1
|
Laniado DD, Maron Y, Gemmer JA, Sabbah S. A spherical code of retinal orientation selectivity enables decoding in ensembled and retinotopic operation. Cell Rep 2025; 44:115373. [PMID: 40023844 DOI: 10.1016/j.celrep.2025.115373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 01/04/2025] [Accepted: 02/10/2025] [Indexed: 03/04/2025] Open
Abstract
Selectivity to orientations of edges is seen at the earliest stages of visual processing in retinal orientation-selective ganglion cells (OSGCs), which are thought to prefer vertical or horizontal orientation. However, because stationary edges are projected on the hemispherical retina as lines of longitude or latitude, how edge orientation is encoded and decoded by the brain is unknown. Here, by mapping the orientation selectivity (OS) of thousands of OSGCs at known retinal locations in mice, we identify three OSGC types whose preferences match two longitudinal fields and a fourth type matching two latitudinal fields, with the members of each field pair being non-orthogonal. A geometric decoder reveals that two OS sensors yield optimal orientation decoding when approaching the deviation from orthogonality we observe for OSGC field pairs. Retinotopically organized decoding generates type-specific variation in decoding efficiency across the visual field. OS tuning is greater in the dorsal retina, possibly reflecting an evolutionary adaptation to an environmental gradient of edges.
Collapse
Affiliation(s)
- Dimitrios D Laniado
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Yariv Maron
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - John A Gemmer
- Department of Mathematics, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Shai Sabbah
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel.
| |
Collapse
|
2
|
Lin CR, Ablordeppey RK, Benavente-Perez A. Sustained Experimental Myopia Exacerbates the Effect of Eye Growth on Retinal Ganglion Cell Density and Function. Int J Mol Sci 2025; 26:2824. [PMID: 40141465 PMCID: PMC11943290 DOI: 10.3390/ijms26062824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/14/2025] [Accepted: 03/16/2025] [Indexed: 03/28/2025] Open
Abstract
The aim of this study is to describe the effect that sustained myopic eye growth has on the cellular distribution and function of retinal ganglion cells as myopia progresses over time. Ganglion cell density and the photopic negative response (PhNR) were assessed using immunochemistry and electroretinography (ERG), respectively, on twelve common marmoset eyes (Callithrix jacchus). Myopia was induced in six eyes using negative defocus (three eyes from 2 to 6 months of age, 6-month-old myopes; three eyes from 2 to 12 months of age, 12-month-old myopes). These six treated eyes were compared to six age-matched control eyes. Marmosets induced with myopia for four months showed a reduced pan-retinal ganglion cell density, which continued to decrease in the peripapillary area of marmosets induced with sustained myopia for ten months. Ganglion cell density decreased as a function of axial length. Full-field ERGs revealed a dampening of the PhNR in the 12-month-old, but not 6-month-old myopes. The myopic changes observed in ganglion cell density and retinal function suggest a reorganization of the ganglion cell template during myopia development and progression that increases over time with sustained myopic eye growth and translates into functional alterations at later stages of myopia development in the absence of degenerative changes. It remains unknown whether these changes positively or negatively impact retinal function and health.
Collapse
Affiliation(s)
| | | | - Alexandra Benavente-Perez
- Department of Biological Sciences, SUNY College of Optometry, New York, NY 10036, USA; (C.R.L.); (R.K.A.)
| |
Collapse
|
3
|
Philip SA, Singh NP, Viswanathan S, Parida P, Sethuramanujam S. Asymmetries in the Architecture of ON and OFF Arbors in ON-OFF Direction-Selective Ganglion Cells. J Comp Neurol 2025; 533:e70023. [PMID: 39871013 PMCID: PMC7617701 DOI: 10.1002/cne.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/14/2024] [Accepted: 01/11/2025] [Indexed: 01/29/2025]
Abstract
Direction selectivity is a fundamental feature in the visual system. In the retina, direction selectivity is independently computed by ON and OFF circuits. However, the advantages of extracting directional information from these two independent circuits are unclear. To gain insights, we examined the ON-OFF direction-selective ganglion cells (DSGCs), which recombine signals from both circuits. Specifically, we investigated the dendritic architecture of these neurons with the premise that asymmetries in architecture will provide insights into function. Scrutinizing the dendrites of dye-filled ON-OFF DSGCs reveals that the OFF arbors of these neurons are substantially denser. The increase in density can be primarily attributed to the higher branching seen in OFF arbors. Further, analysis of ON-OFF DSGCs in a previously published serial block-face electron microscopy dataset revealed that the denser OFF arbors packed more bipolar synapses per unit dendritic length. These asymmetries in the dendritic architecture suggest that the ON-OFF DSGC preferentially magnifies the synaptic drive of the OFF pathway, potentially allowing it to encode information distinct from the ON pathway.
Collapse
Affiliation(s)
- Sheba Annie Philip
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Narendra Pratap Singh
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Saranya Viswanathan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Priyanka Parida
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Santhosh Sethuramanujam
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
4
|
Müllner FE, Roska B. Individual thalamic inhibitory interneurons are functionally specialized toward distinct visual features. Neuron 2024; 112:2765-2782.e9. [PMID: 38917805 PMCID: PMC11348917 DOI: 10.1016/j.neuron.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 03/22/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
Inhibitory interneurons in the dorsolateral geniculate nucleus (dLGN) are situated at the first central synapse of the image-forming visual pathway, but little is known about their function. Given their anatomy, they are expected to be multiplexors, integrating many different retinal channels along their dendrites. Here, using targeted single-cell-initiated rabies tracing, we found that mouse dLGN interneurons exhibit a degree of retinal input specialization similar to thalamocortical neurons. Some are anatomically highly specialized, for example, toward motion-selective information. Two-photon calcium imaging performed in vivo revealed that interneurons are also functionally specialized. In mice lacking retinal horizontal direction selectivity, horizontal direction selectivity is reduced in interneurons, suggesting a causal link between input and functional specialization. Functional specialization is not only present at interneuron somata but also extends into their dendrites. Altogether, inhibitory interneurons globally display distinct visual features which reflect their retinal input specialization and are ideally suited to perform feature-selective inhibition.
Collapse
Affiliation(s)
- Fiona E Müllner
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4056 Basel, Switzerland
| | - Botond Roska
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
5
|
Andronache I, Peptenatu D, Ahammer H, Radulovic M, Djuričić GJ, Jelinek HF, Russo C, Di Ieva A. Fractals in the Neurosciences: A Translational Geographical Approach. ADVANCES IN NEUROBIOLOGY 2024; 36:953-981. [PMID: 38468071 DOI: 10.1007/978-3-031-47606-8_47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The chapter presents three new fractal indices (fractal fragmentation index, fractal tentacularity index, and fractal anisotropy index) and normalized Kolmogorov complexity with proven applicability in geographic research, developed by the authors, and the possibility of their future use in neuroscience. The research demonstrates the relevance of fractal analysis in different fields and the basic concepts and principles of fractal geometry being sufficient for the development of models relevant to the studied reality. Also, the research highlighted the need to continue interdisciplinary research based on known fractal indicators, as well as the development of new analysis methods with the translational potential between fields.
Collapse
Affiliation(s)
- Ion Andronache
- Research Center for Integrated Analysis and Territorial Management, Faculty of Geography, University of Bucharest, Bucharest, Romania.
| | - Daniel Peptenatu
- Research Center for Integrated Analysis and Territorial Management, Faculty of Geography, University of Bucharest, Bucharest, Romania
| | - Helmut Ahammer
- GSRC, Division of Medical Physics and Biophysics, Medical University of Graz, Graz, Austria
| | - Marko Radulovic
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Goran J Djuričić
- Department of Radiology, Faculty of Medicine, University of Belgrade, University Children's Hospital, Belgrade, Serbia
| | - Herbert F Jelinek
- Department of Medical Sciences and Biotechnology Center, Khalifa University, Abu Dhabi, UAE
| | - Carlo Russo
- Computational NeuroSurgery (CNS) Lab, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Antonio Di Ieva
- Computational NeuroSurgery (CNS) Lab, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
6
|
Strang CE, Amthor FR. Effects of tACS-Like Electrical Stimulation on Off- and On-Off Center Retinal Ganglion Cells: Part II. Eye Brain 2022; 14:17-33. [PMID: 35115857 PMCID: PMC8800591 DOI: 10.2147/eb.s313090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Transcranial alternating current stimulation (tACS) is used as a brain stimulation mechanism to enhance learning, ameliorate some psychiatric disorders, and modify behavior. This study assessed the effects of near threshold tACS-like currents on Off-center and On-Off retinal ganglion cell responsiveness in the rabbit retina eyecup preparation as a model for central nervous system effects. MATERIALS AND METHODS We made extracellular recordings in the isolated rabbit eyecup preparation using single electrodes and microelectrode arrays to measure light-evoked spike responses in different classes of Off-center and On-Off retinal ganglion cells before, during, and after brief applications of alternating currents of 1-2 microamperes, at frequencies of 10, 20, 30, and 40 Hz. RESULTS tACS application sculpted the light-evoked response profiles without directly driving spiking activity of the 20 Off-center and On-Off ganglion cells we recorded from. During tACS application, Off responses were significantly enhanced for 6 cells and significantly suppressed for 14 cells, but after tACS application, Off responses were significantly enhanced for 7 cells and suppressed for 12 cells. The Off responses of the remaining two cells returned to baseline. On responses were less affected during and after tACS. CONCLUSION tACS sculpts Off-center and On-Off retinal ganglion cell responsiveness. The dissimilarity of effects in different cells within the same class and the differential effects on the On and Off components of the light response within the same cell are consistent with the hypothesis that tACS acts at threshold on amacrine cells in the inner plexiform layer.
Collapse
Affiliation(s)
- Christianne E Strang
- Department of Psychology, The University of Alabama at Birmingham, Birmingham, AL, 35294-1170, USA
| | - Franklin R Amthor
- Department of Psychology, The University of Alabama at Birmingham, Birmingham, AL, 35294-1170, USA
| |
Collapse
|
7
|
Amthor FR, Strang CE. Effects of tACS-Like Electrical Stimulation on On-Center Retinal Ganglion Cells: Part I. Eye Brain 2021; 13:175-192. [PMID: 34285622 PMCID: PMC8285569 DOI: 10.2147/eb.s312402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/11/2021] [Indexed: 01/30/2023] Open
Abstract
Purpose Electrical stimulation of the human central nervous system via surface electrodes has been used for both learning enhancement and the amelioration of neurodegenerative or psychiatric disorders. However, data are sparse on how such electrical stimulation affects neural circuits at the cellular level. This study assessed the effects of tACS-like currents at 10 Hz on On-center retinal ganglion cell responsiveness, using the rabbit retina eyecup preparation as a model for central nervous system effects. Methods We made extracellular recordings of light-evoked spike responses in different classes of On-center retinal ganglion cells before, during and after brief applications of 1 microampere alternating currents using single electrodes and microelectrode arrays. Results tACS-like currents (tACS) of 1 microampere produced effects on On-center ganglion cell response profiles immediately after initiation or cessation of tACS, without driving phase-locked firing in the absence of light stimuli. tACS affected the initial transient responses to light stimulation for all cells, sustained response components (if any) more strongly for sustained cells, and the center-surround balance more strongly for transient cells. Conclusion tACS sculpted light-evoked responses that lasted for one or more hours after cessation of current without, itself, directly inducing significant firing changes. Functionally, tACS effects could result in effects on contrast thresholds for both broad classes of cells, but because tACs differentially affects the center-surround balance of transient On-center cells, there may be greater effects on the spatial resolution and gain. The isolated retina appears to be a useful model to understand tACS actions at the neuronal level.
Collapse
Affiliation(s)
- Franklin R Amthor
- Department of Psychology, The University of Alabama at Birmingham, Birmingham, AL, 35294-1170, USA
| | - Christianne E Strang
- Department of Psychology, The University of Alabama at Birmingham, Birmingham, AL, 35294-1170, USA
| |
Collapse
|
8
|
Visual Disfunction due to the Selective Effect of Glutamate Agonists on Retinal Cells. Int J Mol Sci 2021; 22:ijms22126245. [PMID: 34200611 PMCID: PMC8230349 DOI: 10.3390/ijms22126245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/25/2021] [Accepted: 05/30/2021] [Indexed: 02/07/2023] Open
Abstract
One of the causes of nervous system degeneration is an excess of glutamate released upon several diseases. Glutamate analogs, like N-methyl-DL-aspartate (NMDA) and kainic acid (KA), have been shown to induce experimental retinal neurotoxicity. Previous results have shown that NMDA/KA neurotoxicity induces significant changes in the full field electroretinogram response, a thinning on the inner retinal layers, and retinal ganglion cell death. However, not all types of retinal neurons experience the same degree of injury in response to the excitotoxic stimulus. The goal of the present work is to address the effect of intraocular injection of different doses of NMDA/KA on the structure and function of several types of retinal cells and their functionality. To globally analyze the effect of glutamate receptor activation in the retina after the intraocular injection of excitotoxic agents, a combination of histological, electrophysiological, and functional tools has been employed to assess the changes in the retinal structure and function. Retinal excitotoxicity caused by the intraocular injection of a mixture of NMDA/KA causes a harmful effect characterized by a great loss of bipolar, amacrine, and retinal ganglion cells, as well as the degeneration of the inner retina. This process leads to a loss of retinal cell functionality characterized by an impairment of light sensitivity and visual acuity, with a strong effect on the retinal OFF pathway. The structural and functional injury suffered by the retina suggests the importance of the glutamate receptors expressed by different types of retinal cells. The effect of glutamate agonists on the OFF pathway represents one of the main findings of the study, as the evaluation of the retinal lesions caused by excitotoxicity could be specifically explored using tests that evaluate the OFF pathway.
Collapse
|
9
|
Famiglietti EV. Morphological identification and systematic classification of mammalian retinal ganglion cells. I. Rabbit retinal ganglion cells. J Comp Neurol 2020; 528:3305-3450. [PMID: 32725618 DOI: 10.1002/cne.24998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 11/10/2022]
Abstract
Retinal ganglion cells (RGCs) convey visual signals to 50 regions of the brain. For reasons of interest and convenience, they constitute an excellent system for the study of brain structure and function. There is general agreement that, absent a complete "parts list," understanding how the nervous system processes information will remain an elusive goal. Recent studies indicate that there are 30-50 types of ganglion cell in mouse retina, whereas only a few years ago it was still written that mice and the more visually oriented lagomorphs had less than 20 types of RGC. More than 30 years ago, I estimated that rabbits have about 40 types of RGC. The present study indicates that this number is much too low. I have employed the old but powerful method of Golgi-impregnation to rabbit retina, studying the range of component neurons in this already well-studied retinal system. Close quantitative and qualitative analyses of 1,142 RGCs in 26 retinas take into account cell body and dendritic field size, level(s) of dendritic stratification in the retina's inner plexiform layer, and details of dendritic branching. Ninety-one morphologies are recognized. Of these, at least 32 can be correlated with physiologically studied RGCs, dye-injected for morphological analysis. It is unlikely that rabbits have 91 types of RGC, but is argued here that this number lies between 60 and 70. The present study provides a "yardstick" for measuring the output of future molecular studies that may be more definitive in fixing the number of RGC types in rabbit retina.
Collapse
Affiliation(s)
- Edward V Famiglietti
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island, USA.,Division of Ophthalmology, Rhode Island Hospital, Providence, Rhode Island, USA
| |
Collapse
|
10
|
Parmhans N, Fuller AD, Nguyen E, Chuang K, Swygart D, Wienbar SR, Lin T, Kozmik Z, Dong L, Schwartz GW, Badea TC. Identification of retinal ganglion cell types and brain nuclei expressing the transcription factor Brn3c/Pou4f3 using a Cre recombinase knock-in allele. J Comp Neurol 2020; 529:1926-1953. [PMID: 33135183 DOI: 10.1002/cne.25065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022]
Abstract
Members of the POU4F/Brn3 transcription factor family have an established role in the development of retinal ganglion cell (RGCs) types, the main transducers of visual information from the mammalian eye to the brain. Our previous work using sparse random recombination of a conditional knock-in reporter allele expressing alkaline phosphatase (AP) and intersectional genetics had identified three types of Brn3c positive (Brn3c+ ) RGCs. Here, we describe a novel Brn3cCre mouse allele generated by serial Dre to Cre recombination and use it to explore the expression overlap of Brn3c with Brn3a and Brn3b and the dendritic arbor morphologies and visual stimulus response properties of Brn3c+ RGC types. Furthermore, we explore brain nuclei that express Brn3c or receive input from Brn3c+ neurons. Our analysis reveals a much larger number of Brn3c+ RGCs and more diverse set of RGC types than previously reported. Most RGCs expressing Brn3c during development are still Brn3c positive in the adult, and all express Brn3a while only about half express Brn3b. Genetic Brn3c-Brn3b intersection reveals an area of increased RGC density, extending from dorsotemporal to ventrolateral across the retina and overlapping with the mouse binocular field of view. In addition, we report a Brn3c+ RGC projection to the thalamic reticular nucleus, a visual nucleus that was not previously shown to receive retinal input. Furthermore, Brn3c+ neurons highlight a previously unknown subdivision of the deep mesencephalic nucleus. Thus, our newly generated allele provides novel biological insights into RGC type classification, brain connectivity, and cytoarchitectonic.
Collapse
Affiliation(s)
- Nadia Parmhans
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Anne Drury Fuller
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Eileen Nguyen
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Katherine Chuang
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - David Swygart
- Departments of Ophthalmology and Physiology Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sophia Rose Wienbar
- Departments of Ophthalmology and Physiology Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tyger Lin
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Zbynek Kozmik
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lijin Dong
- Genetic Engineering Facility, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Gregory William Schwartz
- Departments of Ophthalmology and Physiology Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tudor Constantin Badea
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Abstract
Visual motion on the retina activates a cohort of retinal ganglion cells (RGCs). This population activity encodes multiple streams of information extracted by parallel retinal circuits. Motion processing in the retina is best studied in the direction-selective circuit. The main focus of this review is the neural basis of direction selectivity, which has been investigated in unprecedented detail using state-of-the-art functional, connectomic, and modeling methods. Mechanisms underlying the encoding of other motion features by broader RGC populations are also discussed. Recent discoveries at both single-cell and population levels highlight the dynamic and stimulus-dependent engagement of multiple mechanisms that collectively implement robust motion detection under diverse visual conditions.
Collapse
Affiliation(s)
- Wei Wei
- Department of Neurobiology, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
12
|
Jacoby J, Schwartz GW. Typology and Circuitry of Suppressed-by-Contrast Retinal Ganglion Cells. Front Cell Neurosci 2018; 12:269. [PMID: 30210298 PMCID: PMC6119723 DOI: 10.3389/fncel.2018.00269] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/02/2018] [Indexed: 11/13/2022] Open
Abstract
Retinal ganglion cells (RGCs) relay ~40 parallel and independent streams of visual information, each encoding a specific feature of a visual scene, to the brain for further processing. The polarity of a visual neuron’s response to a change in contrast is generally the first characteristic used for functional classification: ON cells increase their spike rate to positive contrast; OFF cells increase their spike rate for negative contrast; ON-OFF cells increase their spike rate for both contrast polarities. Suppressed-by-Contrast (SbC) neurons represent a less well-known fourth category; they decrease firing below a baseline rate for both positive and negative contrasts. SbC RGCs were discovered over 50 years ago, and SbC visual neurons have now been found in the thalamus and primary visual cortex of several mammalian species, including primates. Recent discoveries of SbC RGCs in mice have provided new opportunities for tracing upstream circuits in the retina responsible for the SbC computation and downstream targets in the brain where this information is used. We review and clarify recent work on the circuit mechanism of the SbC computation in these RGCs. Studies of mechanism rely on precisely defined cell types, and we argue that, like ON, OFF, and ON-OFF RGCs, SbC RGCs consist of more than one type. A new appreciation of the diversity of SbC RGCs will help guide future work on their targets in the brain and their roles in visual perception and behavior.
Collapse
Affiliation(s)
- Jason Jacoby
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Gregory William Schwartz
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, United States
| |
Collapse
|
13
|
Werginz P, Im M, Hadjinicolaou AE, Fried SI. Visual and electric spiking responses of seven types of rabbit retinal ganglion cells. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:2434-2437. [PMID: 30440899 DOI: 10.1109/embc.2018.8512746] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electric stimulation of the retina via retinal implants is currently the only commercially available method to restore vision in patients suffering from a wide range of outer retinal degenerations. To improve the quality of retinal implants, it is desirable to better understand how different retinal cell classes and types respond to electric stimuli so that more effective stimulation strategies can be developed. Here, we measured the response of seven major types of retinal ganglion cells to electric stimulation. A simple series of light stimuli were used to classify cells into known types. Electric stimulation produced unique responses in almost all ganglion cell types and the electric responses typically matched elements of the corresponding light responses.
Collapse
|
14
|
Daniel S, Clark AF, McDowell CM. Subtype-specific response of retinal ganglion cells to optic nerve crush. Cell Death Discov 2018; 4:7. [PMID: 30062056 PMCID: PMC6054657 DOI: 10.1038/s41420-018-0069-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 06/03/2018] [Indexed: 01/09/2023] Open
Abstract
Glaucoma is a neurodegenerative disease with retinal ganglion cell (RGC) loss, optic nerve degeneration and subsequent vision loss. There are about 30 different subtypes of RGCs whose response to glaucomatous injury is not well characterized. The purpose of this study was to evaluate the response of 4 RGC subtypes in a mouse model of optic nerve crush (ONC). In this study, we also evaluated the pattern of axonal degeneration in RGC subtypes after nerve injury. We found that out of the 4 subtypes, transient-Off α RGCs are the most susceptible to injury followed by On-Off direction selective RGCs (DSGC). Non-image forming RGCs are more resilient with ipRGCs exhibiting the most resistance of them all. In contrast, axons degenerate irrespective of their retinal soma after ONC injury. In conclusion, we show that RGCs have subtype specific cell death response to ONC injury and that RGC axons disintegrate in an autonomous fashion undergoing Wallerian degeneration. These discoveries can further direct us towards effective diagnostic and therapeutic approaches to treat optic neuropathies, such as glaucoma.
Collapse
Affiliation(s)
- S. Daniel
- North Texas Eye Research Institute, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas United States
| | - AF Clark
- North Texas Eye Research Institute, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas United States
| | - CM McDowell
- North Texas Eye Research Institute, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas United States
| |
Collapse
|
15
|
Morphological properties of medial amygdala-projecting retinal ganglion cells in the Mongolian gerbil. SCIENCE CHINA-LIFE SCIENCES 2018; 61:644-650. [PMID: 29564599 DOI: 10.1007/s11427-017-9275-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 01/16/2018] [Indexed: 10/17/2022]
Abstract
The amygdala is a limbic structure that is involved in many brain functions, including emotion, learning and memory. It has been reported that melanopsin-expressing retinal ganglion cells (ipRGCs) innervate the medial amygdala (MeA). However, whether conventional RGCs (cRGCs) project to the MeA remains unknown. The goal of this study was to determine if cRGCs project to the MeA and to determine the morphological properties of MeA-projecting RGCs (MeA-RGCs). Retrogradely labeled RGCs in whole-mount retinas were intracellularly injected to reveal their dendritic morphologies. Immunohistochemical staining was performed to selectively label ipRGCs (MeA-ipRGCs) and cRGCs (MeA-cRGCs). The results showed that 95.7% of the retrogradely labeled cells were cRGCs and that the rest were ipRGCs. Specifically, MeA-cRGCs consist of two morphological types. The majority of them exhibit small but dense dendritic fields and diffuse ramification patterns as previously reported in RGB2 (95%), while the rest exhibit small but sparse dendritic branching patterns resembling those of RGB3 cells (5%). MeA-ipRGCs consist of M1 and M2 subtypes. The MeA-RGCs showed an even retinal distribution patterns. The soma and dendritic field sizes of the MeA-RGCs did not vary with eccentricity. In conclusion, the present results suggest that MeA-RGCs are structurally heterogeneous. These direct RGCs that input to the MeA could be important for regulating amygdala functions.
Collapse
|
16
|
Antinucci P, Hindges R. Orientation-Selective Retinal Circuits in Vertebrates. Front Neural Circuits 2018; 12:11. [PMID: 29467629 PMCID: PMC5808299 DOI: 10.3389/fncir.2018.00011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/23/2018] [Indexed: 11/24/2022] Open
Abstract
Visual information is already processed in the retina before it is transmitted to higher visual centers in the brain. This includes the extraction of salient features from visual scenes, such as motion directionality or contrast, through neurons belonging to distinct neural circuits. Some retinal neurons are tuned to the orientation of elongated visual stimuli. Such ‘orientation-selective’ neurons are present in the retinae of most, if not all, vertebrate species analyzed to date, with species-specific differences in frequency and degree of tuning. In some cases, orientation-selective neurons have very stereotyped functional and morphological properties suggesting that they represent distinct cell types. In this review, we describe the retinal cell types underlying orientation selectivity found in various vertebrate species, and highlight their commonalities and differences. In addition, we discuss recent studies that revealed the cellular, synaptic and circuit mechanisms at the basis of retinal orientation selectivity. Finally, we outline the significance of these findings in shaping our current understanding of how this fundamental neural computation is implemented in the visual systems of vertebrates.
Collapse
Affiliation(s)
- Paride Antinucci
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Robert Hindges
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| |
Collapse
|
17
|
Electrical synapses convey orientation selectivity in the mouse retina. Nat Commun 2017; 8:2025. [PMID: 29229967 PMCID: PMC5725423 DOI: 10.1038/s41467-017-01980-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022] Open
Abstract
Sensory neurons downstream of primary receptors are selective for specific stimulus features, and they derive their selectivity both from excitatory and inhibitory synaptic inputs from other neurons and from their own intrinsic properties. Electrical synapses, formed by gap junctions, modulate sensory circuits. Retinal ganglion cells (RGCs) are diverse feature detectors carrying visual information to the brain, and receive excitatory input from bipolar cells and inhibitory input from amacrine cells (ACs). Here we describe a RGC that relies on gap junctions, rather than chemical synapses, to convey its selectivity for the orientation of a visual stimulus. This represents both a new functional role of electrical synapses as the primary drivers of feature selectivity and a new circuit mechanism for orientation selectivity in the retina. Visual input received by photoreceptors is relayed to retinal ganglion cells (RGCs), which have selectivity for inputs of certain orientations. Here, the authors show that gap junction-mediated input onto one type of RGC contributes to its orientation selectivity.
Collapse
|
18
|
Neural architecture of the "transient" ON directionally selective (class IIb1) ganglion cells in rabbit retina, partly co-stratified with starburst amacrine cells. Vis Neurosci 2017; 33:E004. [PMID: 27484854 DOI: 10.1017/s0952523815000358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recent physiological studies coupled with intracellular staining have subdivided ON directionally selective (DS) ganglion cells of rabbit retina into two types. One exhibits more "transient" and more "brisk" responses (ON DS-t), and the other has more "sustained' and more "sluggish" responses (ON DS-s), although both represent the same three preferred directions and show preference for low stimulus velocity, as reported in previous studies of ON DS ganglion cells in rabbit retina. ON DS-s cells have the morphology of ganglion cells previously shown to project to the medial terminal nucleus (MTN) of the accessory optic system, and the MTN-projecting, class IVus1 cells have been well-characterized previously in terms of their dendritic morphology, branching pattern, and stratification. ON DS-t ganglion cells have a distinctly different morphology and exhibit heterotypic coupling to amacrine cells, including axon-bearing amacrine cells, with accompanying synchronous firing, while ON DS-s cells are not coupled. The present study shows that ON DS-t cells are morphologically identical to the previously well-characterized, "orphan" class IIb1 ganglion cell, previously regarded as a member of the "brisk-concentric" category of ganglion cells. Its branching pattern, quantitatively analyzed, is similar to that of the morphological counterparts of X and Y cells, and very different from that of the ON DS-s ganglion cell. Close analysis of the dendritic stratification of class IIb1 ganglion cells together with fiducial cells indicates that they differ from that of the ON DS-s cells. In agreement with one of the three previous studies, class IIb1/ON DS-t cells, unlike class IVus1/ON DS-s ganglion cells, in the main do not co-stratify with starburst amacrine cells. As the present study shows, however, portions of their dendrites do deviate from the main substratum, coming within range of starburst boutons. Parsimony favors DS input from starburst amacrine cells both to ON DS-s and to ON DS-t ganglion cells, given the similarity of their DS responses, but further studies will be required to substantiate the origin of the DS responses of ON DS-t cells. Previously reported OFF DS responses in ON DS-t cells, unmasked by pharmacological agents, and mediated by gap junctions with amacrine cells, suggests an unusual trans-sublaminar organization of directional selectivity in the inner plexiform layer, connecting sublamina a and sublamina b.
Collapse
|
19
|
Yu WQ, Grzywacz NM, Lee EJ, Field GD. Cell type-specific changes in retinal ganglion cell function induced by rod death and cone reorganization in rats. J Neurophysiol 2017; 118:434-454. [PMID: 28424296 PMCID: PMC5506261 DOI: 10.1152/jn.00826.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 04/17/2017] [Accepted: 04/17/2017] [Indexed: 02/02/2023] Open
Abstract
We have determined the impact of rod death and cone reorganization on the spatiotemporal receptive fields (RFs) and spontaneous activity of distinct retinal ganglion cell (RGC) types. We compared RGC function between healthy and retinitis pigmentosa (RP) model rats (S334ter-3) at a time when nearly all rods were lost but cones remained. This allowed us to determine the impact of rod death on cone-mediated visual signaling, a relevant time point because the diagnosis of RP frequently occurs when patients are nightblind but daytime vision persists. Following rod death, functionally distinct RGC types persisted; this indicates that parallel processing of visual input remained largely intact. However, some properties of cone-mediated responses were altered ubiquitously across RGC types, such as prolonged temporal integration and reduced spatial RF area. Other properties changed in a cell type-specific manner, such as temporal RF shape (dynamics), spontaneous activity, and direction selectivity. These observations identify the extent of functional remodeling in the retina following rod death but before cone loss. They also indicate new potential challenges to restoring normal vision by replacing lost rod photoreceptors.NEW & NOTEWORTHY This study provides novel and therapeutically relevant insights to retinal function following rod death but before cone death. To determine changes in retinal output, we used a large-scale multielectrode array to simultaneously record from hundreds of retinal ganglion cells (RGCs). These recordings of large-scale neural activity revealed that following the death of all rods, functionally distinct RGCs remain. However, the receptive field properties and spontaneous activity of these RGCs are altered in a cell type-specific manner.
Collapse
Affiliation(s)
- Wan-Qing Yu
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California
| | - Norberto M Grzywacz
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California.,Department of Biomedical Engineering, University of Southern California, Los Angeles, California.,Department of Electrical Engineering, University of Southern California, Los Angeles, California.,Department of Neuroscience, Department of Physics, and Graduate School of Arts and Sciences, Georgetown University, Washington, District of Columbia
| | - Eun-Jin Lee
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California.,Mary D. Allen Laboratory for Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Greg D Field
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
20
|
Lee JS, Kim HJ, Ahn CH, Jeon CJ. Expression of Nicotinic Acetylcholine Receptor α4 and β2 Subunits on Direction-Selective Retinal Ganglion Cells in the Rabbit. Acta Histochem Cytochem 2017; 50:29-37. [PMID: 28386148 PMCID: PMC5374101 DOI: 10.1267/ahc.16024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/26/2016] [Indexed: 11/22/2022] Open
Abstract
The direction selectivity of the retina is a distinct mechanism that is critical function of eyes for survival. The direction-selective retinal ganglion cells (DS RGCs) strongly respond to a preferred direction, but rarely respond to opposite direction or null directional visual stimuli. The DS RGCs are sensitive to acetylcholine, which is secreted from starburst amacrine cells (SACs) to the DS RGCs. Here, we investigated the existence and distribution of the nicotinic acetylcholine receptor (nAChR) α4 and β2 subunits on the dendritic arbors of the DS RGCs in adult rabbit retina using immunocytochemistry. The DS RGCs were injected with Lucifer yellow to identify their dendritic morphology. The double-labeled images of dendrites and nAChR subunits were visualized for reconstruction using high-resolution confocal microscopy. Although our results revealed that the distributional pattern of the nAChR subunits on the dendritic arbors of the DS RGCs was not asymmetric in the adult rabbit retina, the distribution of nAChR α4 and β2 subunits and molecular profiles of cholinergic inputs to DS RGCs in adult rabbit retina provide anatomical evidence for direction selectivity.
Collapse
Affiliation(s)
- Jun-Seok Lee
- Department of Biology, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University
| | - Hyun-Jin Kim
- Department of Life Sciences, Pohang University of Science and Technology
| | - Chang-Hyun Ahn
- Department of Biology, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University
| | - Chang-Jin Jeon
- Department of Biology, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University
| |
Collapse
|
21
|
Abstract
UNLABELLED Neurons that signal the orientation of edges within the visual field have been widely studied in primary visual cortex. Much less is known about the mechanisms of orientation selectivity that arise earlier in the visual stream. Here we examine the synaptic and morphological properties of a subtype of orientation-selective ganglion cell in the rabbit retina. The receptive field has an excitatory ON center, flanked by excitatory OFF regions, a structure similar to simple cell receptive fields in primary visual cortex. Examination of the light-evoked postsynaptic currents in these ON-type orientation-selective ganglion cells (ON-OSGCs) reveals that synaptic input is mediated almost exclusively through the ON pathway. Orientation selectivity is generated by larger excitation for preferred relative to orthogonal stimuli, and conversely larger inhibition for orthogonal relative to preferred stimuli. Excitatory orientation selectivity arises in part from the morphology of the dendritic arbors. Blocking GABAA receptors reduces orientation selectivity of the inhibitory synaptic inputs and the spiking responses. Negative contrast stimuli in the flanking regions produce orientation-selective excitation in part by disinhibition of a tonic NMDA receptor-mediated input arising from ON bipolar cells. Comparison with earlier studies of OFF-type OSGCs indicates that diverse synaptic circuits have evolved in the retina to detect the orientation of edges in the visual input. SIGNIFICANCE STATEMENT A core goal for visual neuroscientists is to understand how neural circuits at each stage of the visual system extract and encode features from the visual scene. This study documents a novel type of orientation-selective ganglion cell in the retina and shows that the receptive field structure is remarkably similar to that of simple cells in primary visual cortex. However, the data indicate that, unlike in the cortex, orientation selectivity in the retina depends on the activity of inhibitory interneurons. The results further reveal the physiological basis for feature detection in the visual system, elucidate the synaptic mechanisms that generate orientation selectivity at an early stage of visual processing, and illustrate a novel role for NMDA receptors in retinal processing.
Collapse
|
22
|
Cardinal Orientation Selectivity Is Represented by Two Distinct Ganglion Cell Types in Mouse Retina. J Neurosci 2016; 36:3208-21. [PMID: 26985031 DOI: 10.1523/jneurosci.4554-15.2016] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Orientation selectivity (OS) is a prominent and well studied feature of early visual processing in mammals, but recent work has highlighted the possibility that parallel OS circuits might exist in multiple brain locations. Although both classic and modern work has identified an OS mechanism in selective wiring from lateral geniculate nucleus (LGN) to primary visual cortex, OS responses have now been found upstream of cortex in mouse LGN and superior colliculus, suggesting a possible origin in the retina. Indeed, retinal OS responses have been reported for decades in rabbit and more recently in mouse. However, we still know very little about the properties and mechanisms of retinal OS in the mouse, including whether there is a distinct OS ganglion cell type, which orientations are represented, and what are the synaptic mechanisms of retinal OS. We have identified two novel types of OS ganglion cells in the mouse retina that are highly selective for horizontal and vertical cardinal orientations. Reconstructions of the dendritic trees of these OS ganglion cells and measurements of their synaptic conductances offer insights into the mechanism of the OS computation at the earliest stage of the visual system. SIGNIFICANCE STATEMENT Orientation selectivity (OS) is one of the most well studied computations in the brain and has become a prominent model system in various areas of sensory neuroscience. Although the cortical mechanism of OS suggested by Hubel and Wiesel (1962) has been investigated intensely, other OS cells exist upstream of cortex as early as the retina and the mechanisms of OS in subcortical regions are much less well understood. We identified two ON retinal ganglion cells (RGCs) in mouse that compute OS along the horizontal (nasal-temporal) and vertical (dorsoventral) axes of visual space. We show the relationship between dendritic morphology and OS for each RGC type and reveal new synaptic mechanisms of OS computation in the retina.
Collapse
|
23
|
Segregated Glycine-Glutamate Co-transmission from vGluT3 Amacrine Cells to Contrast-Suppressed and Contrast-Enhanced Retinal Circuits. Neuron 2016; 90:27-34. [PMID: 26996083 DOI: 10.1016/j.neuron.2016.02.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/06/2015] [Accepted: 01/28/2016] [Indexed: 02/05/2023]
Abstract
Since the introduction of Dale's principle of "one neuron releases one transmitter at all its synapses," a growing number of exceptions to this principle have been identified. While the concept of neurotransmitter co-release by a single neuron is now well accepted, the specific synaptic circuitry and functional advantage of co-neurotransmission remain poorly understood in general. Here we report Ca(2+)-dependent co-release of a new combination of inhibitory and excitatory neurotransmitters, namely, glycine and glutamate, by the vGluT3-expressing amacrine cell (GAC) in the mouse retina. GACs selectively make glycinergic synapses with uniformity detectors (UDs) and provide a major inhibitory drive that underlies the suppressed-by-contrast trigger feature of UDs. Meanwhile, GACs release glutamate to excite OFF alpha ganglion cells and a few other nonlinear, contrast-sensitive ganglion cells. This coordinated inhibition and excitation of two separate neuronal circuits by a single interneuron suggests a unique advantage in differential detection of visual field uniformity and contrast.
Collapse
|
24
|
Gu YN, Lee ES, Jeon CJ. Types and density of calbindin D28k-immunoreactive ganglion cells in mouse retina. Exp Eye Res 2016; 145:327-336. [PMID: 26874036 DOI: 10.1016/j.exer.2016.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/04/2016] [Accepted: 02/04/2016] [Indexed: 10/22/2022]
Abstract
Single-cell injection after immunocytochemistry is a reliable technique for classifying neurons by their morphological structure and their expression of a particular protein. The aim of the present study was to classify the morphological types of calbindin D28k-immunoreactive retinal ganglion cells in the mouse using single-cell injection after immunocytochemistry, to estimate the density of calbindin D28k-immunoreactive retinal ganglion cells in the mouse retina. Calbindin D28k is an important calcium-binding protein that is widely expressed in the central nervous system. Calbindin D28k-immunoreactive retinal ganglion cells were identified by immunocytochemistry and then iontophoretically injected with the lipophilic dye, DiI. Subsequently, the injected cells were imaged by confocal microscopy to classify calbindin D28k-immunoreactive retinal ganglion cells based on their dendritic ramification depth within the inner plexiform layer, field size, and morphology. The cells were heterogeneous in morphology: monostratified or bistratified, with small to large dendritic field size and sparse to dense dendritic arbors. At least 10 different morphological types (CB1-CB10) of calbindin D28k-immunoreactive retinal ganglion cells were found in the mouse retina. The density of each cell type was quite variable (1.98-23.76%). The density of calbindin D28k-immunoreactive cells in the ganglion cell layer of the mouse retina was 562 cells/mm(2), 8.18% of calbindin D28k-immunoreactive cells were axon-less displaced amacrine cells, 91.82% were retinal ganglion cells, and approximately 18.17% of mouse retinal ganglion cells expressed calbindin D28k. The selective expression of calbindin D28k in cells with different morphologies may provide important data for further physiological studies of the mouse retina.
Collapse
Affiliation(s)
- Ya-Nan Gu
- Department of Biology, School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Deagu, 41566, South Korea
| | - Eun-Shil Lee
- Department of Biology, School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Deagu, 41566, South Korea
| | - Chang-Jin Jeon
- Department of Biology, School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Deagu, 41566, South Korea.
| |
Collapse
|
25
|
Neumann S, Hüser L, Ondreka K, Auler N, Haverkamp S. Cell type-specific bipolar cell input to ganglion cells in the mouse retina. Neuroscience 2016; 316:420-32. [PMID: 26751712 DOI: 10.1016/j.neuroscience.2015.12.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/21/2015] [Accepted: 12/30/2015] [Indexed: 10/22/2022]
Abstract
Many distinct ganglion cell types, which are the output elements of the retina, were found to encode for specific features of a visual scene such as contrast, color information or movement. The detailed composition of retinal circuits leading to this tuning of retinal ganglion cells, however, is apart from some prominent examples, largely unknown. Here we aimed to investigate if ganglion cell types in the mouse retina receive selective input from specific bipolar cell types or if they sample their synaptic input non-selectively from all bipolar cell types stratifying within their dendritic tree. To address this question we took an anatomical approach and immunolabeled retinae of two transgenic mouse lines (GFP-O and JAM-B) with markers for ribbon synapses and type 2 bipolar cells. We morphologically identified all green fluorescent protein (GFP)-expressing ganglion cell types, which co-stratified with type 2 bipolar cells and assessed the total number of bipolar input synapses and the proportion of synapses deriving from type 2 bipolar cells. Only JAM-B ganglion cells received synaptic input preferentially from bipolar cell types other than type 2 bipolar cells whereas the other analyzed ganglion cell types sampled their bipolar input most likely from all bipolar cell terminals within their dendritic arbor.
Collapse
Affiliation(s)
- S Neumann
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - L Hüser
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - K Ondreka
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - N Auler
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - S Haverkamp
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany.
| |
Collapse
|
26
|
Mwachaka PM, Saidi H, Odula PO, Mandela PI. Effect of Monocular Deprivation on Rabbit Neural Retinal Cell Densities. J Ophthalmic Vis Res 2015; 10:144-50. [PMID: 26425316 PMCID: PMC4568611 DOI: 10.4103/2008-322x.163770] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
PURPOSE To describe the effect of monocular deprivation on densities of neural retinal cells in rabbits. METHODS Thirty rabbits, comprised of 18 subject and 12 control animals, were included and monocular deprivation was achieved through unilateral lid suturing in all subject animals. The rabbits were observed for three weeks. At the end of each week, 6 experimental and 3 control animals were euthanized, their retinas was harvested and processed for light microscopy. Photomicrographs of the retina were taken and imported into FIJI software for analysis. RESULTS Neural retinal cell densities of deprived eyes were reduced along with increasing period of deprivation. The percentage of reductions were 60.9% (P < 0.001), 41.6% (P = 0.003), and 18.9% (P = 0.326) for ganglion, inner nuclear, and outer nuclear cells, respectively. In non-deprived eyes, cell densities in contrast were increased by 116% (P < 0.001), 52% (P < 0.001) and 59.6% (P < 0.001) in ganglion, inner nuclear, and outer nuclear cells, respectively. CONCLUSION In this rabbit model, monocular deprivation resulted in activity-dependent changes in cell densities of the neural retina in favour of the non-deprived eye along with reduced cell densities in the deprived eye.
Collapse
Affiliation(s)
| | - Hassan Saidi
- Department of Human Anatomy, University of Nairobi, Nairobi, Kenya
| | | | | |
Collapse
|
27
|
Kwon OJ, Lee JS, Kim HG, Jeon CJ. Identification of Synaptic Patterns of NMDA Receptor Subtypes Upon Direction-Selective Rabbit Retinal Ganglion Cells. Curr Eye Res 2015; 41:832-43. [PMID: 26287656 DOI: 10.3109/02713683.2015.1056378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The objective of this study was to identify anisotropies that contribute to the directional preference of direction-selective retinal ganglion cells (DS RGCs) in the rabbit retina. We investigated the distributions of N-methyl-d-aspartate receptor 1 (NMDAR1), NMDAR2A and NMDAR2B receptor subunits in the dendritic arbors of rabbit DS RGCs. METHODS The distributions of the NMDAR subunits on the DS RGCs were determined using immunocytochemistry. DS RGCs were injected with Lucifer yellow, and the cells were identified by their characteristic morphology. The triple-labeled images of dendrites, kinesin II and NMDARs were visualized using confocal microscopy and were reconstructed from high-resolution confocal images. RESULTS We found no evidence of asymmetry in any of the NMDAR subunits examined on the dendritic arbors of both the ON and OFF layers of DS RGCs. CONCLUSIONS Our results indicate that direction selectivity appears to lie in the neuronal circuitry afferent to the DS RGCs.
Collapse
Affiliation(s)
- Oh-Ju Kwon
- a Department of Optometry , Busan Institute of Science and Technology , Busan , South Korea and.,b Department of Biology , School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University , Daegu , South Korea
| | - Jun-Seok Lee
- b Department of Biology , School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University , Daegu , South Korea
| | - Hang-Gu Kim
- b Department of Biology , School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University , Daegu , South Korea
| | - Chang-Jin Jeon
- b Department of Biology , School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University , Daegu , South Korea
| |
Collapse
|
28
|
Fiscella M, Franke F, Farrow K, Müller J, Roska B, da Silveira RA, Hierlemann A. Visual coding with a population of direction-selective neurons. J Neurophysiol 2015; 114:2485-99. [PMID: 26289471 DOI: 10.1152/jn.00919.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 08/13/2015] [Indexed: 11/22/2022] Open
Abstract
The brain decodes the visual scene from the action potentials of ∼20 retinal ganglion cell types. Among the retinal ganglion cells, direction-selective ganglion cells (DSGCs) encode motion direction. Several studies have focused on the encoding or decoding of motion direction by recording multiunit activity, mainly in the visual cortex. In this study, we simultaneously recorded from all four types of ON-OFF DSGCs of the rabbit retina using a microelectronics-based high-density microelectrode array (HDMEA) and decoded their concerted activity using probabilistic and linear decoders. Furthermore, we investigated how the modification of stimulus parameters (velocity, size, angle of moving object) and the use of different tuning curve fits influenced decoding precision. Finally, we simulated ON-OFF DSGC activity, based on real data, in order to understand how tuning curve widths and the angular distribution of the cells' preferred directions influence decoding performance. We found that probabilistic decoding strategies outperformed, on average, linear methods and that decoding precision was robust to changes in stimulus parameters such as velocity. The removal of noise correlations among cells, by random shuffling trials, caused a drop in decoding precision. Moreover, we found that tuning curves are broad in order to minimize large errors at the expense of a higher average error, and that the retinal direction-selective system would not substantially benefit, on average, from having more than four types of ON-OFF DSGCs or from a perfect alignment of the cells' preferred directions.
Collapse
Affiliation(s)
| | - Felix Franke
- Bio Engineering Laboratory, ETH Zurich, Basel, Switzerland
| | - Karl Farrow
- Neuro-Electronics Research Flanders IMEC, Leuven, Belgium
| | - Jan Müller
- Bio Engineering Laboratory, ETH Zurich, Basel, Switzerland
| | - Botond Roska
- Neural Circuits Laboratory, Friedrich Miescher Institute, Basel, Switzerland
| | - Rava Azeredo da Silveira
- Department of Physics, Ecole Normale Supérieure, Paris, France; and Laboratoire de Physique Statistique, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Université Denis Diderot, Paris, France
| | | |
Collapse
|
29
|
Common circuit design in fly and mammalian motion vision. Nat Neurosci 2015; 18:1067-76. [PMID: 26120965 DOI: 10.1038/nn.4050] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/18/2015] [Indexed: 12/12/2022]
Abstract
Motion-sensitive neurons have long been studied in both the mammalian retina and the insect optic lobe, yet striking similarities have become obvious only recently. Detailed studies at the circuit level revealed that, in both systems, (i) motion information is extracted from primary visual information in parallel ON and OFF pathways; (ii) in each pathway, the process of elementary motion detection involves the correlation of signals with different temporal dynamics; and (iii) primary motion information from both pathways converges at the next synapse, resulting in four groups of ON-OFF neurons, selective for the four cardinal directions. Given that the last common ancestor of insects and mammals lived about 550 million years ago, this general strategy seems to be a robust solution for how to compute the direction of visual motion with neural hardware.
Collapse
|
30
|
Broad thorny ganglion cells: a candidate for visual pursuit error signaling in the primate retina. J Neurosci 2015; 35:5397-408. [PMID: 25834063 DOI: 10.1523/jneurosci.4369-14.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Functional analyses exist only for a few of the morphologically described primate ganglion cell types, and their correlates in other mammalian species remain elusive. Here, we recorded light responses of broad thorny cells in the whole-mounted macaque retina. They showed ON-OFF-center light responses that were strongly suppressed by stimulation of the receptive field surround. Spike responses were delayed compared with parasol ganglion cells and other ON-OFF cells, including recursive bistratified ganglion cells and A1 amacrine cells. The receptive field structure was shaped by direct excitatory synaptic input and strong presynaptic and postsynaptic inhibition in both ON and OFF pathways. The cells responded strongly to dark or bright stimuli moving either in or out of the receptive field, independent of the direction of motion. However, they did not show a maintained spike response either to a uniform background or to a drifting plaid pattern. These properties could be ideally suited for guiding movements involved in visual pursuit. The functional characteristics reported here permit the first direct cross-species comparison of putative homologous ganglion cell types. Based on morphological similarities, broad thorny ganglion cells have been proposed to be homologs of rabbit local edge detector ganglion cells, but we now show that the two cells have quite distinct physiological properties. Thus, our data argue against broad thorny cells as the homologs of local edge detector cells.
Collapse
|
31
|
Sanes JR, Masland RH. The types of retinal ganglion cells: current status and implications for neuronal classification. Annu Rev Neurosci 2015; 38:221-46. [PMID: 25897874 DOI: 10.1146/annurev-neuro-071714-034120] [Citation(s) in RCA: 524] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the retina, photoreceptors pass visual information to interneurons, which process it and pass it to retinal ganglion cells (RGCs). Axons of RGCs then travel through the optic nerve, telling the rest of the brain all it will ever know about the visual world. Research over the past several decades has made clear that most RGCs are not merely light detectors, but rather feature detectors, which send a diverse set of parallel, highly processed images of the world on to higher centers. Here, we review progress in classification of RGCs by physiological, morphological, and molecular criteria, making a particular effort to distinguish those cell types that are definitive from those for which information is partial. We focus on the mouse, in which molecular and genetic methods are most advanced. We argue that there are around 30 RGC types and that we can now account for well over half of all RGCs. We also use RGCs to examine the general problem of neuronal classification, arguing that insights and methods from the retina can guide the classification enterprise in other brain regions.
Collapse
Affiliation(s)
- Joshua R Sanes
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138;
| | | |
Collapse
|
32
|
Kwon OJ, Lee ES, Jeon CJ. Density and types of calretinin-containing retinal ganglion cells in rabbit. Neuroscience 2014; 278:343-53. [DOI: 10.1016/j.neuroscience.2014.08.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/14/2014] [Accepted: 08/14/2014] [Indexed: 11/25/2022]
|
33
|
Ren C, Pu M, Cui Q, So KF. Dendritic morphology of caudal periaqueductal gray projecting retinal ganglion cells in Mongolian gerbil (Meriones unguiculatus). PLoS One 2014; 9:e103306. [PMID: 25054882 PMCID: PMC4108400 DOI: 10.1371/journal.pone.0103306] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/27/2014] [Indexed: 12/01/2022] Open
Abstract
In this study we investigated the morphological features of the caudal periaqueductal gray (cPAG)-projecting retinal ganglion cells (RGCs) in Mongolian gerbils using retrograde labeling, in vitro intracellular injection, confocal microscopy and three-dimensional reconstruction approaches. cPAG-projecting RGCs exhibit small somata (10–17 µm) and irregular dendritic fields (201–298 µm). Sizes of somata and dendritic fields do not show obvious variation at different distance from the optic disk (eccentricity). Dendrites are moderately branched. Morphological analysis (n = 23) reveals that cPAG-projecting RGCs ramified in sublamina a and b in the inner plexiform layer. These cells exhibit different stratification patterns based on the thickness of dendritic bands in sublaminas a and b: majority of analyzed cells (16 out of 23) have two bands of arborizations share similar thickness. The rest of analyzed cells (7 out of 23) exhibit thinner band in sublamina a than in sublamina b. Together, the present study suggests that cPAG of Mongolian gerbil could receive direct retinal inputs from two types of bistratified RGCs. Furthermore, a small subset of melanopsin-expressing RGCs (total 41 in 6 animals) is shown to innervate the rostral PAG (rPAG). Functional characteristics of these non-visual center projecting RGCs remain to be determined.
Collapse
Affiliation(s)
- Chaoran Ren
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, PR China
- Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, PR China
- GHM Collaboration and Innovation Center for Tissue Regeneration and Repair, Jinan University, Guangzhou, PR China
- * E-mail: (CR); (K-FS)
| | - Mingliang Pu
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing, PR China
- Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, PR China
- Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, PR China
| | - Qi Cui
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, PR China
- Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, PR China
- GHM Collaboration and Innovation Center for Tissue Regeneration and Repair, Jinan University, Guangzhou, PR China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, PR China
- Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, PR China
- GHM Collaboration and Innovation Center for Tissue Regeneration and Repair, Jinan University, Guangzhou, PR China
- Department of Ophthalmology and State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, PR China
- * E-mail: (CR); (K-FS)
| |
Collapse
|
34
|
Genetic dissection of retinal inputs to brainstem nuclei controlling image stabilization. J Neurosci 2013; 33:17797-813. [PMID: 24198370 DOI: 10.1523/jneurosci.2778-13.2013] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
When the head rotates, the image of the visual world slips across the retina. A dedicated set of retinal ganglion cells (RGCs) and brainstem visual nuclei termed the "accessory optic system" (AOS) generate slip-compensating eye movements that stabilize visual images on the retina and improve visual performance. Which types of RGCs project to each of the various AOS nuclei remain unresolved. Here we report a new transgenic mouse line, Hoxd10-GFP, in which the RGCs projecting to all the AOS nuclei are fluorescently labeled. Electrophysiological recordings of Hoxd10-GFP RGCs revealed that they include all three subtypes of On direction-selective RGCs (On-DSGCs), responding to upward, downward, or forward motion. Hoxd10-GFP RGCs also include one subtype of On-Off DSGCs tuned for forward motion. Retrograde circuit mapping with modified rabies viruses revealed that the On-DSGCs project to the brainstem centers involved in both horizontal and vertical retinal slip compensation. In contrast, the On-Off DSGCs labeled in Hoxd10-GFP mice projected to AOS nuclei controlling horizontal but not vertical image stabilization. Moreover, the forward tuned On-Off DSGCs appear physiologically and molecularly distinct from all previously genetically identified On-Off DSGCs. These data begin to clarify the cell types and circuits underlying image stabilization during self-motion, and they support an unexpected diversity of DSGC subtypes.
Collapse
|
35
|
Ivanova E, Lee P, Pan ZH. Characterization of multiple bistratified retinal ganglion cells in a purkinje cell protein 2-Cre transgenic mouse line. J Comp Neurol 2013; 521:2165-80. [PMID: 23224947 DOI: 10.1002/cne.23279] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 07/28/2012] [Accepted: 11/28/2012] [Indexed: 01/08/2023]
Abstract
Retinal ganglion cells are categorized into multiple classes, including multiple types of bistratified ganglion cells (BGCs). The recent use of transgenic mouse lines with specific type(s) of ganglion cells that are labeled by fluorescent markers has facilitated the morphological and physiological studies of BGCs, particularly the directional-selective BGCs. The most important benefit from using transgenic animals is the capability to perform in vivo gene manipulation. In particular, the Cre/LoxP recombination system has become a powerful tool, allowing gene deletion, overexpression, and ectopic expression in a cell type-specific and temporally controlled fashion. The key to this tool is the availability of Cre mouse lines with cell or tissue type-specific expression of Cre recombinase. In this study we characterized the Cre-positive retinal ganglion cells in a PCP2 (Purkinje cell protein 2)-cre mouse line. We found that all of the Cre-positive retinal ganglion cells were BGCs. Based on morphological criteria, we determined that they can be grouped into five types. The On- and Off-dendrites of three of these types stratified outside of the cholinergic bands and differed from directional selective ganglion cells (DSGCs) morphologically. These cells were negative for Brn-3b and positive for both calretinin and CART retina markers. The remaining two types were identified as putative On-Off and On-DSGCs. This Cre mouse line could be useful for further studies of the molecular and functional properties of BGCs in mice.
Collapse
Affiliation(s)
- Elena Ivanova
- Department of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
36
|
Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 2013; 500:168-74. [PMID: 23925239 DOI: 10.1038/nature12346] [Citation(s) in RCA: 607] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 06/03/2013] [Indexed: 12/14/2022]
Abstract
Comprehensive high-resolution structural maps are central to functional exploration and understanding in biology. For the nervous system, in which high resolution and large spatial extent are both needed, such maps are scarce as they challenge data acquisition and analysis capabilities. Here we present for the mouse inner plexiform layer--the main computational neuropil region in the mammalian retina--the dense reconstruction of 950 neurons and their mutual contacts. This was achieved by applying a combination of crowd-sourced manual annotation and machine-learning-based volume segmentation to serial block-face electron microscopy data. We characterize a new type of retinal bipolar interneuron and show that we can subdivide a known type based on connectivity. Circuit motifs that emerge from our data indicate a functional mechanism for a known cellular response in a ganglion cell that detects localized motion, and predict that another ganglion cell is motion sensitive.
Collapse
|
37
|
Hoshi H, Tian LM, Massey SC, Mills SL. Properties of the ON bistratified ganglion cell in the rabbit retina. J Comp Neurol 2013; 521:1497-509. [PMID: 23047654 PMCID: PMC3570667 DOI: 10.1002/cne.23237] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 08/14/2012] [Accepted: 10/02/2012] [Indexed: 12/19/2022]
Abstract
The identity of the types of different neurons in mammalian retinae is now close to being completely known for a few mammalian species; comparison reveals strong homologies for many neurons across the order. Still, there remain some cell types rarely encountered and inadequately described, despite not being rare in relative frequency. Here we describe in detail an additional ganglion cell type in rabbit that is bistratified with dendrites in both sublaminae, yet spikes only at light onset and has no response bias to the direction of moving bars. This ON bistratified ganglion cell type is most easily distinguished by the unusual behavior of its dendritic arbors. While dendrites that arborize in sublamina b terminate at that level, those that ascend to arborize in sublamina a do not normally terminate there. Instead, when they reach the approximate radius of the dendrites in sublamina b, they dive sharply back down to ramify in sublamina b. Here they continue to course even further away from the soma at the same level as the branches wholly contained in sublamina b, thereby forming an annulus of secondary ON dendrites in sublamina b. This pattern of branching creates a bistratified dendritic field of approximately equal area in the two sublaminae initially, to which is then added an external annulus of dendrites only in sublamina b whose origin is entirely from processes descending from sublamina a. It is coupled to a population of wide-field amacrine cells upon which the dendrites of the ganglion cell often terminate.
Collapse
Affiliation(s)
- Hideo Hoshi
- Department of Ophthalmology and Visual Science, University of Texas at Houston, 6431 Fannin, MSB 7.024, Houston, Texas 77030
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Lian-Ming Tian
- Department of Ophthalmology and Visual Science, University of Texas at Houston, 6431 Fannin, MSB 7.024, Houston, Texas 77030
| | - Stephen C. Massey
- Department of Ophthalmology and Visual Science, University of Texas at Houston, 6431 Fannin, MSB 7.024, Houston, Texas 77030
| | - Stephen L. Mills
- Department of Ophthalmology and Visual Science, University of Texas at Houston, 6431 Fannin, MSB 7.024, Houston, Texas 77030
| |
Collapse
|
38
|
Identification of parvalbumin-containing retinal ganglion cells in rabbit. Exp Eye Res 2013; 110:113-24. [DOI: 10.1016/j.exer.2013.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/09/2013] [Accepted: 02/27/2013] [Indexed: 01/17/2023]
|
39
|
Gütig R, Gollisch T, Sompolinsky H, Meister M. Computing complex visual features with retinal spike times. PLoS One 2013; 8:e53063. [PMID: 23301021 PMCID: PMC3534662 DOI: 10.1371/journal.pone.0053063] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 11/28/2012] [Indexed: 11/18/2022] Open
Abstract
Neurons in sensory systems can represent information not only by their firing rate, but also by the precise timing of individual spikes. For example, certain retinal ganglion cells, first identified in the salamander, encode the spatial structure of a new image by their first-spike latencies. Here we explore how this temporal code can be used by downstream neural circuits for computing complex features of the image that are not available from the signals of individual ganglion cells. To this end, we feed the experimentally observed spike trains from a population of retinal ganglion cells to an integrate-and-fire model of post-synaptic integration. The synaptic weights of this integration are tuned according to the recently introduced tempotron learning rule. We find that this model neuron can perform complex visual detection tasks in a single synaptic stage that would require multiple stages for neurons operating instead on neural spike counts. Furthermore, the model computes rapidly, using only a single spike per afferent, and can signal its decision in turn by just a single spike. Extending these analyses to large ensembles of simulated retinal signals, we show that the model can detect the orientation of a visual pattern independent of its phase, an operation thought to be one of the primitives in early visual processing. We analyze how these computations work and compare the performance of this model to other schemes for reading out spike-timing information. These results demonstrate that the retina formats spatial information into temporal spike sequences in a way that favors computation in the time domain. Moreover, complex image analysis can be achieved already by a simple integrate-and-fire model neuron, emphasizing the power and plausibility of rapid neural computing with spike times.
Collapse
Affiliation(s)
- Robert Gütig
- Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Racah Institute of Physics and Interdisciplinary Center for Neural Computation, Hebrew University, Jerusalem, Israel
- * E-mail: (RG); (MM)
| | - Tim Gollisch
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
| | - Haim Sompolinsky
- Racah Institute of Physics and Interdisciplinary Center for Neural Computation, Hebrew University, Jerusalem, Israel
- Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Markus Meister
- Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail: (RG); (MM)
| |
Collapse
|
40
|
Light AC, Zhu Y, Shi J, Saszik S, Lindstrom S, Davidson L, Li X, Chiodo VA, Hauswirth WW, Li W, DeVries SH. Organizational motifs for ground squirrel cone bipolar cells. J Comp Neurol 2012; 520:2864-87. [PMID: 22778006 DOI: 10.1002/cne.23068] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In daylight vision, parallel processing starts at the cone synapse. Cone signals flow to On and Off bipolar cells, which are further divided into types according to morphology, immunocytochemistry, and function. The axons of the bipolar cell types stratify at different levels in the inner plexiform layer (IPL) and can interact with costratifying amacrine and ganglion cells. These interactions endow the ganglion cell types with unique functional properties. The wiring that underlies the interactions among bipolar, amacrine, and ganglion cells is poorly understood. It may be easier to elucidate this wiring if organizational rules can be established. We identify 13 types of cone bipolar cells in the ground squirrel, 11 of which contact contiguous cones, with the possible exception of short-wavelength-sensitive cones. Cells were identified by antibody labeling, tracer filling, and Golgi-like filling following transduction with an adeno-associated virus encoding for green fluorescent protein. The 11 bipolar cell types displayed two organizational patterns. In the first pattern, eight to 10 of the 11 types came in pairs with partially overlapping axonal stratification. Pairs shared morphological, immunocytochemical, and functional properties. The existence of similar pairs is a new motif that might have implications for how signals first diverge from a cone to bipolar cells and then reconverge onto a costratifying ganglion cell. The second pattern is a mirror symmetric organization about the middle of the IPL involving at least seven bipolar cell types. This anatomical symmetry may be associated with a functional symmetry in On and Off ganglion cell responses.
Collapse
Affiliation(s)
- Adam C Light
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The mammalian retina consists of neurons of >60 distinct types, each playing a specific role in processing visual images. They are arranged in three main stages. The first decomposes the outputs of the rod and cone photoreceptors into ∼12 parallel information streams. The second connects these streams to specific types of retinal ganglion cells. The third combines bipolar and amacrine cell activity to create the diverse encodings of the visual world--roughly 20 of them--that the retina transmits to the brain. New transformations of the visual input continue to be found: at least half of the encodings sent to the brain (ganglion cell response selectivities) remain to be discovered. This diversity of the retina's outputs has yet to be incorporated into our understanding of higher visual function.
Collapse
Affiliation(s)
- Richard H Masland
- Department of Opthamology, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA.
| |
Collapse
|
42
|
Schwartz GW, Okawa H, Dunn FA, Morgan JL, Kerschensteiner D, Wong RO, Rieke F. The spatial structure of a nonlinear receptive field. Nat Neurosci 2012; 15:1572-80. [PMID: 23001060 PMCID: PMC3517818 DOI: 10.1038/nn.3225] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/24/2012] [Indexed: 12/13/2022]
Abstract
Understanding a sensory system implies the ability to predict responses to a variety of inputs from a common model. In the retina, this includes predicting how the integration of signals across visual space shapes the outputs of retinal ganglion cells. Existing models of this process generalize poorly to predict responses to new stimuli. This failure arises in part from properties of the ganglion cell response that are not well captured by standard receptive-field mapping techniques: nonlinear spatial integration and fine-scale heterogeneities in spatial sampling. Here we characterize a ganglion cell's spatial receptive field using a mechanistic model based on measurements of the physiological properties and connectivity of only the primary excitatory circuitry of the retina. The resulting simplified circuit model successfully predicts ganglion-cell responses to a variety of spatial patterns and thus provides a direct correspondence between circuit connectivity and retinal output.
Collapse
Affiliation(s)
- Gregory W Schwartz
- Department of Physiology and Biophysics, University of Washington, Seattle, Seattle, Washington, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Interspike interval based filtering of directional selective retinal ganglion cells spike trains. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2012; 2012:918030. [PMID: 22919373 PMCID: PMC3419397 DOI: 10.1155/2012/918030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/10/2012] [Indexed: 11/24/2022]
Abstract
The information regarding visual stimulus is encoded in spike trains at the output of retina by retinal ganglion cells (RGCs). Among these, the directional selective cells (DSRGC) are signaling the direction of stimulus motion. DSRGCs' spike trains show accentuated periods of short interspike intervals (ISIs) framed by periods of isolated spikes. Here we use two types of visual stimulus, white noise and drifting bars, and show that short ISI spikes of DSRGCs spike trains are more often correlated to their preferred stimulus feature (that is, the direction of stimulus motion) and carry more information than longer ISI spikes. Firstly, our results show that correlation between stimulus and recorded neuronal response is best at short ISI spiking activity and decrease as ISI becomes larger. We then used grating bars stimulus and found that as ISI becomes shorter the directional selectivity is better and information rates are higher. Interestingly, for the less encountered type of DSRGC, known as ON-DSRGC, short ISI distribution and information rates revealed consistent differences when compared with the other directional selective cell type, the ON-OFF DSRGC. However, these findings suggest that ISI-based temporal filtering integrates a mechanism for visual information processing at the output of retina toward higher stages within early visual system.
Collapse
|
44
|
Steele-Russell I, Russell MI, Castiglioni JA, Graham J. Differential retinal origins of separate anatomical channels for pattern and motion vision in rabbit. Exp Brain Res 2012; 222:99-111. [PMID: 22910899 DOI: 10.1007/s00221-012-3198-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 07/17/2012] [Indexed: 11/25/2022]
Abstract
The most conspicuous feature of the rabbit retina is the visual streak that extends along the horizontal azimuth from the nasal margin to the temporal limit of the retina. We believe the streak processes movement vision and that the temporal region (area centralis) is responsible for pattern perception. Both anatomical and behavioural experiments were used to test this hypothesis. Behavioural measures of pattern vision in normal and chiasma-sectioned rabbits revealed both to have the same visual acuity. Using OKN as a measure of movement vision, normal rabbits showed both a directional and velocity-tuned response. The chiasma-sectioned rabbits, with only uncrossed fibre projections remaining, showed a total loss of movement detection. The injection of HRP into the vitreal chamber of one eye in normal rabbits revealed extensive uptake throughout the contralateral thalamus. In the ipsilateral thalamus, there was uptake solely from the ipsilateral retinal projection to a restricted wafer of the lateral geniculate nucleus (LGN). The chiasma cut rabbits showed a very different distribution of HRP in the thalamus. The uptake was restricted to a thin wafer of the LGN, with no contralateral uptake. Thus, the thalamic projections from the retinal area centralis were strictly segregated from the thalamic target areas for the visual streak without any overlap. These findings provide strong evidence for separate retinal origins with anatomically separate pathways for pattern and movement vision in the rabbit.
Collapse
Affiliation(s)
- I Steele-Russell
- Sensory Neuroscience Laboratory, Texas A&M University System Health Science Center, College Station, TX 77802, USA.
| | | | | | | |
Collapse
|
45
|
The most numerous ganglion cell type of the mouse retina is a selective feature detector. Proc Natl Acad Sci U S A 2012; 109:E2391-8. [PMID: 22891316 DOI: 10.1073/pnas.1211547109] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The retina reports the visual scene to the brain through many parallel channels, each carried by a distinct population of retinal ganglion cells. Among these, the population with the smallest and densest receptive fields encodes the neural image with highest resolution. In human retina, and those of cat and macaque, these high-resolution ganglion cells act as generic pixel encoders: They serve to represent many different visual inputs and convey a neural image of the scene downstream for further processing. Here we identify and analyze high-resolution ganglion cells in the mouse retina, using a transgenic line in which these cells, called "W3", are labeled fluorescently. Counter to the expectation, these ganglion cells do not participate in encoding generic visual scenes, but remain silent during most common visual stimuli. A detailed study of their response properties showed that W3 cells pool rectified excitation from both On and Off bipolar cells, which makes them sensitive to local motion. However, they also receive unusually strong lateral inhibition, both pre- and postsynaptically, triggered by distant motion. As a result, the W3 cell can detect small moving objects down to the receptive field size of bipolar cells, but only if the background is featureless or stationary--an unusual condition. A survey of naturalistic stimuli shows that W3 cells may serve as alarm neurons for overhead predators.
Collapse
|
46
|
Auferkorte ON, Baden T, Kaushalya SK, Zabouri N, Rudolph U, Haverkamp S, Euler T. GABA(A) receptors containing the α2 subunit are critical for direction-selective inhibition in the retina. PLoS One 2012; 7:e35109. [PMID: 22506070 PMCID: PMC3323634 DOI: 10.1371/journal.pone.0035109] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 03/13/2012] [Indexed: 01/08/2023] Open
Abstract
Far from being a simple sensor, the retina actively participates in processing visual signals. One of the best understood aspects of this processing is the detection of motion direction. Direction-selective (DS) retinal circuits include several subtypes of ganglion cells (GCs) and inhibitory interneurons, such as starburst amacrine cells (SACs). Recent studies demonstrated a surprising complexity in the arrangement of synapses in the DS circuit, i.e. between SACs and DS ganglion cells. Thus, to fully understand retinal DS mechanisms, detailed knowledge of all synaptic elements involved, particularly the nature and localization of neurotransmitter receptors, is needed. Since inhibition from SACs onto DSGCs is crucial for generating retinal direction selectivity, we investigate here the nature of the GABA receptors mediating this interaction. We found that in the inner plexiform layer (IPL) of mouse and rabbit retina, GABA(A) receptor subunit α2 (GABA(A)R α2) aggregated in synaptic clusters along two bands overlapping the dendritic plexuses of both ON and OFF SACs. On distal dendrites of individually labeled SACs in rabbit, GABA(A)R α2 was aligned with the majority of varicosities, the cell's output structures, and found postsynaptically on DSGC dendrites, both in the ON and OFF portion of the IPL. In GABA(A)R α2 knock-out (KO) mice, light responses of retinal GCs recorded with two-photon calcium imaging revealed a significant impairment of DS responses compared to their wild-type littermates. We observed a dramatic drop in the proportion of cells exhibiting DS phenotype in both the ON and ON-OFF populations, which strongly supports our anatomical findings that α2-containing GABA(A)Rs are critical for mediating retinal DS inhibition. Our study reveals for the first time, to the best of our knowledge, the precise functional localization of a specific receptor subunit in the retinal DS circuit.
Collapse
|
47
|
Vaney DI, Sivyer B, Taylor WR. Direction selectivity in the retina: symmetry and asymmetry in structure and function. Nat Rev Neurosci 2012; 13:194-208. [PMID: 22314444 DOI: 10.1038/nrn3165] [Citation(s) in RCA: 214] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Visual information is processed in the retina to a remarkable degree before it is transmitted to higher visual centres. Several types of retinal ganglion cells (the output neurons of the retina) respond preferentially to image motion in a particular direction, and each type of direction-selective ganglion cell (DSGC) is comprised of multiple subtypes with different preferred directions. The direction selectivity of the cells is generated by diverse mechanisms operating within microcircuits that rely on independent neuronal processing in individual dendrites of both the DSGCs and the presynaptic neurons that innervate them.
Collapse
Affiliation(s)
- David I Vaney
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia.
| | | | | |
Collapse
|
48
|
Sivyer B, Venkataramani S, Taylor WR, Vaney DI. A novel type of complex ganglion cell in rabbit retina. J Comp Neurol 2012; 519:3128-38. [PMID: 21800303 DOI: 10.1002/cne.22720] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The 15-20 physiological types of retinal ganglion cells (RGCs) can be grouped according to whether they fire to increased illumination in the receptive-field center (ON cells), decreased illumination (OFF cells), or both (ON-OFF cells). The diversity of RGCs has been best described in the rabbit retina, which has three types of ON-OFF RGCs with complex receptive-field properties: the ON-OFF direction-selective ganglion cells (DSGCs), the local edge detectors, and the uniformity detectors. Here we describe a novel type of bistratified ON-OFF RGC that has not been described in either physiological or morphological studies of rabbit RGCs. These cells stratify in the ON and OFF sublaminae of the inner plexiform layer, branching at about 30% and 60% depth, between the ON and OFF arbors of the bistratified DSGCs. Similar to the ON-OFF DSGCs, these cells respond with transient firing to both bright and dark spots flashed in the receptive field but, unlike the DSGCs, they show no directional preference for moving stimuli. We have termed these cells "transient ON-OFF" RGCs. Area-response measurements show that both the ON and the OFF spike responses have an antagonistic receptive-field organization, but with different spatial extents. Voltage-clamp recordings reveal transient excitatory inputs at light ON and light OFF; this excitation is strongly suppressed by surround stimulation, which also elicits direct inhibitory inputs to the cells at light ON and light OFF. Thus the receptive-field organization is mediated both within the presynaptic circuitry and by direct feed-forward inhibition.
Collapse
Affiliation(s)
- Benjamin Sivyer
- ARC Centre of Excellence in Vision Science, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | | | | | | |
Collapse
|
49
|
Hoshi H, Tian LM, Massey SC, Mills SL. Two distinct types of ON directionally selective ganglion cells in the rabbit retina. J Comp Neurol 2011; 519:2509-21. [PMID: 21618235 PMCID: PMC3265025 DOI: 10.1002/cne.22678] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mammalian retinas contain about 20 types of ganglion cells that respond to different aspects of the visual scene, including the direction of motion of objects in the visual field. The rabbit retina has long been thought to contain two distinct types of directionally selective (DS) ganglion cell: a bistratified ON-OFF DS ganglion cell that responds to onset and termination of light, and an ON DS ganglion cell, which stratifies only in the ON layer and responds only to light onset. This division is challenged by targeted recordings from rabbit retina, which indicate that ON DS ganglion cells occur in two discriminably different types. One of these is strongly tracer-coupled to amacrine cells; the other is never tracer-coupled. These two types also differ in branching pattern, stratification depth, relative latency, and transience of spiking. The sustained, uncoupled ON DS cell ramifies completely within the lower cholinergic band and responds to nicotine with continuous firing. In contrast, the transient, coupled ON DS ganglion cell stratifies above the cholinergic band and is not positioned to receive major input from cholinergic amacrine cells, consistent with its modest response to the cholinergic agonist nicotine. Much data have accrued that directional responses in the mammalian retina originate via gamma-aminobutyric acid (GABA) release from the dendrites of starburst amacrine cells (Euler et al., 2002). If there is an ON DS ganglion cell that does not stratify in the starburst band, this suggests that its GABA-dependent directional signals may be generated by a mechanism independent of starburst amacrine cells.
Collapse
Affiliation(s)
- Hideo Hoshi
- Department of Ophthalmology and Visual Science, University of Texas at Houston, Houston, Texas, USA
| | - Lian-Ming Tian
- Department of Ophthalmology and Visual Science, University of Texas at Houston, Houston, Texas, USA
| | - Stephen C. Massey
- Department of Ophthalmology and Visual Science, University of Texas at Houston, Houston, Texas, USA
| | - Stephen L. Mills
- Department of Ophthalmology and Visual Science, University of Texas at Houston, Houston, Texas, USA
| |
Collapse
|
50
|
Jelinek HF, Ristanović D, Milošević NT. The morphology and classification of alpha ganglion cells in the rat retinae: A fractal analysis study. J Neurosci Methods 2011; 201:281-7. [DOI: 10.1016/j.jneumeth.2011.07.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/30/2011] [Accepted: 07/28/2011] [Indexed: 10/17/2022]
|