1
|
Álvarez-Hernán G, de Mera-Rodríguez JA, Hernández-Núñez I, Marzal A, Gañán Y, Martín-Partido G, Rodríguez-León J, Francisco-Morcillo J. Analysis of Programmed Cell Death and Senescence Markers in the Developing Retina of an Altricial Bird Species. Cells 2021; 10:cells10030504. [PMID: 33652964 PMCID: PMC7996935 DOI: 10.3390/cells10030504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/30/2022] Open
Abstract
This study shows the distribution patterns of apoptotic cells and biomarkers of cellular senescence during the ontogeny of the retina in the zebra finch (T. guttata). Neurogenesis in this altricial bird species is intense in the retina at perinatal and post-hatching stages, as opposed to precocial bird species in which retinogenesis occurs entirely during the embryonic period. Various phases of programmed cell death (PCD) were distinguishable in the T. guttata visual system. These included areas of PCD in the central region of the neuroretina at the stages of optic cup morphogenesis, and in the sub-optic necrotic centers (St15–St20). A small focus of early neural PCD was detected in the neuroblastic layer, dorsal to the optic nerve head, coinciding with the appearance of the first differentiated neuroblasts (St24–St25). There were sparse pyknotic bodies in the non-laminated retina between St26 and St37. An intense wave of neurotrophic PCD was detected in the laminated retina between St42 and P8, the last post-hatching stage included in the present study. PCD was absent from the photoreceptor layer. Phagocytic activity was also detected in Müller cells during the wave of neurotrophic PCD. With regard to the chronotopographical staining patterns of senescence biomarkers, there was strong parallelism between the SA-β-GAL signal and p21 immunoreactivity in both the undifferentiated and the laminated retina, coinciding in the cell body of differentiated neurons. In contrast, no correlation was found between SA-β-GAL activity and the distribution of TUNEL-positive cells in the developing tissue.
Collapse
Affiliation(s)
- Guadalupe Álvarez-Hernán
- Área de Biología Celular Departamento de Anatomía Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (G.Á.-H.); (J.A.d.M.-R.); (I.H.-N.); (G.M.-P.)
| | - José Antonio de Mera-Rodríguez
- Área de Biología Celular Departamento de Anatomía Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (G.Á.-H.); (J.A.d.M.-R.); (I.H.-N.); (G.M.-P.)
| | - Ismael Hernández-Núñez
- Área de Biología Celular Departamento de Anatomía Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (G.Á.-H.); (J.A.d.M.-R.); (I.H.-N.); (G.M.-P.)
| | - Alfonso Marzal
- Área de Zoología, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain;
| | - Yolanda Gañán
- Área de Anatomía y Embriología Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, 06006 Badajoz, Spain;
| | - Gervasio Martín-Partido
- Área de Biología Celular Departamento de Anatomía Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (G.Á.-H.); (J.A.d.M.-R.); (I.H.-N.); (G.M.-P.)
| | - Joaquín Rodríguez-León
- Área de Anatomía y Embriología Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, 06006 Badajoz, Spain;
- Correspondence: (J.R.-L.); (J.F.-M.)
| | - Javier Francisco-Morcillo
- Área de Biología Celular Departamento de Anatomía Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (G.Á.-H.); (J.A.d.M.-R.); (I.H.-N.); (G.M.-P.)
- Correspondence: (J.R.-L.); (J.F.-M.)
| |
Collapse
|
2
|
Knabe W, Washausen S. Early development of the nervous system of the eutherian <i>Tupaia belangeri</i>. Primate Biol 2015. [DOI: 10.5194/pb-2-25-2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Abstract. The longstanding debate on the taxonomic status of Tupaia belangeri (Tupaiidae, Scandentia, Mammalia) has persisted in times of molecular biology and genetics. But way beyond that Tupaia belangeri has turned out to be a valuable and widely accepted animal model for studies in neurobiology, stress research, and virology, among other topics. It is thus a privilege to have the opportunity to provide an overview on selected aspects of neural development and neuroanatomy in Tupaia belangeri on the occasion of this special issue dedicated to Hans-Jürg Kuhn. Firstly, emphasis will be given to the optic system. We report rather "unconventional" findings on the morphogenesis of photoreceptor cells, and on the presence of capillary-contacting neurons in the tree shrew retina. Thereafter, network formation among directionally selective retinal neurons and optic chiasm development are discussed. We then address the main and accessory olfactory systems, the terminal nerve, the pituitary gland, and the cerebellum of Tupaia belangeri. Finally, we demonstrate how innovative 3-D reconstruction techniques helped to decipher and interpret so-far-undescribed, strictly spatiotemporally regulated waves of apoptosis and proliferation which pass through the early developing forebrain and eyes, midbrain and hindbrain, and through the panplacodal primordium which gives rise to all ectodermal placodes. Based on examples, this paper additionally wants to show how findings gained from the reported projects have influenced current neuroembryological and, at least partly, medical research.
Collapse
|
3
|
Francisco-Morcillo J, Bejarano-Escobar R, Rodríguez-León J, Navascués J, Martín-Partido G. Ontogenetic cell death and phagocytosis in the visual system of vertebrates. Dev Dyn 2014; 243:1203-25. [PMID: 25130286 DOI: 10.1002/dvdy.24174] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/04/2014] [Accepted: 07/25/2014] [Indexed: 12/25/2022] Open
Abstract
Programmed cell death (PCD), together with cell proliferation, cell migration, and cell differentiation, is an essential process during development of the vertebrate nervous system. The visual system has been an excellent model on which to investigate the mechanisms involved in ontogenetic cell death. Several phases of PCD have been reported to occur during visual system ontogeny. During these phases, comparative analyses demonstrate that dying cells show similar but not identical spatiotemporally restricted patterns in different vertebrates. Additionally, the chronotopographical coincidence of PCD with the entry of specialized phagocytes in some regions of the developing vertebrate visual system suggests that factors released from degenerating cells are involved in the cell migration of macrophages and microglial cells. Contradicting this hypothesis however, in many cases the cell corpses generated during degeneration are rapidly phagocytosed by neighboring cells, such as neuroepithelial cells or Müller cells. In this review, we describe the occurrence and the sites of PCD during the morphogenesis and differentiation of the retina and optic pathways of different vertebrates, and discuss the possible relationship between PCD and phagocytes during ontogeny.
Collapse
|
4
|
Bejarano-Escobar R, Blasco M, Durán AC, Martín-Partido G, Francisco-Morcillo J. Chronotopographical distribution patterns of cell death and of lectin-positive macrophages/microglial cells during the visual system ontogeny of the small-spotted catshark Scyliorhinus canicula. J Anat 2013; 223:171-84. [PMID: 23758763 DOI: 10.1111/joa.12071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2013] [Indexed: 01/15/2023] Open
Abstract
The patterns of distribution of TUNEL-positive bodies and of lectin-positive phagocytes were investigated in the developing visual system of the small-spotted catshark Scyliorhinus canicula, from the optic vesicle stage to adulthood. During early stages of development, TUNEL-staining was mainly found in the protruding dorsal part of the optic cup and in the presumptive optic chiasm. Furthermore, TUNEL-positive bodies were also detected during detachment of the embryonic lens. Coinciding with the developmental period during which ganglion cells began to differentiate, an area of programmed cell death occurred in the distal optic stalk and in the retinal pigment epithelium that surrounds the optic nerve head. The topographical distribution of TUNEL-positive bodies in the differentiating retina recapitulated the sequence of maturation of the various layers and cell types following a vitreal-to-scleral gradient. Lectin-positive cells apparently entered the retina by the optic nerve head when the retinal layering was almost complete. As development proceeded, these labelled cells migrated parallel to the axon fascicles of the optic fiber layer and then reached more external layers by radial migration. In the mature retina, lectin-positive cells were confined to the optic fiber layer, ganglion cell layer and inner plexiform layer. No evident correlation was found between the chronotopographical pattern of distribution of TUNEL-positive bodies and the pattern of distribution of lectin-labelled macrophages/microglial cells during the shark's visual system ontogeny.
Collapse
Affiliation(s)
- Ruth Bejarano-Escobar
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | | | | | | |
Collapse
|
5
|
Bejarano-Escobar R, Holguín-Arévalo MS, Montero JA, Francisco-Morcillo J, Martín-Partido G. Macrophage and microglia ontogeny in the mouse visual system can be traced by the expression of Cathepsins B and D. Dev Dyn 2011; 240:1841-55. [PMID: 21648018 DOI: 10.1002/dvdy.22673] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2011] [Indexed: 01/11/2023] Open
Abstract
Here, we show a detailed chronotopographical analysis of cathepsin B and D expression during development of the mouse visual system. Both proteases were detected in large rounded/ameboid cells usually located in close relationship with prominent sites of extensive physiological cell death. In concordance with their morphological features and topographical distribution, we demonstrate that expressing cells corresponded with macrophages and microglial precursors. We found that as microglial precursors differentiated the expression of both cathepsins was down-regulated. Of interest, cathepsin B and D transcripts were never observed in degenerating cells. Our findings point to a role for cathepsin D and B in cell debris degradation after apoptotic processes rather than promoting cell death, as proposed for other developmental models. Additionally their pattern of expression suggests a role in the maturation of the microglial precursors.
Collapse
Affiliation(s)
- Ruth Bejarano-Escobar
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | | | | | | |
Collapse
|
6
|
Rodríguez-Gallardo L, Lineros-Domínguez MDC, Francisco-Morcillo J, Martín-Partido G. Macrophages during retina and optic nerve development in the mouse embryo: relationship to cell death and optic fibres. ACTA ACUST UNITED AC 2005; 210:303-16. [PMID: 16217650 DOI: 10.1007/s00429-005-0051-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2005] [Indexed: 10/25/2022]
Abstract
We compared the spatial and temporal patterns of distribution of macrophages, with patterns of naturally occurring cell death and optic fibre growth during early retina and optic nerve development, in the mouse. We used embryos between day 10 of embryogenesis (E10; before the first optic fibres are generated in the retina) and E13 (when the first optic fibres have crossed the chiasmatic anlage). The macrophages and optic axons were identified by immunocytochemistry, and the apoptotic cells were detected by the TUNEL technique, which specifically labels fragmented DNA. Cell death was observed in the retina and the optic stalk long before the first optic axons appeared in either region. Subsequently, specialized F4/80-positive phagocytes were detected in chronological and topographical coincidence with cell death, which disappeared progressively. As development proceeded, the pioneer ganglion cell axons reached the regions where the macrophages were located. As the number of optic fibres increased, the macrophages disappeared. Therefore, cell death, accompanied by macrophages, preceded the growth of fibres in the retina and the optic nerve. Moreover, these macrophages synthesized NGF and the optic axons were p75 neurotrophin receptor (p75(NTR))- and TrkA-positive. These findings suggest that macrophages may be involved in optic axon guidance and fasciculation.
Collapse
Affiliation(s)
- Lucía Rodríguez-Gallardo
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda de Elvas s/n, 06071, Badajoz, Spain.
| | | | | | | |
Collapse
|
7
|
Stylianopoulos C, Saldívar SOS, MacKinney GA. Effects of Fortification and Enrichment of Maize Tortillas on Growth and Brain Development of Rats Throughout Two Generations. Cereal Chem 2002. [DOI: 10.1094/cchem.2002.79.1.85] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Chryssanthi Stylianopoulos
- Graduate student and research assistant, Center of Biotechnology, Instituto Tecnológico y de Estudios Superiores de Monterrey-Campus Monterrey, N.L., México
| | - Sergio O. Serna Saldívar
- Professor and Head, Department of Food Science and Technology, Instituto Tecnológico y de Estudios Superiores de Monterrey-Campus Monterrey, N.L., México
- Corresponding author. E-mail: Phone: 52 81 83 28 42 62. Fax: 52 81 83 28 43 22
| | | |
Collapse
|
8
|
|
9
|
Abstract
We examined the massive early cell death that occurs in the ventral horn of the cervical spinal cord of the chick embryo between embryonic days 4 and 5 (E4 and E5). Studies with immunohistochemical, in situ hybridization, and retrograde-tracing methods revealed that many dying cells express Islet proteins and Lim-3 mRNA (motoneuron markers) and send their axons to the somatic region of the embryo before cell death. Together, these data strongly suggest that the dying cells are somatic motoneurons. Cervical motoneurons die by apoptosis and can be rescued by treatment with cycloheximide and actinomycin D. Counts by motoneuron numbers between E3.5 and E10 revealed that, in addition to cell death between E4 and E5, motoneuron death also occur between E6 and E10 in the cervical cord. Studies with [3H]thymidine autoradiography and morphological techniques revealed that in the early cell-death phase (E4-E5), genesis of motoneurons, axonal elongation, and innervation of muscles is still ongoing. However, studies with [3H]thymidine autoradiography also revealed that the cells dying between E4 and E5 become postmitotic before E3.5. Increased size of peripheral targets, treatment with neuromuscular blockade, and treatment with partially purified muscle or brain extracts and defined neurotropic agents, such as NGF, BDNF, neurotrophin-3, CNTF, bFGF, PDGF, S100-beta, activin, cholinergic differentiation factor/leukemia inhibitory factor, bone morphogenetic protein-2, IGF-I, interleukin-6, and TGF-beta 1, were all ineffective in rescuing motoneurons dying between E4 and E5. By contrast, motoneurons that undergo programmed cell death at later stages (E6-E10) in the cervical cord are target-dependent and respond to activity blockade and trophic factors. Experimental approaches revealed that early cell death also occurs in a notochord-induced ectopic supernumerary motoneuron column in the cervical cord. Transplantation of the cervical neural tube to other segmental regions failed to alter the early death of motoneurons, whereas transplantation of other segments to the cervical region failed to induce early motoneuron death. These results suggest that the mechanisms that regulate motoneuron death in the cervical spinal cord between E4 and E5 are independent of interactions with targets. Rather, this novel type of cell death seems to be determined by signals that either are cell-autonomous or are derived from other cells within the cervical neural tube.
Collapse
|
10
|
Regan RF, Panter SS, Witz A, Tilly JL, Giffard RG. Ultrastructure of excitotoxic neuronal death in murine cortical culture. Brain Res 1995; 705:188-98. [PMID: 8821749 DOI: 10.1016/0006-8993(95)01170-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ischemic and traumatic brain injury are likely to involve neuronal injury triggered by glutamate receptor overactivation. Although excitotoxic neuronal injury has been widely studied in the setting of primary culture, the extent to which these in vitro injury paradigms resemble in vivo ischemic injury morphologically has not previously been well studied. We studied glutamate receptor mediated neuronal death by transmission electron microscopy and light microscopy. Morphologic characteristics of neurons injured by 10 min exposure to 500 microM glutamate include rapid swelling of mitochondria and endoplasmic reticulum, and cytoplasmic and nuclear lucency. Both alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid and kainic acid caused vacuolation, dilatation of the endoplasmic reticulum, cytoplasmic condensation and random condensation of chromatin with preserved mitochondria. None of these injuries was ameliorated by cycloheximide or actinomycin D; all were significantly lessened by aurintricarboxylic acid. Gel electrophoresis showed no increase in DNA fragmentation over control. The morphologic changes seen with alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid and kainate are distinct from the changes induced by glutamate. Excitotoxic injury in this system due to high concentrations of glutamate resembles necrosis while the other agonists produce a different form of cell death which is neither necrosis nor apoptosis.
Collapse
Affiliation(s)
- R F Regan
- Blood Research Division, Letterman Army Institute of Research, San Francisco, CA 94129-6800, USA
| | | | | | | | | |
Collapse
|
11
|
Abstract
In this review, apoptosis during normal development of the CNS and abnormal apoptosis inducing hydrocephaly and arhinencephaly will be discussed. As the prominent sites of apoptosis during normal development of the CNS, we focused on the area of fusion of the neural plate to form the neural tube, the developing rhombomeres, and neuronal loss in the CNS during embryogenesis and postnatal development. As examples of abnormal apoptosis inducing abnormal brain morphogenesis, we will discuss genetically induced arhinencephaly and hydrocephaly. It was suggested that apoptosis of the precursor mitral cells in the anlage of the olfactory bulb was induced by non-innervation of olfactory neurons, and apoptosis of the precursor neurons in the pyriform cortex was induced by the non-innervation caused by the death of mitral cells in the mutant arhinencephalic mouse brain (Pdn/Pdn). Thus, sequential apoptosis of the precursor neurons and sequential manifestation of the brain abnormalities were proposed in arhinencephalic mutant mouse embryos and also in the arhinencephalic brains induced experimentally by fetal laser surgery exo utero. Meanwhile, it was speculated that the Gli3 gene, mutation of which is responsible for the arhinencephaly in Pdn/Pdn mice, might play a role in mesenchymal programmed cell death during development.
Collapse
Affiliation(s)
- I Naruse
- Department of Morphology, Aichi Human Service Center, Kasugai, Japan
| | | |
Collapse
|
12
|
Abstract
This study demonstrates that the fetal optic nerve contains a conspicuous population of transient retinopetal axons. Implants of the carbocyanine dye, DiI, were made into the retina or diencephalon of fetal ferrets to label the retinopetal axons retrogradely or anterogradely, respectively, and sections were immunostained for beta-tubulin to label the early differentiating axons in the optic nerve. Dye implants into the optic nerve head, but not the retinal periphery, retrogradely labeled somata in the ventrolateral diencephalon, provided the implants were made before embryonic day (E) 30. When dye implants were made into the ventrolateral diencephalon, these same retinopetal axons were anterogradely labeled, coursing through the optic nerve but never invading the retina. The axons course as 2-5 fascicles from their cells of origin and turn laterally to enter the optic nerve where it joins the future hypothalamus. The retinopetal cells can be retrogradely labeled as early as E20, before optic axons have left the retina. The optic nerve and fiber layer are immunoreactive for beta-tubulin on E24 and thereafter, whereas on E20 and E22, they are immunonegative. Yet at these early embryonic ages, immunopositive fascicles of axons course from the diencephalon into the optic stalk, confirming the precocious nature of the retinopetal projection. Implants of dye made into the future optic nerve head at these very early stages also retrogradely label retinopetal cells in the future chiasmatic region. These cells are distributed primarily on the side ipsilateral to the midline, but a few can be found contralateral to it. Both these, as well as the retinopetal axons arising from the ventrolateral diencephalon, may serve a transient guidance function for later developing optic axons.
Collapse
Affiliation(s)
- B E Reese
- Neuroscience Research Institute, University of California at Santa Barbara 93106-5060, USA
| | | |
Collapse
|
13
|
Abstract
Although cell death has long been recognized to be a significant element in the process of embryonic morphogenesis, its relationships to differentiation and its mechanisms are only now becoming apparent. This new appreciation has come about not only through advances in the understanding of cell death in parallel immunological and pathological situations, but also through progress in developmental genetics which has revealed the roles played by death in the cell lineages of invertebrate embryos. In this review, we discuss programmed cell death as it is understood in developmental situations, and its relationship to apoptosis. We describe the morphological and biochemical features of apoptosis, and some methods for its detection in tissues. The occurrence of programmed cell death during invertebrate development is reviewed, as well as selected examples in vertebrate development. In particular, we discuss cell death in the early vertebrate embryo, in limb development, and in the nervous system.
Collapse
Affiliation(s)
- E J Sanders
- Department of Physiology, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
14
|
Drenhaus U, Rager G. Formation of alternating tiers in the optic chiasm of the chick embryo. Anat Rec (Hoboken) 1994; 240:555-71. [PMID: 7879907 DOI: 10.1002/ar.1092400413] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND When the fibers of the two optic nerves of the chick cross to the contralateral side at the prospective chiasmatic region, they segregate into clearly defined bundles. These bundles form horizontally oriented tiers which alternate between the right and the left optic nerve. METHODS We have analyzed the development of these tiers qualitatively and quantitatively using light and electron microscopy between embryonic days (E) 4 and E19. RESULTS The formation of the chiasm begins on E4. In the course of E4, tiers become visible for the first time. Their number increases rapidly until E7. Then the increase is slowed down and the final value (32 +/- 1) is approximated by E18/19. Growing axons allow one to distinguish three different segments: the growth cone, the distal, and the proximal segment. The latter originates in the perikaryon. Growth cones and distal segments are found predominantly in the ventralmost tiers. Their frequency decreases from ventral to dorsal. Proximal segments which indicate the presence of older axons appear first in the dorsal tiers and later also in more ventrally located tiers. CONCLUSION Based on these criteria it is concluded that newly formed axons contribute primarily but not exclusively to the ventral tiers. There is a gradient of maturity of axons from ventral to dorsal whose slope becomes steeper with age until the last growth cones have arrived by E18. Thus, the formation of the chiasm corresponds to the spatiotemporal pattern of ganglion cell formation in the retina. The process of cell death of retinal ganglion cells is also seen in the chiasm but probably does not lead to a transitory diminution in the number of tiers.
Collapse
Affiliation(s)
- U Drenhaus
- Institut für Anatomie und Spezielle Embryologie, Fribourg, Switzerland
| | | |
Collapse
|
15
|
Homma S, Yaginuma H, Oppenheim RW. Programmed cell death during the earliest stages of spinal cord development in the chick embryo: a possible means of early phenotypic selection. J Comp Neurol 1994; 345:377-95. [PMID: 7929907 DOI: 10.1002/cne.903450305] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The spatiotemporal distribution of cell death in the chick embryo neural tube and spinal cord (brachial region) was examined between stage (St.) 12 and 22, in plastic semithin sections. Between St. 12 and 16, the total number of pycnotic cells per segment was low, whereas after St. 16 the number of pycnotic cells was substantially increased. Between St. 17 and 19 three cell death foci or regions could be recognized. One region, the dorsal pycnotic zone, was located in the most dorsal part of the spinal cord, including the neural crest, with the highest number of pycnotic cells observed at St. 18. The second region, or ventral pycnotic zone, was located between motoneurons and the floor plate and had the highest number of dying cells at St. 17. The third region, the floor plate pycnotic zone, was located in the midportion of the floor plate and had the greatest amount of cell death at St. 19. Although low numbers of pycnotic cells were also observed in other regions between St. 17 and 19, no pycnotic cells were found in the ventrolateral region that gives rise to motoneurons. Ultrastructural observations as well as data from in situ nick end labeling indicate that the pycnotic cells observed in the neural tube die by apoptosis and that the debris from the dead cells is phagocytized primarily by adjacent healthy neuroepithelial cells. Although the spatiotemporal distribution of pycnotic cells suggests that cell death at these early stages could play a role in establishing the pioneer axonal pathway for spinal commissural neurons, preliminary observations following perturbations of cell death do not support this notion. Alternatively, early cell death may be involved in the regulation of cellular patterning along the dorsoventral axis of the neural tube by a kind of negative selection of specific progenitor cells.
Collapse
Affiliation(s)
- S Homma
- Department of Neurobiology and Anatomy, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27157-1010
| | | | | |
Collapse
|
16
|
Finlay BL. Cell death and the creation of regional differences in neuronal numbers. JOURNAL OF NEUROBIOLOGY 1992; 23:1159-71. [PMID: 1469382 DOI: 10.1002/neu.480230908] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Regional variations in cell death are ubiquitous in the nervous system. In the retina, cell death in retinal ganglion cells is elevated in the retinal periphery and may be important in setting up the initial conditions that produce central retinal specializations such as an area centralis or visual streak. In central visual system structures, pronounced spatial and spatiotemporal inhomogeneities in cell death are seen both in layers and regions of the lateral geniculate nucleus and superior colliculus; similar indications of inhomogeneities are seen in those nonvisual structures that have been examined. Cell death in the cortex is highly nonuniform, by layer and by cortical area. A variety of possible functions for these regional losses are proposed, in the context of a uniform mechanism for cell death that allows it to assume multiple functions.
Collapse
Affiliation(s)
- B L Finlay
- Department of Psychology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
17
|
Martín-Partido G, Cuadros MA, Martin C, Coltey P, Navascués J. Macrophage-like cells invading the suboptic necrotic centres of the avian embryo diencephalon originate from haemopoietic precursors. JOURNAL OF NEUROCYTOLOGY 1991; 20:962-8. [PMID: 1783944 DOI: 10.1007/bf01187914] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Macrophage-like cells have been previously shown within the suboptic necrotic centres of chick embryos during the period just previous to, and coinciding with, growth of the earliest optic axons through suboptic necrotic centres. In this paper, light and electron microscopy observations of chick embryos suggest that these macrophage-like cells originate from blood cells. Immunocytochemical techniques in chick-quail yolk sac chemeras, constituted of a chick embryo and a quail yolk sac, revealed that the macrophage-like cells within the suboptic necrotic centres are labelled with anti-MB1 antibody, which is specific for quail haemopoietic and endothelial cell lineage. These findings demonstrate that these phagocytic cells are of blood cell lineage, and originate in the extraembryonic tissues of the yolk sac. Diffuse staining around some suboptic necrotic centre macrophage-like cells suggests that they release MB1 antigens which may play a role in the growth of the optic axons through the suboptic necrotic centres.
Collapse
Affiliation(s)
- G Martín-Partido
- Departamento de Ciencias Morfológicas y Biología Celular y Animal, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | | | | | | |
Collapse
|
18
|
Cuadros MA, Martin C, R�os A, Mart�n-Partido G, Navascu�s J. Macrophages of hemangioblastic lineage invade the lens vesicle-ectoderm interspace during closure and detachment of the avian embryonic lens. Cell Tissue Res 1991. [DOI: 10.1007/bf00678718] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Martín-Partido G, Navascués J. Macrophage-like cells in the presumptive optic pathways in the floor of the diencephalon of the chick embryo. JOURNAL OF NEUROCYTOLOGY 1990; 19:820-32. [PMID: 2292715 DOI: 10.1007/bf01186813] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the suboptic necrotic centres (SONCs) of the chick embryo diencephalon floor, large numbers of cells die in Hamburger and Hamilton's (HH) developmental stages 14-23. Until recently, it was thought that in these centres, the fragments of dead cells were phagocytosed exclusively by neighboring healthy cells but not by specialized macrophages. We now report morphological evidence of macrophage-like cells within the SONCs of the chick embryo. The distinctive features of these cells are their more or less spherical shape, a nucleus with a thin band of heterochromatin just beneath the nuclear envelope, and cytoplasm showing abundant digestive vacuoles and mitochondria with an electron-lucent matrix. These cells are capable of undergoing mitosis, and selectively stain with the histochemical technique for acid phosphatase. The macrophage-like cells are rare in SONCs in stages HH14-20 and become much more abundant in developmental stages just before the disappearance of these necrotic centres, suggesting that they phagocytose debris from the last cells to die in the SONCs. Acid phosphatase-positive mesenchymal cells with morphological features similar to those of macrophage-like cells are seen in intimate relationship with the basal surface of the SONCs in places where the basal lamina is sometimes missing. These observations suggest that macrophage-like cells in the SONCs arise from the underlying mesenchyme. Free macrophage-like cells with mitotic capacity are also seen in the ventricular lumen adjacent to the apical surface of the diencephalon floor in zones related to the presumptive optic pathways. These cells phagocytose cell debris shed from both the SONCs and from the partially disorganized areas in the neuroepithelium. In these latter we have identified mesenchymal cells with morphological features similar to the macrophage-like cells in the process of traversing the neuroepithelium from the mesenchymal compartment toward the ventricular lumen, thus suggesting that the intraventricular macrophage-like cells arise from the mesenchyme underlying the diencephalon floor.
Collapse
Affiliation(s)
- G Martín-Partido
- Departamento de Ciencias Morfológicas y Biología Celular y Animal, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | |
Collapse
|
20
|
Navascués J, Martín-Partido G. Glial cells in the optic chiasm arise from the suboptic necrotic centers of the diencephalon floor: morphological evidence in the chick embryo. Neurosci Lett 1990; 120:62-5. [PMID: 2293094 DOI: 10.1016/0304-3940(90)90168-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During early development of the optic chiasm in the chick embryo, before the arrival of the first optic axons (Stage 20), a characteristic spongy tissue appears medially between the suboptic necrotic centers (SONCs). By the time the first optic axonal fascicles arrive in the contralateral tract (Stage 23), cell death has ceased to occur in the SONCs, which become dense clusters of primitive glial cells. The clusters are steadily displaced medially during development, invading the spongy tissue and converging on the midline at Stage 27. These cell clusters appear to defect rostrocaudally the course of optic axons arriving at the chiasm.
Collapse
Affiliation(s)
- J Navascués
- Departamento de Ciencias Morfológicas y Bioloía Celular y Animal, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | |
Collapse
|
21
|
Clarke PG. Developmental cell death: morphological diversity and multiple mechanisms. ANATOMY AND EMBRYOLOGY 1990; 181:195-213. [PMID: 2186664 DOI: 10.1007/bf00174615] [Citation(s) in RCA: 1097] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Physiological cell death is a widespread phenomenon in the development of both vertebrates and invertebrates. This review concentrates on an aspect of developmental cell death that has tended to be neglected, the manner in which the cells are dismantled. It is emphasized that the dying cells may adopt one of at least three different morphological types: "apoptotic", "autophagic", and "non-lysosomal vesiculate". These probably reflect a corresponding multiplicity of intracellular events. In particular, the destruction of the cytoplasm in these three types appears to be achieved primarily by heterophagy, by autophagy and by non-lysosomal degradation, respectively. The various mechanisms underlying both nuclear and cytoplasmic destruction are reviewed in detail. The multiplicity of destructive mechanisms needs to be born in mind in studies of other aspects of cell death such as the signals which trigger it, since different signals probably trigger different types of cell death.
Collapse
Affiliation(s)
- P G Clarke
- Institut d'Anatomie, Lausanne, Switzerland
| |
Collapse
|