1
|
Naitou K, Iwashita H, Ueda HH, Shiraishi M, Fujimoto Y, Horii K, Sawamura T, Shiina T, Shimizu Y. Intrathecally administered substance P activated the spinal defecation center and enhanced colorectal motility in anesthetized rats. Am J Physiol Gastrointest Liver Physiol 2022; 323:G21-G30. [PMID: 35470689 DOI: 10.1152/ajpgi.00342.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Noxious stimuli on the colorectum cause colorectal contractions through activation of descending monoaminergic pathways projecting from the supraspinal defecation center to the spinal defecation center. Since it is known that substance P is involved in the response to peripheral noxious stimuli in the spinal cord, we investigated the effects of intrathecally administered substance P at L6-S1 levels on colorectal motility in rats that were anesthetized with α-chloralose and ketamine. Intrathecally administered substance P enhanced colorectal motility, even after transection of the thoracic spinal cord at the T4 level. Severing the pelvic nerves, but not the colonic nerves, abolished substance P enhanced colorectal motility. In the spinal cord at L6-S1 levels, expression of mRNA coding neurokinin (NK) 1-3 receptors was detected by RT-PCR. Immunohistological experiments revealed that preganglionic neurons of the pelvic nerves express NK1 receptors, whereas expression of NK2 receptors was not found. In addition, substance P-containing fibers densely innervated around the preganglionic neurons expressing NK1 receptors. An intrathecally administered NK1 receptor antagonist (spantide) attenuated capsaicin-induced colorectal contractions. These results suggest that the colokinetic action of substance P is mediated by the NK1 receptor in the spinal defecation center. Our findings indicate that substance P may function as a neurotransmitter in the spinal defecation center.NEW & NOTEWORTHY We found that intrathecally administered substance P enhanced colorectal motility in anesthetized rats. Neurokinin (NK) 1 receptors, but not NK2 receptors, were detected in preganglionic neurons of the pelvic nerves. Blockade of NK1 receptors in the spinal cord attenuated the enhanced colorectal motility in response to intracolonic noxious stimuli. The findings indicate that substance P may function as a neurotransmitter in the spinal reflex pathway controlling defecation.
Collapse
Affiliation(s)
- Kiyotada Naitou
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Honoka Iwashita
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Hiromi H Ueda
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Mitsuya Shiraishi
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Yoshikazu Fujimoto
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Kazuhiro Horii
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Tomoya Sawamura
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Takahiko Shiina
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Yasutake Shimizu
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
2
|
Islam MN, Takeshita Y, Yanai A, Imagawa A, Jahan MR, Wroblewski G, Nemoto J, Fujinaga R, Shinoda K. Immunohistochemical analysis of huntingtin-associated protein 1 in adult rat spinal cord and its regional relationship with androgen receptor. Neuroscience 2016; 340:201-217. [PMID: 27984179 DOI: 10.1016/j.neuroscience.2016.10.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 12/13/2022]
Abstract
Huntingtin-associated protein 1 (HAP1) is a neuronal interactor with causatively polyglutamine (polyQ)-expanded huntingtin in Huntington's disease and also associated with pathologically polyQ-expanded androgen receptor (AR) in spinobulbar muscular atrophy (SBMA), being considered as a protective factor against neurodegenerative apoptosis. In normal brains, it is abundantly expressed particularly in the limbic-hypothalamic regions that tend to be spared from neurodegeneration, whereas the areas with little HAP1 expression, including the striatum, thalamus, cerebral neocortex and cerebellum, are targets in several neurodegenerative diseases. While the spinal cord is another major neurodegenerative target, HAP1-immunoreactive (ir) structures have yet to be determined there. In the current study, HAP1 expression was immunohistochemically evaluated in light and electron microscopy through the cervical, thoracic, lumbar, and sacral spinal cords of the adult male rat. Our results showed that HAP1 is specifically expressed in neurons through the spinal segments and that more than 90% of neurons expressed HAP1 in lamina I-II, lamina X, and autonomic preganglionic regions. Double-immunostaining for HAP1 and AR demonstrated that more than 80% of neurons expressed both in laminae I-II and X. In contrast, HAP1 was specifically lacking in the lamina IX motoneurons with or without AR expression. The present study first demonstrated that HAP1 is abundantly expressed in spinal neurons of the somatosensory, viscerosensory, and autonomic regions but absent in somatomotor neurons, suggesting that the spinal motoneurons are, due to lack of putative HAP1 protectivity, more vulnerable to stresses in neurodegenerative diseases than other HAP1-expressing neurons probably involved in spinal sensory and autonomic functions.
Collapse
Affiliation(s)
- Md Nabiul Islam
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Yukio Takeshita
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Akie Yanai
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Amami Imagawa
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Mir Rubayet Jahan
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Greggory Wroblewski
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Joe Nemoto
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Ryutaro Fujinaga
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Koh Shinoda
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan.
| |
Collapse
|
3
|
Abstract
Brown adipose tissue (BAT) is an important source of thermogenesis which is nearly exclusively dependent on its sympathetic nervous system (SNS) innervation. We previously demonstrated the SNS outflow from brain to BAT using the retrograde SNS-specific transneuronal viral tract tracer, pseudorabies virus (PRV152) and demonstrated the sensory system (SS) inflow from BAT to brain using the anterograde SS-specific transneuronal viral tract tracer, H129 strain of herpes simplex virus-1. Several brain areas were part of both the SNS outflow to, and receive SS inflow from, interscapular BAT (IBAT) in these separate studies suggesting SNS-SS feedback loops. Therefore, we tested whether individual neurons participated in SNS-SS crosstalk by injecting both PRV152 and H129 into IBAT of Siberian hamsters. To define which dorsal root ganglia (DRG) are activated by BAT SNS stimulation, indicated by c-Fos immunoreactivity (IR), we prelabeled IBAT DRG innervating neurons by injecting the retrograde tracer Fast Blue (FB) followed 1 week later by intra-BAT injections of the specific β3-adrenoceptor agonist CL316,243 in one pad and the vehicle in the contralateral pad. There were PRV152+H129 dually infected neurons across the neuroaxis with highest densities in the raphe pallidus nucleus, nucleus of the solitary tract, periaqueductal gray, hypothalamic paraventricular nucleus, and medial preoptic area, sites strongly implicated in the control of BAT thermogenesis. CL316,243 significantly increased IBAT temperature, afferent nerve activity, and c-Fos-IR in C2-C4 DRG neurons ipsilateral to the CL316,243 injections versus the contralateral side. The neuroanatomical reality of the SNS-SS feedback loops suggests coordinated and/or multiple redundant control of BAT thermogenesis.
Collapse
|
4
|
Funakoshi K, Nakano M, Atobe Y, Kadota T, Goris RC. Prenatal development of transient receptor potential vanilloid 1-expressing primary sensory projections to sacral autonomic preganglionic neurons. Neurosci Lett 2006; 407:230-3. [PMID: 16973277 DOI: 10.1016/j.neulet.2006.08.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 07/25/2006] [Accepted: 08/17/2006] [Indexed: 10/24/2022]
Abstract
The visceral reflexes of the pelvic organs are mediated by connections between primary afferents innervating the pelvic organs and parasympathetic preganglionic neurons in the intermediolateral column of the sacral spinal cord. The present immunohistochemical study revealed many varicosities expressing transient receptor potential vanilloid 1 (TRPV1) that were closely apposed to the preganglionic neuronal perikarya at embryonic day 16 in mice. Many, but not all, varicosities expressing TRPV1 in the intermediolateral column were also immunopositive for calcitonin gene-related peptide. In contrast, no nerve fibers expressing TRPV1 projected to the sympathetic preganglionic cell column in the lumbar spinal cord in prenatal stages. The results of the present study raised the possibility that the primary afferents transmit signals elicited by the activation of TRPV1 receptors to the sacral parasympathetic preganglionic neurons. Thus, the functional circuit for pelvic spinal reflexes, such as micturition induced by urine influx, might develop in the prenatal stages in mice.
Collapse
Affiliation(s)
- Kengo Funakoshi
- Department of Neuroanatomy, Yokohama City University School of Medicine, 3-9 Fukuura, Yokohama, Japan.
| | | | | | | | | |
Collapse
|
5
|
Puder BA, Papka RE. Activation and circuitry of uterine-cervix-related neurons in the lumbosacral dorsal root ganglia and spinal cord at parturition. J Neurosci Res 2005; 82:875-89. [PMID: 16273543 DOI: 10.1002/jnr.20690] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Stimulation of the uterine cervix at parturition activates neural circuits involving primary sensory nerves and supraspinally projecting neurons of the lumbosacral spinal cord, resulting in output of hypothalamic neurohormones. Dorsal root ganglia (DRG) and spinal neurons of these circuits are not well-characterized. The objectives of this study were to detail the activation of DRG and spinal neurons of the L6/S1 levels that are stimulated at late pregnancy, verify hypothalamic projections of activated spinal neurons, and determine whether activated neurons express estrogen receptor-alpha (ERalpha). Expression of phosphorylated cyclic-AMP response element-binding protein (PCREB) and Fos immunohistochemistry were used to "mark" activated DRG and spinal neurons, respectively. Retrograde tracing identified uterine-cervix-related and spinohypothalamic neurons. Baseline PCREB expression in the DRG increased during pregnancy and peaked during the last trimester. Some PCREB-expressing neurons contained retrograde tracer identifying them as cervix-related neurons. Fos-expressing neurons were few in spinal cords of nonpregnant and day 22 pregnant rats but were numerous in parturient animals. Some Fos-expressing neurons located in the dorsal half of the spinal cord contained retrograde tracer identifying them as spinohypothalamic neurons. Some DRG neurons expressing PCREB also expressed ERalpha, and some spinal neurons activated at parturition projected axons to the hypothalamus and expressed ERalpha. These results indicate that DRG and spinal cord neurons are activated at parturition; that those in the spinal cord are present in areas involved in autonomic and sensory processing; that some spinal neurons project axons to the hypothalamus, ostensibly part of a neuroendocrine reflex; and that sensory and spinal neurons can respond to estrogens. Moreover, some activated sensory neurons may be involved in the animal's perception of labor pain.
Collapse
Affiliation(s)
- B A Puder
- Department of Neurobiology, Northeastern Ohio Universities College of Medicine, Rootstown, 44272, USA
| | | |
Collapse
|
6
|
Abstract
Penile erection is caused by a change of the activity of efferent autonomic pathways to the erectile tissues and of somatic pathways to the perineal striated muscles. The spinal cord contains the cell bodies of autonomic and somatic motoneurons that innervate the peripheral targets. The sympathetic outflow is mainly antierectile, the sacral parasympathetic outflow is proerectile, and the pudendal outflow, through contraction of the perineal striated muscles, enhances an erection already present. The shift from flaccidity to erection suggests relations among these neuronal populations in response to a variety of informations. Spinal neurons controlling erection are activated by information from peripheral and supraspinal origin. Both peripheral and supraspinal information is capable of eliciting erection, or modulating or inhibiting an erection already present. One can hypothesize a spinal network consisting of primary afferents from the genitals, spinal interneurons and sympathetic, parasympathetic and somatic nuclei. This system is capable of integrating information from the periphery and eliciting reflexive erections. The same spinal network, eventually including different populations of spinal interneurons, would be the recipient of supraspinal information. Premotor neurons that project directly onto spinal sympathetic, parasympathetic or somatic motoneurons, are present in the medulla, pons and diencephalon. Several of these premotor neurons may in turn be activated by sensory information from the genitals. Aminergic and peptidergic descending pathways in the vicinity of spinal neurons, exert complex effects on the spinal network that control penile erection. This is caused by the potential interaction of a great variety of receptors and receptor subtypes present in the spinal cord. Brainstem and hypothalamic nuclei (among the latter, the paraventricular nucleus and the medial preoptic area) may not necessarily reach spinal neurons directly. However they are prone to regulate penile erection in more integrated and coordinated responses of the body, such as those occurring during sexual behavior. Finally, the central and spinal role of regulatory peptides (oxytocin, melanocortins, endorphins) has only recently been elucidated.
Collapse
Affiliation(s)
- F Giuliano
- Service d'Urologie, CHU de Bicêtre, Assistance Publique Hôpitaux de Paris, F-94270 Cedex, Le Kremlin Bicêtre, France.
| | | |
Collapse
|
7
|
Abstract
Rat spinal neurons expressing lectin RL-29 are visualized immunohistochemically. RL-29 immunoreactive (RL-29 IR) neurons are found in the lateral parts of laminae V-VII, designated as the intermediolateral cell column (IML) in the thoracic cord, the sacral parasympathetic nucleus (SPN) in the lumbosacral cord, and the dorsomedial nucleus (DMN) of the ventral horn. The majority of RL-29 IR neurons in the SPN are also labeled by a retrograde tracer DAPI applied to the cut L6-S1 ventral roots. These data indicate that the majority of RL-29 IR neurons in the SPN are autonomic preganglionic neurons, thus suggesting that RL-29 can be a useful tool in marking this subpopulation of neurons. In addition, the presence of previously described RL-29 IR primary afferent fibers and terminals in the dorsal parts of the cord are confirmed.
Collapse
Affiliation(s)
- M J Park
- Marine Biomedical Institute, University of Texas Medical Branch, Galveston, USA
| | | |
Collapse
|
8
|
Abstract
Smooth muscle relaxation of penile arteries, the corpus cavernosum, and the corpus spongiosum, leading to penile erection, results from parasympathetic neural pathway activation and, likely, simultaneous inhibition of sympathetic outflow. Proerectile parasympathetic outflow is reflexively activated by sensory information of peripheral origin, conveyed by the dorsal penile nerve, and reflexive erections are supported by an intraspinal circuitry. Supraspinal influences modulate the reflex. Information integrated at or originating from supraspinal structures may also elicit penile erection. Several neurotransmitters are involved in either the modulation of the spinal reflex or the mediation of supraspinal influences. Spinal cord injury differently alters reflexive penile erection or erection from a central origin, depending on the neurologic level of injury.
Collapse
Affiliation(s)
- O Rampin
- Laboratoire de Neurobiologie des Fonctions Végétatives, Batiment 325 INRA, Jouy-en-Josas, France
| | | | | |
Collapse
|
9
|
Chung K, Lee WT, Park MJ. Spinal projections of pelvic visceral afferents of the rat: a calcitonin gene-related peptide (CGRP) immunohistochemical study. J Comp Neurol 1993; 337:63-9. [PMID: 8276992 DOI: 10.1002/cne.903370104] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Little information is available concerning the pelvic visceral afferent system, in view of its terminal location in the spinal cord and its associated transmitter substances in the rat. By utilizing an immunostaining method to examine the transneuronal neurotransmitter depletion resulting from peripheral sensory nerve injury, the spinal projections of primary afferent fibers containing calcitonin gene-related peptide (CGRP) and originating from pelvic viscera were studied in the lumbosacral spinal cord of the rat. After unilateral or bilateral pelvic nerve section, CGRP immunoreactivity in the lumbosacral spinal cord was decreased greatly in the sacral parasympathetic nucleus (SPN), the dorsolateral fasiculus, the medial border of the dorsal horn, the dorsal gray commissure (DGC), and the intermediate gray connecting the SPN and DGC. Fine structural analysis showed that the CGRP-immunoreactive terminals made synaptic contact with dendrites and, rarely, with somata. Although there was some incidence of a synaptic contact between a CGRP-IR terminal and a vesicle-containing profile, definite evidence of axo-axonal synapse has not been confirmed. These data indicate that CGRP-containing pelvic visceral primary afferent fibers project to autonomic areas of the lumbosacral spinal cord by way of the pelvic nerve and make synaptic contact with dendrites and somata.
Collapse
Affiliation(s)
- K Chung
- School of Allied Health Sciences, University of Texas Medical Branch, Galveston 77550
| | | | | |
Collapse
|
10
|
Kubota Y, Leung E, Vincent SR. Ultrastructure of cholinergic neurons in the laterodorsal tegmental nucleus of the rat: interaction with catecholamine fibers. Brain Res Bull 1992; 29:479-91. [PMID: 1393618 DOI: 10.1016/0361-9230(92)90086-d] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The ultrastructure of choline acetyltransferase (ChAT)-immunoreactive neurons in the laterodorsal tegmental nucleus (TLD) of the rat was investigated by immunohistochemical techniques. The immunoreactive neurons were medium to large in size, with a few elongated dendrites, contained well-developed cytoplasm, and a nucleus with deep infoldings. They received many nonimmunoreactive, mostly asymmetric synaptic inputs on their soma and dendrites. ChAT-immunoreactive, usually myelinated, axons were occasionally seen in TLD. Only one immunoreactive axon terminal was observed within TLD, and it made synaptic contact with a nonimmunoreactive neuronal perikaryon. The synaptic interactions between ChAT-immunoreactive neurons and tyrosine hydroxylase (TH)-immunoreactive fibers in the TLD were investigated with a double immunohistochemical staining method. ChAT-immunoreactivity detected with a beta-galactosidase method was light blue-green in the light microscope and formed dot-like electron dense particles at the electron microscopic level. TH-immunoreactivity, visualized with a nickel-enhanced immunoperoxidase method, was dark blue-black in the light microscope and diffusely opaque in the electron microscope. Therefore, the difference between these two kinds of immunoreactivity could be quite easily distinguished at both light and electron microscopic levels. In the light microscope, TH-positive fibers were often closely apposed to ChAT-immunoreactive cell bodies and dendrites in TLD. In the electron microscope, the cell soma and proximal dendrites of ChAT-immunoreactive neurons received synaptic contacts from TH-immunoreactive axon terminals. These results provide a morphological basis for catecholaminergic regulation of the cholinergic reticular system.
Collapse
Affiliation(s)
- Y Kubota
- Kinsmen Laboratory of Neurological Research, Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
11
|
Abstract
We review recent studies on the central neural control of esophageal motility, emphasizing the anatomy and chemical coding of esophageal pathways in the spinal cord and medulla. Sympathetic innervation of the proximal esophagus is derived primarily from cervical and upper thoracic paravertebral ganglia, whereas that of the lower esophageal sphincter and proximal stomach is derived from the celiac ganglion. In addition to noradrenaline, many sympathetic fibers in the esophagus contain neuropeptide Y (NPY), and both noradrenaline and NPY appear to decrease blood flow and motility. Preganglionic neurons innervating the cervical and upper thoracic ganglia are located at lower cervical and upper thoracic spinal levels. The preganglionic innervation of the celiac ganglion arises from lower thoracic spinal levels. Both acetylcholine (ACh) and enkephalin (ENK) have been localized in sympathetic preganglionic neurons, and it has been suggested that ENK acts to pre-synaptically inhibit ganglionic transmission. Spinal afferents from the esophagus are few, but have been described in lower cervical and thoracic dorsal root ganglia. A significant percentage contain calcitonin gene-related peptide (CGRP) and substance P (SP). The central distribution of spinal afferents, as well as their subsequent processing within the spinal cord, have not been addressed. Medullary afferents arise from the nodose ganglion and terminate peripherally both in myenteric ganglia, where they have been postulated to act as tension receptors, and, to a lesser extent, in more superficial layers. Centrally, these afferents appear to end in a discrete part of the nucleus of the solitary tract (NTS) termed the central subnucleus. The transmitter specificity of the majority of these afferents remains unknown. The central subnucleus, in turn, sends a dense and topographically discrete projection to esophageal motor neurons in the rostral portion of the nucleus ambiguous (NA). Both somatostatin-(SS) and ENK-related peptides have been localized in this pathway. Finally, motor neurons from the rostral NA innervate striated portions of the esophagus. In addition to ACh, these esophageal motor neurons contain CGRP, galanin (GAL), N-acetylaspartylglutamate (NAAG), and brain natriuretic peptide (BNP). The physiological effect of these peptides on esophageal motility remains unclear. Medullary control of smooth muscle portions of the esophagus have not been thoroughly investigated.
Collapse
Affiliation(s)
- E T Cunningham
- Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205
| | | |
Collapse
|
12
|
Newton BW, Unger J, Hamill RW. Calcitonin gene-related peptide and somatostatin immunoreactivities in the rat lumbar spinal cord: sexually dimorphic aspects. Neuroscience 1990; 37:471-89. [PMID: 1983471 DOI: 10.1016/0306-4522(90)90415-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The immunohistochemical distribution of calcitonin gene-related peptide and somatostatin in rat lumbar spinal laminae VII-X was investigated using the peroxidase-antiperoxidase technique. Within L1,2 laminae VII and X, calcitonin gene-related peptide and somatostatin fibers demarcate the location of preganglionic sympathetic neurons in a similar fashion in either sex but somatostatin is distributed in a sexually dimorphic manner in the lumbosacral (L5-S2) spinal cord with the male rat containing more somatostatin fibers and neurons than females. Within the ventral horn (lamina IX), calcitonin gene-related peptide has a sexually dimorphic distribution. Calcitonin gene-related peptide varicose fibers are found within the sexually dimorphic male cremaster nucleus but are virtually absent in the female cremaster nucleus. Calcitonin gene-related peptide varicose fibers are nearly absent in the remainder of the male and female lamina IX: this area includes the other two known sexually dimorphic spinal motonuclei: the dorsomedial and dorsolateral nuclei. Virtually all motoneurons in the lumbosacral spinal cord which are not sexually dimorphic contain calcitonin gene-related peptide. However, calcitonin gene-related peptide containing motoneurons have a heterogeneous distribution within sexually dimorphic nuclei. Calcitonin gene-related peptide containing motoneurons within the male and female cremaster nucleus are extremely rare. Some motoneurons within the male and female dorsomedial and dorsolateral nuclei contain calcitonin gene-related peptide with the female dorsomedial and dorsolateral nuclei containing a greater percentage of calcitonin gene-related peptide-containing motoneurons (c. 50%) than males (c. 20%). Somatostatin fibers are preferentially located in sexually dimorphic nuclei of either sex and are distributed in a sexually dimorphic manner within these nuclei with males containing a greater amount of somatostatin fibers than females. The amount of somatostatin immunoreactivity is most dense in the medial aspect of the dorsolateral nucleus, dense in the dorsomedial nucleus, moderate in the cremaster nucleus, and sparse in the lateral portion of the dorsolateral nucleus. In addition, a small column of motoneurons, between the dorsomedial and dorsolateral nuclei at the L5 level, is outlined by somatostatin fibers in females but is absent in males. Somatostatin containing motoneurons were not observed within the lumbar sexually dimorphic nuclei of either sex.
Collapse
Affiliation(s)
- B W Newton
- Department of Anatomy, University of Arkansas for Medical Sciences, Little Rock 72205
| | | | | |
Collapse
|