1
|
Abstract
The expression of serotonin (5-HT) in the retina was first reported in the sixties. The detection of vesicular monoamine transporter and serotonin receptors in several retinal cells confirm that 5-HT is playing a neuromodulatory role in this structure. Whereas signaling pathways activated by 5-HT receptor binding has been poorly investigated so far, numerous data demonstrated that 5-HT is involved in retinal physiology, retinal physiopathology and photoreceptor survival.
Collapse
|
2
|
Jang YJ, Yu SH, Lee ES, Jeon CJ. Two types of tyrosine hydroxylase-immunoreactive neurons in the zebrafish retina. Neurosci Res 2011; 71:124-33. [PMID: 21784111 DOI: 10.1016/j.neures.2011.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 07/05/2011] [Accepted: 07/06/2011] [Indexed: 10/18/2022]
Abstract
The purpose of the present study is to identify the dopaminergic amacrine (DA) cells in the inner nuclear layer (INL) of zebrafish retina through immunocytochemistry and quantitative analysis. Two types of tyrosine hydroxylase-immunoreactive (TH-IR) cells appeared on the basis of dendritic morphology and stratification patterns in the inner plexiform layer (IPL). The first (DA1) was bistratified, with branching planes in both s1 and s5 of the IPL. The second (DA2) was diffuse, with dendritic processes branched throughout the IPL. DA1 and DA2 cells corresponded morphologically to A(on)(-s1/s5) and A(diffuse)(-1) (Connaughton et al., 2004). The average number of total TH-IR cells was 1088±79cells per retina (n=5), and the mean density was 250±27cells/mm(2). Their density was highest in the mid central region of ventrotemporal retina and lowest in the periphery of dorsonasal retina. Quantitatively, 45.71% of the TH-IR cells were DA1 cells, while 54.29% were DA2 cells. No TH-IR cells expressed calbindin D28K, calretinin or parvalbumin, markers for the various INL cells present in several animals. Therefore the TH-IR cells in zebrafish are limited to very specific subpopulations of the amacrine cells.
Collapse
Affiliation(s)
- Yu-Jin Jang
- Department of Biology, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu 702-701, South Korea
| | | | | | | |
Collapse
|
3
|
Sherry DM, Ulshafer RJ. Neurotransmitter-specific identification and characterization of neurons in the all-cone retina of Anolis carolinensis II: Glutamate and aspartate. Vis Neurosci 2009; 9:313-23. [PMID: 1356423 DOI: 10.1017/s0952523800010725] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractImmunocytochemical and autoradiographic methods were used to identify neurons in the pure cone retina of the lizard (Anolis carolinensis) that are likely to employ glutamate (GLU) or aspartate (ASP) as a neurotransmitter.GLU immunocytochemistry demonstrated high levels of endogenous GLU in all cone types and numerous bipolar cells. Moderate GLU levels were found in horizontal and ganglion cells. Müller cells and most amacrine cells had very low GLU levels. GLU immunoreactivity (GLU-IR) in the cones was present from the inner segment to the synaptic pedicle. A large spherical cell type with moderate GLU-IR was identified in the proximal inner plexiform layer (IPL). These cells also contain ASP and have been tentatively identified as amacrine cells. Uptake of [3H]-L-GLU labeled all retinal layers. All cone types and Müller cells sequestered [3H]-D-ASP, a substrate specific for the GLU transporter.Anti-ASP labeling was observed in cones, horizontal cells, amacrine cells, and cells in the ganglion cell layer. ASP immunoreactivity (ASP-IR) in the cones was confined to the inner segment. One ASP-containing pyriform amacrine cell subtype ramifying in IPL sublamina b was identified.Analysis of GLU-IR, ASP-IR, and GABA-IR on serial sections indicated that there were two distinct populations of horizontal cells in the Anolis retina: one containing GABA-IR, GLU-IR, and ASP-IR; and another type containing only GLU-IR and ASP-IR. Light GLU-IR was frequently found in GABA-containing amacrine cells but ASP-IR was not.The distinct distributions of GLU and ASP may indicate distinctly different roles for these amino acids. GLU, not ASP, is probably the major neurotransmitter in the cone-biploar-ganglion cell pathway of the Anolis retina. Both GLU and ASP are present in horizontal cells and specific subpopulations of amacrine cells, but it is unclear if GLU or ASP have a neurotransmitter role in these cells.
Collapse
Affiliation(s)
- D M Sherry
- Department of Neuroscience, University of Florida, Gainesville
| | | |
Collapse
|
4
|
Miranda-Anaya M, Bartell PA, Menaker M. Circadian rhythm of iguana electroretinogram: the role of dopamine and melatonin. J Biol Rhythms 2002; 17:526-38. [PMID: 12465886 DOI: 10.1177/0748730402238235] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The amplitude of the b-wave of the electroretinogram (ERG) varies with a circadian rhythm in the green iguana; the amplitude is high during the day(or subjective day) and low during the night (or subjective night). Dopamine and melatonin contents in the eye are robustly rhythmic under constant conditions; dopamine levels are high during the subjective day, and melatonin levels are high during the subjective night. Dopamine and melatonin affect the amplitude of the b-wave in an antagonistic and phase-dependent manner: dopamine D2-receptor agonists injected intraocularly during the subjective night produce high-amplitude b-waves characteristic of the subjective day, whereas melatonin injected intraocularly during the subjective day reduces b-wave amplitude. Sectioning the optic nerve abolishes the circadian rhythms of b-wave amplitude and of dopamine content. The results of this study suggest that in iguana, a negative feedback loop involving dopamine and melatonin regulates the circadian rhythm of the ERG b-wave amplitude that is at least in part generated in the brain.
Collapse
Affiliation(s)
- Manuel Miranda-Anaya
- Department of Biology and National Science Foundation Centerfor Biological Timing, University of Virginia, Charlottesville, VA 22904-4328, USA.
| | | | | |
Collapse
|
5
|
Castanon-Cervantes O, Battelle B, Fanjul-Moles ML. Rhythmic changes in the serotonin content of the brain and eyestalk of crayfish during development. J Exp Biol 1999; 202 (Pt 20):2823-30. [PMID: 10504318 DOI: 10.1242/jeb.202.20.2823] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study investigated developmental circadian changes in the content of 5-hydroxytryptamine (5-HT) in two structures proposed to contain pacemakers in crayfish Procambarus clarkii: the cerebral ganglion and the eyestalks. Crayfish (N=260) from three developmental stages were divided into two groups: (1) animals subjected to 12 h:12 h light:dark cycles for 10 days and (2) animals treated as described above, then exposed to 72 h of continuous dim light. Crayfish from both groups were killed at different times of day, and the cerebral ganglion and the eyestalks of each were assayed for 5-HT by reversed-phase HPLC with electrochemical detection. In all stages of development, 5-HT content (expressed as (μ)g g(−)(1)wet mass tissue) showed circadian variations in both structures analyzed; rhythms continued to free-run under constant illumination, and total 5-HT content was higher in the brain (0.581+/−0.36 (μ)g g(−)(1); mean +/− s.e.m.) than in the eyestalks (0.299+/−0.15 (μ)g g(−)(1)). As development advances, the percentage of the rhythm that shows periods of 24 h diminishes, while the percentage of the rhythm that shows periods of 9 to 12 h increases. This seems to indicate that pulsatile variations in 5-HT content are superimposed in a circadian component. The relationship between the 5-HT rhythm and electroretinogram and motor activity rhythms during development is discussed.
Collapse
Affiliation(s)
- O Castanon-Cervantes
- Lab. Neurofisiologia Comparada, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Ap. Postal 70-371, CP 04510, Mexico City, DF Mexico and Whitney Laboratory and Department of Neuroscience, University of Florida, St August
| | | | | |
Collapse
|
6
|
Lanuza E, Martínez-Marcos A, Font C, Martínez-García F. Catecholaminergic interplexiform cells in the retina of lizards. Vision Res 1996; 36:1349-55. [PMID: 8762754 DOI: 10.1016/0042-6989(95)00292-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An immunohistochemical study of the distribution of tyrosine hydroxylase has been performed in the retina of lizards of the genera Podarcis, Anolis and Tarentola. Immunoreactive cells extending their processes into the inner plexiform layer were observed in all three species. Reactive fibres in the outer plexiform layer were also seen in Podarcis and Anolis, and hence they possess not only amacrine but also catecholaminergic interplexiform cells. The retina of Anolis also showed reactive fibres aposed to the photoreceptors near the central fovea. The role of this outer retinal innervation on dopamine-dependent light-adaptive phenomena is discussed from a comparative perspective.
Collapse
Affiliation(s)
- E Lanuza
- Departament de Biologia Animal, Universitat de València, València, Spain
| | | | | | | |
Collapse
|
7
|
Bennis M, Versaux-Botteri C. Catecholamine-, indoleamine-, and GABA-containing cells in the chameleon retina. Vis Neurosci 1995; 12:785-92. [PMID: 8527377 DOI: 10.1017/s0952523800009044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neurons containing catecholamine, indoleamine, and gamma-aminobutyric acid (GABA) were identified by immunohistochemistry in the chameleon retina. Tyrosine hydroxylase (TH) and serotonin (5HT) were observed mostly in two subtypes of orthotopic amacrine cells differing in their soma size and process distribution within the IPL. Some labelled cells were displaced either to the IPL (5HT) or the GCL (TH and 5HT). A multiplicity of retinal cell types contained GABA including cones, horizontal, amacrine, and ganglion cells. Our results confirmed those obtained in the retinas of other lizards except for the presence of interstitial and displaced amacrine cells containing TH or 5HT of which this is the first report.
Collapse
Affiliation(s)
- M Bennis
- Laboratoire de Neurosciences, Faculté de Sciences Semlalia, Université Cadi Ayyad, Marrakech, Morocco
| | | |
Collapse
|
8
|
Liu Q, Debski EA. Serotonin-like immunoreactivity in the adult and developing retina of the leopard frog Rana pipiens. J Comp Neurol 1993; 338:391-404. [PMID: 7906699 DOI: 10.1002/cne.903380306] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recent work in nonmammalian vertebrate retinas has suggested that other cell types besides the generally accepted amacrine cells may contain serotonin. We have used immunocytochemical methods to study serotonin-like immunoreactivity (5-HTLI) in the retina of the developing and mature frog Rana pipiens. In the adult, two types of serotonin immunoreactive (5-HT-ir) cells were found in the inner nuclear layer (INL) of the retina. Additionally, a large population of cells in the retinal ganglion cell layer (RGCL) had 5-HTLI. These cells were grouped into three types based on their soma size and their primary dendritic branching pattern. The optic nerve fiber layer was also intensely stained with serotonin antisera although staining intensity decreased progressively as the fibers approached the optic nerve head. Severing the optic nerve resulted in 5-HT-ir elements that extended up the optic nerve shaft from the lesion site toward the retina. Both regional and temporal changes in the pattern of 5-HTLI were seen. In middle regions of retina, approximately 30% of the cells in the RGCL were 5-HT-ir. Nasal and temporal regions of central retina had significantly fewer 5-HT-ir cells. Early in development only scattered cells in the RGCL were 5-HT-ir. As the animals matured there was an increase in both the proportion and the staining intensity of these cells. Our results suggest that in studying the function and development of the visual system in this animal, the role of serotonin must be examined.
Collapse
Affiliation(s)
- Q Liu
- School of Biological Sciences, University of Kentucky, Lexington 40506
| | | |
Collapse
|
9
|
Gábriel R, Zhu BS, Straznicky C. Synaptic contacts of serotonin-like immunoreactive and 5,7-dihydroxytryptamine-accumulating neurons in the anuran retina. Neuroscience 1993; 54:1103-14. [PMID: 8341421 DOI: 10.1016/0306-4522(93)90599-b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The synapses of serotonin-like immunoreactive retinal neurons were studied in Bufo marinus and Xenopus laevis and those of 5,7-dihydroxytryptamine-labelled cells in Xenopus. Immunoreactivity to serotonin was mostly confined to amacrine cells. Synapses formed by profiles of labelled cells were almost uniformly distributed in the inner plexiform layer in both species. Interamacrine synapses were the most frequent, and in some cases two labelled amacrine cell profiles made a gap junction. Some of the labelled amacrine cells synapsed on to presumed ganglion cell dendrites and onto bipolar cell terminals. Labelled bipolar cell terminals synapsed on to non-labelled amacrine cell dendrites and received inputs both from labelled and non-labelled amacrine cells. Labelled bipolar cell profiles were not observed in the outer plexiform layer. After preloading and photoconversion of 5,7-dihydroxytryptamine in the Xenopus retina, labelled bipolar cell dendrites in the outer plexiform layer were observed to be postsynaptic to cone pedicles and less frequently to rods and horizontal cells. In the inner plexiform layer, synapse types formed by labelled bipolar cells were similar to those with serotonin immunoreactivity. The frequency of synapses formed by 5,7-dihydroxytryptamine-labelled amacrine cells increased, compared with serotonin immunocytochemistry. Labelled amacrine cells synapsed mostly with non-labelled amacrine cells, although the ratio of contacts formed by two labelled profiles increased. Synapses from labelled amacrine cell dendrites to non-labelled bipolar cell terminals and from non-labelled bipolar cell terminals to labelled amacrine cell profiles increased in number, while those from labelled amacrine cells to presumed ganglion cell dendrites decreased. The quantitative data obtained by the two approaches enabled us to propose different neuronal circuits for serotonin-synthesizing and -accumulating neurons of the Xenopus retina.
Collapse
Affiliation(s)
- R Gábriel
- Department of Anatomy and Histology, School of Medicine, Flinders University of South Australia, Adelaide
| | | | | |
Collapse
|
10
|
Hurd LB, Eldred WD. Synaptic microcircuitry of bipolar and amacrine cells with serotonin-like immunoreactivity in the retina of the turtle, Pseudemys scripta elegans. Vis Neurosci 1993; 10:455-71. [PMID: 8494799 DOI: 10.1017/s0952523800004685] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although serotonin is thought to be a neurotransmitter in a number of retinal systems, much of the precise synaptic connectivity of serotonergic neurons is unknown. To address this issue, we used an antiserum directed against serotonin to label serotonergic bipolar and amacrine cells in the turtle retina. Light-microscopic analysis of labeled amacrine and bipolar cells indicated that both had bistratified dendritic arborizations primarily in stratum 1 and in strata 4/5 of the inner plexiform layer. Ultrastructural analysis of the neurocircuitry of these cells indicated that the processes of labeled bipolar cells in the outer plexiform layer made basal junction contacts with photoreceptor terminals. Only in rare instances did labeled bipolar cells processes invaginate near photoreceptor ribbon synapses. Processes of labeled bipolar cells received both conventional and small ribbon synaptic contacts in the outer plexiform layer. Bipolar cell processes in stratum 1 of the inner plexiform layer synapsed onto either amacrine/amacrine or amacrine/ganglion cell dyads, and made rare ribbon synaptic contacts onto labeled amacrine cell processes. Synaptic inputs to serotonergic bipolar cells in stratum 1 were from unlabeled bipolar and amacrine cells. Bipolar cell contacts in strata 4/5 were similar to those in stratum 1, but were fewer in number and no bipolar cell inputs were seen. Labeled amacrine cell output in both strata was onto other unlabeled amacrine cells and ganglion cells; but synaptic outputs to unlabeled bipolar cells were only seen in strata 4/5. In both strata 1 and 4/5, synaptic inputs to labeled amacrine cells were from both unlabeled amacrine cells and labeled bipolar cells. The serotonergic amacrine cells had many more synaptic interactions in stratum 1 than in strata 4/5 which supports the role of serotonergic bipolar cells in the OFF pathway of retinal processing. Interactions between serotonergic bipolar and amacrine cells may play an important role in visual processing.
Collapse
Affiliation(s)
- L B Hurd
- Department of Anatomy and Neurobiology, Boston University School of Medicine, MA 02215
| | | |
Collapse
|
11
|
Watt CB, Glazebrook PA. Synaptic organization of dopaminergic amacrine cells in the larval tiger salamander retina. Neuroscience 1993; 53:527-36. [PMID: 8098517 DOI: 10.1016/0306-4522(93)90217-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The ultrastructural features and synaptic interactions of tyrosine hydroxylase-like-immuno-reactive amacrine cells in the larval tiger salamander retina were examined using routine immunoelectron microscopy. The somas of tyrosine hydroxylase-like-immunoreactive amacrine cells were immunostained evenly throughout their cytoplasm. Their nuclei were generally unstained and possessed indented nuclear membranes. The processes of tyrosine hydroxylase-like-immunoreactive amacrine cells were homogeneously stained with the exception of their mitochondria, whose morphology was often disrupted by the staining procedure. Tyrosine hydroxylase-like-immunoreactive amacrine cell processes were characterized by an occasional dense-cored vesicle(s), in addition to a generally homogeneous population of small, round, agranular synaptic vesicles. They formed conventional synaptic junctions that were characterized by symmetrical synaptic membrane densities. A total of 168 synapses were observed that involved tyrosine hydroxylase-like-immunoreactive amacrine cell processes. A large percentage (79.8%) of these synaptic arrangements were found in sublayer 1 of the inner plexiform layer, while substantially lower percentages were observed in sublayers 3 (9.5%) and 5 (10.7%). They served as pre- and postsynaptic elements 63.1 and 36.9% of the time, respectively. Tyrosine hydroxylase-like-immunoreactive amacrine cell processes were presynaptic to amacrine cell processes (36.9% of total synaptic involvement) and processes that lack synaptic vesicles and whose origin remains uncertain (26.2%). They received synaptic input primarily from amacrine cell processes (31.0%). Tyrosine hydroxylase-like-immunoreactive amacrine cell processes also received a few ribbon synapses from bipolar cells (5.9%). Each of these synaptic relationships were observed in each of sublayers 1, 3 and 5 of the inner plexiform layer, with the majority of each arrangement being found in sublayer 1.
Collapse
Affiliation(s)
- C B Watt
- Alice R. McPherson Laboratory of Retina Research, Baylor College of Medicine, Woodlands, TX 77381
| | | |
Collapse
|
12
|
|
13
|
Sherry DM, Ulshafer RJ. Neurotransmitter-specific identification and characterization of neurons in the all-cone retina of Anolis carolinensis, I: Gamma-aminobutyric acid. Vis Neurosci 1992; 8:515-29. [PMID: 1586653 DOI: 10.1017/s0952523800005617] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The inhibitory amino-acid neurotransmitter, gamma-aminobutyric acid (GABA), was localized in the pure cone retina of the lizard Anolis carolinensis by autoradiographic and immunocytochemical techniques. Uptake of [3H]-GABA labeled horizontal cells, amacrine cells, numerous cells in the ganglion cell layer, both plexiform layers, and the nerve fiber layer. Label in the inner plexiform layer showed distinct lamination. The pattern of GABA immunoreactivity was similar to the pattern of [3H]-GABA uptake, although some differences, particularly in labeling of amacrine and ganglion cells, were observed. Immunocytochemistry revealed endogenous stores of GABA in a set of horizontal cells, amacrine cells, and cells in the ganglion cell layer. Both plexiform layers were labeled by the GABA antisera. Labeling in the inner plexiform layer (IPL) was highly stratified and GABA-immunoreactive strata were present in both sublaminae a and b. Six subtypes of conventionally placed GABA-immunoreactive amacrine cells and one displaced amacrine cell subtype were identified. Three of the six conventional amacrine cell subtypes were of pyriform morphology and three subtypes were of multipolar morphology. GABA-immunoreactive interstitial cells also were observed. Under certain conditions the GABA antiserum labeled the cones. Etching the resin eliminated cone labeling, suggesting that GABA in the cones is present in a labile pool, unlike GABA in horizontal or amacrine cells, or the observed labeling was not due to endogenous GABA. Cones did not demonstrate [3H]-GABA uptake.
Collapse
Affiliation(s)
- D M Sherry
- Department of Neuroscience, University of Florida, Gainesville
| | | |
Collapse
|
14
|
Abstract
Dopamine (DA) has satisfied many of the criteria for being a major neurochemical in vertebrate retinae. It is synthesized in amacrine and/or interplexiform cells (depending on species) and released upon membrane depolarization in a calcium-dependent way. Strong evidence suggests that it is normally released within the retina during light adaptation, although flickering and not so much steady light stimuli have been found to be most effective in inducing endogenous dopamine release. DA action is not restricted to those neurones which appear to be in "direct" contact with pre-synaptic dopaminergic terminals. Neurones that are several microns away from such terminals can also be affected, presumably by short diffusion of the chemical. DA thus affects the activity of many cell types in the retina. In photoreceptors, it induces retinomotor movements, but inhibits disc shedding acting via D2 receptors, without significantly altering their electrophysiological responses. DA has two main effects upon horizontal cells: it uncouples their gap junctions and, independently, enhances the efficacy of their photoreceptor inputs, both effects involving D1 receptors. In the amphibian retina, where horizontal cells receive mixed rod and cone inputs, DA alters their balance in favour of the cone input, thus mimicking light adaptation. Light-evoked DA release also appears to be responsible for potentiating the horizontal cell-->cone negative feed-back pathway responsible for generation of multi-phasic, chromatic S-potentials. However, there is little information concerning action of DA upon bipolar and amacrine cells. DA effects upon ganglion cells have been investigated in mammalian (cat and rabbit) retinae. The results suggest that there are both synaptic and non-synaptic D1 and D2 receptors on all physiological types of ganglion cell tested. Although the available data cannot readily be integrated, the balance of evidence suggests that dopaminergic neurones are involved in the light/dark adaptation process in the mammalian retina. Studies of the DA system in vertebrate retinae have contributed greatly to our understanding of its role in vision as well as DA neurobiology generally in the central nervous system. For example, the effect of DA in uncoupling horizontal cells is one of the earliest demonstrations of the uncoupling of electrotonic junctions by a neurally released chemical. The many other, diverse actions of DA in the retina reviewed here are also likely to become model modes of neurochemical action in the nervous system.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M B Djamgoz
- Imperial College of Science, Technology and Medicine, Department of Biology, London, U.K
| | | |
Collapse
|
15
|
Abstract
A survey of the shapes of dopaminergic (DA) neurons in the retinas of representative vertebrates reveals that they are divisible into three groups. In teleosts and Cebus monkey, DA cells are interplexiform (IPC) neurons with an ascending process that ramifies to create an extensive arbor in the outer plexiform layer (OPL). All other vertebrates studied, including several primate species, have either DA amacrine cells or IPCs with an ascending process that either does not branch within the OPL or does so to a very limited degree. DA neurons of non-teleosts exhibit a dense plexus of fine caliber fibers which extends in the distal most sublamina of the inner plexiform layer (IPL). Teleosts lack this plexus. In all vertebrates, DA cells are distributed more or less evenly and at a low density (10-60 cells/mm2) over the retinal surface. Dendritic fields of adjacent DA neurons overlap. Most of the membrane area of the DA cell is contained within the plexus of fine fibers, which we postulate to be the major source of dopamine release. Thus, dopamine release can be modeled as occurring uniformly from a thin sheet located either in the OPL (teleosts) or in the distal IPL (most other vertebrates) or both (Cebus monkey). Assuming that net lateral spread of dopamine is zero, the fall of dopamine concentration with distance at right angles to the sheet (i.e. in the scleral-vitreal axis) will be exponential. The factors that influence the rate of fall-diffusion in extracellular space, uptake, and transport--are not yet quantified for dopamine, hence the dopamine concentration around its target cells cannot yet be assessed. This point is important in relation to the thresholds for activation of D1 and D2 dopamine receptors that are found on a variety of retinal cells.
Collapse
Affiliation(s)
- P Witkovsky
- Department of Ophthalmology, New York University Medical Center, NY 10016
| | | |
Collapse
|
16
|
Witkovsky P, Dearry A. Chapter 10 Functional roles of dopamine in the vertebrate retina. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/0278-4327(91)90031-v] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Zhu BS, Straznicky C. Morphology and distribution of serotonin-like immunoreactive amacrine cells in the retina of Bufo marinus. Vis Neurosci 1990; 5:371-8. [PMID: 2124921 DOI: 10.1017/s0952523800000456] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Using an antibody against serotonin (5-hydroxytryptamine, 5-HT), serotonin-like immunoreactive (serotonin-IR) neurons were demonstrated in the retina of adult Bufo marinus. All immunoreactive neurons were identified as amacrine cells (ACs). The dendrites of serotonin-IR ACs branched diffusely and densely throughout all levels of the inner plexiform layer (IPL) of the retina. The great majority of these cell somata were located in the vitread part of the inner nuclear layer (INL) and a few of them (ranging from 9-29 cells) were displaced into the ganglion cell layer (GCL). On the basis of the soma sizes, two populations of serotonin-IR ACs, large (type A) and small (type B), were distinguished. 6-Hydroxydopamine (6-OHDA) injected into the eye abolished immunoreactivity in the recently reported tyrosine hydroxylase (TH)-IR ACs (Zhu & Straznicky, 1990), whereas serotonin-IR ACs remained unaffected. The number of serotonin-IR cells per retina ranged from 23, 750-27, 390, with a ratio of 1:1.6 to 1:1.9 between type A and B cells. Both cell types were distributed nonuniformly across the retina. Cell densities were slightly lower in the peripheral (96 cells/mm2) than in the central (164 cells/mm2) retina. Linear regression analysis confirmed the presence of a decreasing density gradient from the retinal center to the retinal margin for both small and large cell types. The analysis of the nearest neighbor distances showed that the retinal distribution of serotonin-IR ACs was orderly. These results have been taken to indicate that 5-HT-IR cells correspond to a population of serotonin-containing ACs.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- B S Zhu
- Department of Anatomy and Histology, School of Medicine, Flinders University of South Australia, Bedford Park
| | | |
Collapse
|
18
|
Young HM, Vaney DI. The retinae of Prototherian mammals possess neuronal types that are characteristic of non-mammalian retinae. Vis Neurosci 1990; 5:61-6. [PMID: 2271460 DOI: 10.1017/s0952523800000079] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study has shown that the retinae of Prototherian (egg-laying) mammals possess two neuronal types that are present in non-mammalian retinae, but absent or morphologically different in the retinae of Eutherian (placental) mammals. First, endogenous serotonin-like immunoreactivity has been localized in a population of presumptive amacrine cells in the platypus retina, the first such report in a mammalian retina. Second, the protein kinase C-immunoreactive (PKC-IR) bipolar cells in the echidna retina appear similar to the PKC-IR bipolars in the chicken retina, in that their dendrites give rise to a Landolt's club and their axons are multistratified. By contrast, the PKC-IR rod bipolar cells in the rabbit and in the brushtail possum, a Metatherian (marsupial) mammal, have no Landolt's clubs and their axons form terminal lobes in the innermost stratum of the inner plexiform layer.
Collapse
Affiliation(s)
- H M Young
- Department of Physiology and Pharmacology, University of Queensland, Australia
| | | |
Collapse
|
19
|
Watt CB, Wilson EA. Synaptic organization of serotonin-like immunoreactive amacrine cells in the larval tiger salamander retina. Neuroscience 1990; 35:715-23. [PMID: 2381521 DOI: 10.1016/0306-4522(90)90342-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Immunoelectron microscopy was used to investigate the ultrastructural features and synaptic relationships of serotonin-like immunoreactive amacrine cells in the larval tiger salamander retina. Serotonin-positive somas exhibited an evenly distributed peroxidase reaction product throughout their cytoplasm. Their nuclei were unstained and possessed indented nuclear membranes. Serotonin-immunoreactive processes were generally stained throughout with the exception of their mitochondria, whose morphology was often disrupted by the staining reaction. They were further characterized by an occasional dense-cored vesicle/s in addition to a generally homogeneous population of small, round, clear synaptic vesicles. Serotonin-immunoreactive amacrine cell processes formed conventional synapses that were characterized by symmetrical synaptic membrane densities. A total of 222 synaptic arrangements were observed that involved the immunostained processes of serotonin-amacrine cells. As presynaptic elements, they primarily contacted amacrine cells processes (37.8%). They also provided substantial synaptic input to processes that lacked synaptic vesicles (16.2%) and whose origin was unidentified. Serotonin-processes provided a far fewer number of synaptic contacts onto the processes of bipolar cells (1.4%) and the somas of cells in the amacrine cell layer (0.5%). As postsynaptic elements, they received synaptic inputs from amacrine cells (27.9%) and bipolar cells (16.2%). With the exception of their synapses onto bipolar cells and the somas of cells in the amacrine cell layer, each of the synaptic relationships of serotonin-amacrine cells was observed in each of sublayers 1-5 of the inner plexiform layer.
Collapse
Affiliation(s)
- C B Watt
- Alice R. McPherson Laboratory of Retina Research, Baylor College of Medicine, The Woodlands, TX 77381
| | | |
Collapse
|
20
|
Guarnieri T, Villani L, Fasolo A. Tyrosine hydroxylase immunohistochemistry in the normal and 1-methyl-4-phenyl-tetrahydropyridine (MPP+)-treated retina of goldfish. Neurosci Lett 1989; 106:269-74. [PMID: 2574839 DOI: 10.1016/0304-3940(89)90175-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dopaminergic interplexiform neurons have been identified in the inner nuclear layer of goldfish retina, with tyrosine hydroxylase (TH) immunocytochemistry in whole-mounted retinae and in cryosections. The neurotoxin 1-methyl-4-phenylpyridinium ion (MPP+), which selectively damages dopaminergic neurons in mammals, caused a marked depletion of TH immunoreactivity in goldfish retina. Three days after intravitreal injection, retinae showed no significant decrease in the number of TH-positive neurons. However most of the TH-immunoreactive cell bodies showed an evident depletion of TH immunoreactivity and their processes, ramified in the inner and outer plexiform layers, disappeared almost completely.
Collapse
Affiliation(s)
- T Guarnieri
- Department of Biology, University of Bologna, Italy
| | | | | |
Collapse
|
21
|
Yang SZ, Lam DM, Watt CB. Localization of serotoninlike-immunoreactive amacrine cells in the larval tiger salamander retina. J Comp Neurol 1989; 287:28-37. [PMID: 2477398 DOI: 10.1002/cne.902870104] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Light microscopic immunocytochemistry was used to study the populations of serotoninlike-immunoreactive cells in the larval tiger salamander retina. Of 1,135 serotonin-immunostained cells observed in transverse cryosections, 87% were identified as amacrine cells, whereas 13% were tentatively designated as displaced amacrine cells. The somas of the vast majority of serotonin-amacrine cells were situated in the innermost cell row of the inner nuclear layer. Only a few serotonin-immunostained amacrine cell somas were observed in the second row of cells from the inner nuclear layer. Serotonin-immunoreactive processes generally appeared as a diffuse plexus distributed evenly throughout all levels of the inner plexiform layer. As determined in whole-mount preparations, serotonin-amacrine cells were divisible into two populations on the basis of the diameters of their somas. Large cells (45%) ranged from 16 to 19 microns in diameter with the vast majority measuring 17-18 microns. Smaller and sometimes less intensely stained cells ranged from 14 to 16 microns in diameter with the large majority measuring 15 microns. The diameters of serotonin-displaced amacrine cells ranged from 19 to 22 microns with the large majority measuring 20 microns in diameter. An examination of whole-mount retinas revealed that serotonin-immunoreactive amacrine and displaced amacrine cells were distributed throughout the center and the periphery of the retina. The density of serotonin-amacrine cells (large and small combined) was calculated to be 173 +/- 4.5 (mean +/- standard error) cells per mm2.
Collapse
Affiliation(s)
- S Z Yang
- Alice R. McPherson Laboratory of Retina Research, Center for Biotechnology, Baylor College of Medicine, The Woodlands, Texas 77381
| | | | | |
Collapse
|
22
|
Porciatti V, Alesci R, Bagnoli P, Signorini G, Raffaelli A. Serotonin depletion modifies the pigeon electroretinogram. Doc Ophthalmol 1989; 72:93-100. [PMID: 2478351 DOI: 10.1007/bf00155218] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Significant amounts of endogenous serotonin have been detected in the retina of many nonmammalian vertebrates. In the pigeon retina, serotonin-like immunoreactivity has been localized within a subpopulation of bipolar and amacrine cells, and serotonin-containing terminals have been found to be segregated in different laminae of the inner plexiform layer. In the current experiments 5,7-dihydroxytryptamine was injected intravitreally in the pigeon eye in order to examine the effect of serotonin depletion on the functional activity of the retina. The physiological modifications induced by the serotonin depletion were examined by recording electroretinographic responses to light flashes of different intensity under conditions of light and dark adaptation. Our results show that 5,7-dihydroxytryptamine treatment selectively increases b-wave amplitude and modifies the function relating b-wave amplitude to Log flash intensity without affecting the peak latency and the amplitude of oscillatory potentials. These results can be interpreted in terms of a possible inhibitory role of serotonin on b-wave generators.
Collapse
Affiliation(s)
- V Porciatti
- Department of Physiology and Biochemistry, Eye Clinic, University, Pisa, Italy
| | | | | | | | | |
Collapse
|
23
|
Frederick JM, Rayborn ME, Hollyfield JG. Serotoninergic neurons in the retina of Xenopus laevis: selective staining, identification, development, and content. J Comp Neurol 1989; 281:516-31. [PMID: 2708578 DOI: 10.1002/cne.902810403] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Uptake of 3H-serotonin followed by autoradiography, and uptake of the serotonin analog 5,7-dihydroxytryptamine (5,7-DHT), with subsequent staining, were each used to define a unique set of neurons in the retina of the African clawed frog, Xenopus laevis. Both techniques demonstrated the same population of neurons, on the basis of perikaryal size, shape, and position within the retina. Two classes of amacrine cells accumulated 5,7-DHT at the proximal (vitread) margin of the inner nuclear layer; the two classes were distinguished by the size of their perikarya. Two similar populations of cells, observed in the ganglion cell layer with lower frequency, may represent "displaced" counterparts of these two amacrine cell types. A class of bipolar cells whose perikarya were located in middle-to-distal regions of the inner nuclear layer also accumulated 5,7-DHT and 3H-serotonin. Processes of these cells contributed to a dense plexus of fine fibers that appeared evenly distributed throughout the inner plexiform layer. 3H-Serotonin-accumulating cells first appeared in the developing retina at stage 35/36, a time immediately after retinal stratification but before elaboration of either plexiform layer. Electron microscopic analysis permitted an identification of 3H-serotonin-accumulating terminals in the inner plexiform layer. Serotonin-labeled terminals containing conventional contacts, suggestive of amacrine cells, were presynaptic to unidentified processes and postsynaptic to bipolar cells. Labeled terminals containing ribbon contacts, indicative of bipolar cells, were postsynaptic to amacrine cells. The amount of serotonin contained in isolated retinas was 15 pmol/mg protein as measured by HPLC with electrochemical detection. We attempted to stimulate the release of accumulated 3H-serotonin from mature retinas by increasing the K+-concentration in the bathing medium. Although preloaded glycine is readily released from 14C-glycine-accumulating neurons, from the same retinas there was no calcium-dependent, K+-stimulated release of 3H-serotonin. This finding suggests that serotonin and glycine are processed differently by retinal neurons, the consequence of which results in differing responses to 40 mM K+.
Collapse
Affiliation(s)
- J M Frederick
- Cullen Eye Institute, Baylor College of Medicine, Houston, Texas 77030
| | | | | |
Collapse
|
24
|
Watt CB, Yang SZ, Lam DM, Wu SM. Localization of tyrosine-hydroxylase-like-immunoreactive amacrine cells in the larval tiger salamander retina. J Comp Neurol 1988; 272:114-26. [PMID: 2898490 DOI: 10.1002/cne.902720108] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Immunocytochemistry was used to localize the populations of tyrosine-hydroxylase-like (TH)-immunoreactive cells in the tiger salamander retina. Ninety percent of these cells possessed somas that were situated in the innermost cell row of the inner nuclear layer and were classified as amacrine cells. Ten percent of TH-immunoreactive somas were located in the ganglion cell layer and were tentatively designated as those of displaced amacrine cells. The processes of TH-immunoreactive cells ramified most heavily in sublayer 1 of the inner plexiform layer, while a relatively small number of TH-labelled processes distributed in sublayers 3 and 5. Less than 1% of TH-immunoreactive cells in the amacrine cell layer exhibited a short process of somal origin that extended distally toward the outer plexiform layer. However, these processes did not cross the whole of the inner nuclear layer, and no immunolabelling was observed in the outer plexiform layer. An examination of retinal whole-mounts revealed that TH-immunoreactive amacrine and displaced amacrine cells were distributed throughout the center and periphery of the retina. The density of TH-immunolabelled amacrine cells was calculated to be 49 +/- 13 (mean +/- standard error) cells per mm2. The vast majority of TH-immunoreactive amacrine and displaced amacrine cells exhibited a stellate appearance and gave rise to three or more primary dendrites. A few TH-amacrine and displaced amacrine cells possessed two primary dendrites that emerged from opposite sides of their somas. The processes of TH-immunoreactive cells were generally poorly branched and varicose with terminal branches sometimes appearing thin and beaded. Because some TH-immunolabelled processes were very long, there was considerable overlap between the dendritic fields of neighboring TH-cells. Lastly, individual TH-immunoreactive amacrine and displaced amacrine cells were often observed in whole-mounts to provide processes that ramified at more than one level of the inner plexiform layer.
Collapse
Affiliation(s)
- C B Watt
- Center for Biotechnology, Baylor College of Medicine, Woodlands, Texas 77381
| | | | | | | |
Collapse
|
25
|
Kolb H, Cline C, Wang HH, Brecha N. Distribution and morphology of dopaminergic amacrine cells in the retina of the turtle (Pseudemys scripta elegans). JOURNAL OF NEUROCYTOLOGY 1987; 16:577-88. [PMID: 2891796 DOI: 10.1007/bf01637651] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A light microscopical study of the cell types that stain by immunohistochemistry for the synthesizing enzyme for dopamine, tyrosine hydroxylase, has been performed on the retina of the turtle Pseudemys scripta elegans. The immunostain can be localized to a single morphological type of amacrine cell. The cells are like A28 cells of a Golgi classification. They have medium sized dendritic fields that range in diameter from 200 to 700 micron with eccentricity from the visual streak. The amacrines have a tri-stratified dendritic tree with tiers of fine, curved dendrites ramifying in strata S1, lower S2 and the S4/5 border of the inner plexiform layer. We, like others, can find no good evidence that these cells are interplexiform cells. The dopaminergic amacrine cells have a low frequency (approximately 1300-1500 total cells in 130 mm2 retina), with their highest density occurring in the visual streak (60 cells per mm2). The density profiles fall in elliptical isodensity rings from the visual streak towards the peripheral retina. At all points on the retina the dendritic fields maintain a constant coverage factor independent of eccentricity. A comparison of the dopaminergic amacrine cells in the turtle and other vertebrate retinae is made.
Collapse
Affiliation(s)
- H Kolb
- Physiology Department, University of Utah School of Medicine, Salt Lake City 84108
| | | | | | | |
Collapse
|