable effects were obtained with physostigmine, a drug that blocks acetylcholine breakdown and thereby enhances cholinergic transmission. It thus seems that activation of cholinergic synapses induces lasting changes in hippocampal physiology. Two lines of evidence indicated that cholinergic synapses are also the sites at which the plasticity is expressed. First, the induction and expression of the rhythms were not blocked by the N-methyl-D-aspartate receptor antagonist D-2-amino-5-phosphonovaleric acid, indicating that a long-term potentiation effect between pyramidal cells was not involved. Second, a muscarinic antagonist (atropine) completely abolished stable rhythmic activity after agonist washout. This result indicates that endogenous cholinergic activity is responsible for the persistence of rhythmic oscillations. These experiments suggest that short periods of intense cholinergic activity induce lasting changes in cholinergic synapses and thus extend such forms of plasticity to beyond the glutamatergic system.
Collapse
Affiliation(s)
- Laura Lee Colgin
- Institute for Mathematical Behavioral Sciences, University of California, 101 Theory, #250, Irvine, CA 92612-1695, USA.
| | | | | |
Collapse
|
42
|
Abstract
Regional variations and substrates of high-frequency rhythmic activity induced by cholinergic stimulation were studied in hippocampal slices with 64-electrode recording arrays. (1) Carbachol triggered beta waves (17.6 +/- 5.7 Hz) in pyramidal regions of 75% of the slices. (2) The waves had phase shifts across the cell body layers and were substantially larger in the apical dendrites than in cell body layers or basal dendrites. (3) Continuous, two-dimensional current source density analyses indicated apical sinks associated with basal sources, lasting approximately 10 msec, followed by apical sources and basal sinks, lasting approximately 20 msec, in a repeating pattern with a period in the range of 15-25 Hz. (4) Carbachol-induced beta waves in the hippocampus were accompanied by 40 Hz (gamma) oscillations in deep layers of the entorhinal cortex. (5) Cholinergically elicited beta and gamma rhythms were eliminated by antagonists of either AMPA or GABA receptors. Benzodiazepines markedly enhanced beta activity and sometimes introduced a distinct gamma frequency peak. (6) Twenty Hertz activity after orthodromic activation of field CA3 was distributed in the same manner as carbachol-induced beta waves and was generated by a current source in the apical dendrites of CA3. This source was eliminated by high concentrations of GABA(A) receptor blockers. It is concluded that cholinergically driven beta rhythms arise independently in hippocampal subfields from oscillatory circuits involving (1) bursts of pyramidal cell discharges, (2) activation of a subset of feedback interneurons that project apically, and (3) production of a GABA(A)-mediated hyperpolarization in the outer portions of the apical dendrites of pyramidal neurons.
Collapse
|
43
|
Wilson MT, Snow DM. Chondroitin sulfate proteoglycan expression pattern in hippocampal development: potential regulation of axon tract formation. J Comp Neurol 2000; 424:532-46. [PMID: 10906718 DOI: 10.1002/1096-9861(20000828)424:3<532::aid-cne10>3.0.co;2-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A variety of molecular influences in the extracellular matrix (ECM) interact with developing axons to guide the formation of hippocampal axon pathways. One of these influences may be chondroitin sulfate proteoglycans (CSPGs), which are known to inhibit axonal extension during development and following central nervous system injury. In this study, we examined the role of CSPGs and cell adhesion molecules in the regulation of axon tract formation during hippocampal development. We used indirect immunofluorescence to examine the developmental pattern of CSPG expression relative to axon tracts that express the cell adhesion molecule L1. Additionally, we used dissociated and explant cell cultures to examine the effects of CSPGs on hippocampal axon development in vitro. In vivo, we found that the CSPG neurocan is expressed throughout the alveus, neuropil layers, and parts of the dentate gyrus from E16 to P2. The CSPG phosphacan is expressed primarily in the neuropil layers at postnatal stages. After E18, intense labeling of neurocan was observed in regions of the alveus surrounding L1-expressing axon fascicles. In vitro, axons from brain regions that project through the alveus during development would not grow across CSPG substrata, in a concentration-dependent manner. In addition, hippocampal axons from dissociated neuron cultures only traveled across CSPG substrata as fasciculated axon bundles. These findings implicate CSPG in the regulation of axon trajectory and fasciculation during hippocampal axon tract formation.
Collapse
Affiliation(s)
- M T Wilson
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky 40536-0298, USA
| | | |
Collapse
|
44
|
Ojika K, Mitake S, Tohdoh N, Appel SH, Otsuka Y, Katada E, Matsukawa N. Hippocampal cholinergic neurostimulating peptides (HCNP). Prog Neurobiol 2000; 60:37-83. [PMID: 10622376 DOI: 10.1016/s0301-0082(99)00021-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Neuronal development and differentiation require a variety of cell interactions. Diffusible molecules from target neurons play an important part in mediating such interactions. Our early studies used explant culture technique to examine the factors that enhance the differentiation of septo-hippocampal cholinergic neurons, and they revealed that several components resident in the hippocampus are involved in the differentiation of presynaptic cholinergic neurons in the medial septal nucleus. One of these components, originally purified from young rat hippocampus, is a novel undecapeptide (hippocampal cholinergic neurostimulating peptide; HCNP); this enhances the production of ChAT, but not of AchE. Later experiments revealed that: (1) a specific receptor appears to mediate this effect; (2) NGF and HCNP act cooperatively to regulate cholinergic phenotype development in the medial septal nucleus in culture; and (3) these two molecules differ both in their mechanism of release from the hippocampus and their mechanism of action on cholinergic neurons. The amino acid sequence deduced from base sequence analysis of cloned HCNP-precursor protein cDNA shows that HCNP is located at the N-terminal domain of its precursor protein. The 21 kDa HCNP precursor protein shows homology with other proteins, and it functions not only as an HCNP precursor, but also as a binding protein for ATP, opioids and phosphatidylethanolamine. The distribution and localization of HCNP-related components and the expression of their mRNAs support the notion that the precursor protein is multifunctional. In keeping with its multiple functions, the multiple enhancers and promoters found in the genomic DNA for HCNP precursor protein may be involved in the regulation of its gene in a variety of cells and at different stages of development. Furthermore, several lines of evidence obtained from studies of humans and animal models suggest that certain types of memory and learning disorders are associated with abnormal accumulation and expression of HCNP analogue peptide and/or its precursor protein mRNA in the hippocampus.
Collapse
Affiliation(s)
- K Ojika
- Second Department of Internal Medicine, Medical School, Nagoya City University, Japan.
| | | | | | | | | | | | | |
Collapse
|
45
|
Campbell IL, Krucker T, Steffensen S, Akwa Y, Powell HC, Lane T, Carr DJ, Gold LH, Henriksen SJ, Siggins GR. Structural and functional neuropathology in transgenic mice with CNS expression of IFN-alpha. Brain Res 1999; 835:46-61. [PMID: 10448195 DOI: 10.1016/s0006-8993(99)01328-1] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytokines belonging to the type I interferon (e.g. interferon-alpha) family are important in the host response to infection and may have complex and broad ranging actions in the central nervous system (CNS) that may be beneficial or harmful. To better understand the impact of the CNS expression of the type I interferons (IFN), transgenic mice were developed that produce IFN-alpha(1) chronically from astrocytes. In two independent transgenic lines with moderate and low levels of astrocyte IFN-alpha mRNA expression respectively, a spectrum of transgene dose- and age-dependent structural and functional neurological alterations are induced. Structural changes include neurodegeneration with loss of cholinergic neurons, gliosis, angiopathy with mononuclear cell cuffing, progressive calcification affecting basal ganglia and cerebellum and the up-regulation of a number of IFN-alpha-regulated genes. At a functional level, in vivo and in vitro electrophysiological studies revealed impaired neuronal function and disturbed synaptic plasticity with pronounced hippocampal hyperexcitability. Severe behavioral alterations were also evident in higher expressor GFAP-IFNalpha mice which developed fatal seizures around 13 weeks of age precluding their further behavioral assessment. Modest impairments in discrimination learning were measured in lower expressor GFAP-IFNalpha mice at various ages (7-42 weeks). The behavioral and electrophysiological findings suggest regional changes in hippocampal excitability which may be linked to abnormal calcium metabolism and loss of cholinergic neurons in the GIFN mice. Thus, these transgenic mice provide a novel animal model in which to further evaluate the mechanisms that underlie the diverse actions of type I interferons in the intact CNS and to link specific structural changes with functional impairments.
Collapse
Affiliation(s)
- I L Campbell
- Department of Neuropharmacology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abnormalities in neuronal process extension, hippocampal development, and the ventricular system of L1 knockout mice. J Neurosci 1999. [PMID: 10366625 DOI: 10.1523/jneurosci.19-12-04907.1999] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In humans, mutations in the L1 cell adhesion molecule are associated with a neurological syndrome termed CRASH, which includes corpus callosum agenesis, mental retardation, adducted thumbs, spasticity, and hydrocephalus. A mouse model with a null mutation in the L1 gene (Cohen et al., 1997) was analyzed for brain abnormalities by Nissl and Golgi staining and immunocytochemistry. In the motor, somatosensory, and visual cortex, many pyramidal neurons in layer V exhibited undulating apical dendrites that did not reach layer I. The hippocampus of L1 mutant mice was smaller than normal, with fewer pyramidal and granule cells. The corpus callosum of L1-minus mice was reduced in size because of the failure of many callosal axons to cross the midline. Enlarged ventricles and septal abnormalities were also features of the mutant mouse brain. Immunoperoxidase staining showed that L1 was abundant in developing neurons at embryonic day 18 (E18) in wild-type cerebral cortex, hippocampus, and corpus callosum and then declined to low levels with maturation. In the E18 cortex, L1 colocalized with microtubule-associated protein 2, a marker of dendrites and somata. These new findings suggest new roles for L1 in the mechanism of cortical dendrite differentiation, as well as in guidance of callosal axons and regulation of hippocampal development. The phenotype of the L1 mutant mouse indicates that it is a potentially valuable model for the human CRASH syndrome.
Collapse
|
47
|
Takahashi LK, Goh CS. Glucocorticoid facilitation of cholinergic development in the rat hippocampus. Neuroscience 1998; 83:1145-53. [PMID: 9502253 DOI: 10.1016/s0306-4522(97)00472-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The role of endogenous glucocorticoids in facilitating the postnatal innervation of septohippocampal cholinergic projections was examined. Septohippocampal cholinergic innervation was determined using two methods. One method involved measuring the optical density of acetylcholinesterase, a marker of cholinergic fibres in the hippocampus. In the other method, acetylcholinesterase-positive fibre counts were made in the hippocampus. Both methods revealed that 14-day-old rats adrenalectomized at 10 days of age have significantly lower densities of acetylcholinesterase in the hippocampal dentate gyrus molecular layer and in the regio inferior when compared to sham-operated control rats. This reduction in hippocampal acetylcholinesterase did not occur when 10-day-old adrenalectomized rats were either injected daily with exogenous corticosterone (0.3 mg/100 g body weight) or when adrenalectomy was conducted at later postnatal ages. In addition, unlike the developing hippocampus, the basolateral nucleus of the amygdala, which is also highly innervated by cholinergic fibres, showed no significant changes in acetylcholinesterase density after adrenalectomy. These observations suggest that glucocorticoids play an important role in supporting the development of cholinergic projections to the hippocampus. Cholinergic innervation of the hippocampus appears especially sensitive to the action of glucocorticoids occurring before the conclusion of the second postnatal week. Furthermore, this glucocorticoid influence is directed rather specifically to the hippocampus in comparison to the basolateral amygdala.
Collapse
Affiliation(s)
- L K Takahashi
- University of Wisconsin Medical School, Department of Psychiatry, Madison 53719-1179, USA
| | | |
Collapse
|
48
|
Gabriel EM, Inglefield JR, Chadwick LE, Schwartz-Bloom RD. Ischemic injury and extracellular amino acid accumulation in hippocampal area CA1 are not dependent upon an intact septo-hippocampal pathway. Brain Res 1998; 785:279-86. [PMID: 9518650 DOI: 10.1016/s0006-8993(97)01415-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The septo-hippocampal pathway contains a major gamma-aminobutyric acid (GABA) projection to dendritic fields within the hippocampus. To determine the importance of the septo-hippocampal pathway in ischemia-induced accumulation of GABA and subsequent cell death in area CA1 of hippocampus, septo-hippocampal deafferentation of adult gerbils was performed. Electrolytic lesions were produced in the medial or medial plus lateral septal regions in gerbils 7 days prior to being subjected to 5 min forebrain ischemia. The extent of deafferentation of the dorsal hippocampus was determined histochemically by acetylcholinesterase staining. Both the medial and medial plus lateral septal lesions produced nearly complete loss of acetylcholinesterase staining in the dorsal hippocampus indicating relatively complete deafferentation. During and following ischemia, in vivo microdialysis was used to measure extracellular GABA accumulation, which reached concentrations up to 1060 +/- 143% of basal. Septo-hippocampal deafferentation in both groups of lesioned animals failed to prevent the accumulation of GABA (and glutamate) induced by ischemia, indicating that ischemia-induced GABA accumulation in area CA1 arises principally from intrinsic GABAergic interneurons. Ischemic animals with medial septal lesions did not demonstrate neuroprotection or increased damage in the stratum pyramidale 7 days after reperfusion. Since the septo-hippocampal pathway provides the source of GABAergic disinhibition within the hippocampus, neither disinhibition nor the septo-hippocampal input appear to play an important role in the development of ischemia-induced neuronal death in the hippocampus.
Collapse
Affiliation(s)
- E M Gabriel
- Department of Surgery (Division of Neurosurgery), Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
49
|
Chapman CA, Racine RJ. Converging inputs to the entorhinal cortex from the piriform cortex and medial septum: facilitation and current source density analysis. J Neurophysiol 1997; 78:2602-15. [PMID: 9356410 DOI: 10.1152/jn.1997.78.5.2602] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Converging inputs to the entorhinal cortex from the piriform cortex and medial septum: facilitation and current source density analysis. J. Neurophysiol. 78: 2602-2615, 1997. The entorhinal cortex receives sensory inputs from the piriform cortex and modulatory inputs from the medial septum. To examine short-term synaptic facilitation effects in these pathways, current source density (CSD) analysis was used first to localize the entorhinal cortex membrane currents, which generate field potentials evoked by stimulation of these afferents. Field potentials were recorded at 50-micron intervals through the medial entorhinal cortex in urethan-anesthetized rats and the one-dimensional CSD was calculated. Piriform cortex stimulation evoked a surface-negative, deep-positive field potential component in the entorhinal cortex with mean onset and peak latencies of 10.4 and 18.4 ms. The component followed brief 100-Hz stimulation, consistent with a monosynaptic response. CSD analysis linked the component to a current sink, which often began in layer I before peaking in layer II. A later, surface-positive field potential component peaked at latencies near 45 ms and was associated with a current source in layer II. Medial septal stimulation evoked positive and negative field potential components which peaked at latencies near 7 and 16 ms, respectively. A weaker and more prolonged surface-negative, deep-positive component peaked at latencies near 25 ms. The early components were generated by currents in the hippocampal formation, and the late surface-negative component was generated by currents in layers II to IV of the entorhinal cortex. Short-term facilitation effects in conscious animals were examined using electrodes chronically implanted near layer II of the entorhinal cortex. Paired-pulse stimulation of the piriform cortex at interpulse intervals of 30 and 40 ms caused the largest facilitation (248%) of responses evoked by the second pulse. Responses evoked by medial septal stimulation also were facilitated maximally (59%) by a piriform cortex conditioning pulse delivered 30-40 ms earlier. Paired pulse stimulation of the medial septum caused the largest facilitation (149%) at intervals of 70 ms, but piriform cortex evoked responses were facilitated maximally (46%) by a septal conditioning pulse 100-200 ms earlier. Frequency potentiation effects were maximal during 12- to 18-Hz stimulation of either the piriform cortex or medial septum. Occlusion tests suggested that piriform cortex and medial septal efferents activate the same neurons. The CSD analysis results show that evoked field potential methods can be used effectively in chronically prepared animals to examine synaptic responses in the converging inputs from the piriform cortex and medial septum to the entorhinal cortex. The short-term potentiation phenomena observed here suggest that low-frequency activity in these pathways during endogenous oscillatory states may enhance entorhinal cortex responsivity to olfactory inputs.
Collapse
Affiliation(s)
- C A Chapman
- Department of Psychology, McMaster University, Hamilton, Ontario L8S 4K1 Canada
| | | |
Collapse
|
50
|
Rouse ST, Levey AI. Muscarinic acetylcholine receptor immunoreactivity after hippocampal commissural/associational pathway lesions: Evidence for multiple presynaptic receptor subtypes. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970414)380:3<382::aid-cne7>3.0.co;2-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|