1
|
Ren M, Wu Q, Huang X. Flexible tactile sensors inspired by bio-mechanoreceptors. Biosens Bioelectron 2025; 267:116828. [PMID: 39368291 DOI: 10.1016/j.bios.2024.116828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Mechanoreceptors in animals and plants play a crucial role in sensing mechanical stimuli such as touch, motion, stretch, and vibration. Learning from the mechanisms of mechanoreceptors may facilitate the development of bionic tactile sensors, leading to higher sensitivity, spatial resolution, and dynamic ranges. However, very little literature has comprehensively discussed the relevance of biological tactile sensing systems and machine-learning-based bionic tactile sensors. This review first introduces the structural features, signal acquisition and transmission mechanisms, and feedback processes of both plant and animal mechanoreceptors, and then summarizes the efforts to develop bionic tactile sensors by mimicking the morphologies and structures of mechanoreceptors in plants and animals. Additionally, the integration of artificial intelligence approaches with these sensors for data processing and analysis are demonstrated, followed by the perspectives on current challenges and future trends in bionic tactile sensors. This review addresses the challenges in developing high-performance tactile sensors by focusing on surface microstructures and biological mechanoreceptors, serving as a valuable reference for developing bionic tactile sensors with enhanced sensitivity and multimodal sensing capabilities. Furthermore, it may benefit the future development of smart sensing systems integrated with artificial intelligence for more precise object and texture recognition.
Collapse
Affiliation(s)
- Miaoning Ren
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China; State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Qiushuo Wu
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China; State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Xian Huang
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China; State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| |
Collapse
|
2
|
Sen E, El-Keredy A, Jacob N, Mancini N, Asnaz G, Widmann A, Gerber B, Thoener J. Cognitive limits of larval Drosophila: testing for conditioned inhibition, sensory preconditioning, and second-order conditioning. Learn Mem 2024; 31:a053726. [PMID: 38862170 PMCID: PMC11199949 DOI: 10.1101/lm.053726.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/18/2024] [Indexed: 06/13/2024]
Abstract
Drosophila larvae are an established model system for studying the mechanisms of innate and simple forms of learned behavior. They have about 10 times fewer neurons than adult flies, and it was the low total number of their neurons that allowed for an electron microscopic reconstruction of their brain at synaptic resolution. Regarding the mushroom body, a central brain structure for many forms of associative learning in insects, it turned out that more than half of the classes of synaptic connection had previously escaped attention. Understanding the function of these circuit motifs, subsequently confirmed in adult flies, is an important current research topic. In this context, we test larval Drosophila for their cognitive abilities in three tasks that are characteristically more complex than those previously studied. Our data provide evidence for (i) conditioned inhibition, as has previously been reported for adult flies and honeybees. Unlike what is described for adult flies and honeybees, however, our data do not provide evidence for (ii) sensory preconditioning or (iii) second-order conditioning in Drosophila larvae. We discuss the methodological features of our experiments as well as four specific aspects of the organization of the larval brain that may explain why these two forms of learning are observed in adult flies and honeybees, but not in larval Drosophila.
Collapse
Affiliation(s)
- Edanur Sen
- Department of Genetics, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Amira El-Keredy
- Department of Genetics, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
- Department of Genetics, Faculty of Agriculture, Tanta University, 31111 Tanta, Egypt
| | - Nina Jacob
- Department of Genetics, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Nino Mancini
- Department of Genetics, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Gülüm Asnaz
- Department of Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | - Annekathrin Widmann
- Department of Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | - Bertram Gerber
- Department of Genetics, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
- Otto von Guericke University Magdeburg, Institute of Biology, 39106 Magdeburg, Germany
- Center for Behavioral Brain Sciences, 39106 Magdeburg, Germany
| | - Juliane Thoener
- Department of Genetics, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| |
Collapse
|
3
|
Grob R, Tritscher C, Grübel K, Stigloher C, Groh C, Fleischmann PN, Rössler W. Johnston's organ and its central projections in
Cataglyphis
desert ants. J Comp Neurol 2020; 529:2138-2155. [DOI: 10.1002/cne.25077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Robin Grob
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter University of Würzburg Würzburg Germany
| | - Clara Tritscher
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter University of Würzburg Würzburg Germany
| | - Kornelia Grübel
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter University of Würzburg Würzburg Germany
| | | | - Claudia Groh
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter University of Würzburg Würzburg Germany
| | - Pauline N. Fleischmann
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter University of Würzburg Würzburg Germany
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter University of Würzburg Würzburg Germany
| |
Collapse
|
4
|
Habenstein J, Amini E, Grübel K, el Jundi B, Rössler W. The brain of
Cataglyphis
ants: Neuronal organization and visual projections. J Comp Neurol 2020; 528:3479-3506. [DOI: 10.1002/cne.24934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Jens Habenstein
- Biocenter, Behavioral Physiology and Sociobiology (Zoology II) University of Würzburg Würzburg Germany
| | - Emad Amini
- Biocenter, Neurobiology and Genetics University of Würzburg Würzburg Germany
| | - Kornelia Grübel
- Biocenter, Behavioral Physiology and Sociobiology (Zoology II) University of Würzburg Würzburg Germany
| | - Basil el Jundi
- Biocenter, Behavioral Physiology and Sociobiology (Zoology II) University of Würzburg Würzburg Germany
| | - Wolfgang Rössler
- Biocenter, Behavioral Physiology and Sociobiology (Zoology II) University of Würzburg Würzburg Germany
| |
Collapse
|
5
|
Sant HH, Sane SP. The mechanosensory-motor apparatus of antennae in the Oleander hawk moth (Daphnis nerii, Lepidoptera). J Comp Neurol 2018; 526:2215-2230. [PMID: 29907958 DOI: 10.1002/cne.24477] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/05/2018] [Accepted: 04/23/2018] [Indexed: 11/06/2022]
Abstract
Insect antennae are sensory organs of great importance because they can sense diverse environmental stimuli. In addition to serving as primary olfactory organs of insects, antennae also sense a wide variety of mechanosensory stimuli, ranging from low-frequency airflow or gravity cues to high-frequency antennal vibrations due to sound, flight or touch. The basal segments of the antennae house multiple types of mechanosensory structures that prominently include the sensory hair plates, or Böhm's bristles, which measure the gross extent of antennal movement, and a ring of highly sensitive scolopidial neurons, collectively called the Johnston's organs, which record subtle flagellar vibrations. To fulfill their multifunctional mechanosensory role, the antennae of insects must actively move thereby enhancing their ability to sense various cues in the surrounding environment. This tight coupling between antennal mechanosensory function and antennal movements means that the underlying mechanosensory-motor apparatus constitutes a highly tuned feedback-controlled system. Our study aims to explore how the sensory and motor components of this system are configured to enable such functional versatility. We describe antennal mechanosensory neurons, their central projections in the brain relative to antennal motor neurons and the internal morphology of various antennal muscles that actuate the basal segments of the antenna. We studied these in the Oleander hawk moth (Daphnis nerii) using a combination of techniques such as neural dye fills, confocal microscopy, scanning electron microscopy and X-ray tomography. Our study thus provides a detailed anatomical picture of the antennal mechanosensory-motor apparatus, which in turn provides key insights into its multifunctional role.
Collapse
Affiliation(s)
- Harshada H Sant
- National Centre for Biological Sciences, TIFR, Bangalore, Karnataka, 560065, India.,Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sanjay P Sane
- National Centre for Biological Sciences, TIFR, Bangalore, Karnataka, 560065, India
| |
Collapse
|
6
|
Goldammer J, Dürr V. Proprioceptive input to a descending pathway conveying antennal postural information: Terminal organisation of antennal hair field afferents. ARTHROPOD STRUCTURE & DEVELOPMENT 2018; 47:465-481. [PMID: 30076912 DOI: 10.1016/j.asd.2018.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/27/2018] [Accepted: 07/08/2018] [Indexed: 06/08/2023]
Abstract
Like several other arthropod species, stick insects use their antennae for tactile exploration of the near-range environment and for spatial localisation of touched objects. More specifically, Carausius morosus continuously moves its antennae during locomotion and reliably responds to antennal contact events with directed movements of a front leg. Here we investigate the afferent projection patterns of antennal hair fields (aHF), proprioceptors known to encode antennal posture and movement, and to be involved in antennal movement control. We show that afferents of all seven aHF of C. morosus have terminal arborisations in the dorsal lobe (DL) of the cerebral (=supraoesophageal) ganglion, and descending collaterals that terminate in a characteristic part of the gnathal (=suboesophageal) ganglion. Despite differences of functional roles among aHF, terminal arborisation patterns show no topological arrangement according to segment specificity or direction of movement. In the DL, antennal motoneuron neurites show arborizations in proximity to aHF afferent terminals. Despite the morphological similarity of single mechanoreceptors of aHF and adjacent tactile hairs on the pedicel and flagellum, we find a clear separation of proprioceptive and exteroceptive mechanosensory neuropils in the cerebral ganglion. Moreover, we also find this functional separation in the gnathal ganglion.
Collapse
Affiliation(s)
- Jens Goldammer
- Animal Physiology and Neurobiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany.
| | - Volker Dürr
- Dept. Biological Cybernetics, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| |
Collapse
|
7
|
Mansur BE, Rodrigues JRV, Mota T. Bimodal Patterning Discrimination in Harnessed Honey Bees. Front Psychol 2018; 9:1529. [PMID: 30197616 PMCID: PMC6117423 DOI: 10.3389/fpsyg.2018.01529] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 08/02/2018] [Indexed: 11/13/2022] Open
Abstract
In natural environments, stimuli and events learned by animals usually occur in a combination of more than one sensory modality. An important problem in experimental psychology has been thus to understand how organisms learn about multimodal compounds and how they discriminate this compounds from their unimodal constituents. Here we tested the ability of honey bees to learn bimodal patterning discriminations in which a visual-olfactory compound (AB) should be differentiated from its visual (A) and olfactory (B) elements. We found that harnessed bees trained in classical conditioning of the proboscis extension reflex (PER) are able to solve bimodal positive and negative patterning (NP) tasks. In positive patterning (PP), bees learned to respond significantly more to a bimodal reinforced compound (AB+) than to non-reinforced presentations of single visual (A-) or olfactory (B-) elements. In NP, bees learned to suppress their responses to a non-reinforced compound (AB-) and increase their responses to reinforced presentations of visual (A+) or olfactory (B+) elements alone. We compared the effect of two different inter-trial intervals (ITI) in our conditioning approaches. Whereas an ITI of 8 min allowed solving both PP and NP, only PP could be solved with a shorter ITI of 3 min. In all successful cases of bimodal PP and NP, bees were still able to discriminate between reinforced and non-reinforced stimuli in memory tests performed one hour after conditioning. The analysis of individual performances in PP and NP revealed that different learning strategies emerged in distinct individuals. Both in PP and NP, high levels of generalization were found between elements and compound at the individual level, suggesting a similar difficulty for bees to solve these bimodal patterning tasks. We discuss our results in light of elemental and configural learning theories that may support the strategies adopted by honey bees to solve bimodal PP or NP discriminations.
Collapse
Affiliation(s)
- Breno E Mansur
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Jean R V Rodrigues
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Theo Mota
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
8
|
Lichtenstein L, Lichtenstein M, Spaethe J. Length of stimulus presentation and visual angle are critical for efficient visual PER conditioning in the restrained honey bee, Apis mellifera. J Exp Biol 2018; 221:221/14/jeb179622. [DOI: 10.1242/jeb.179622] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/21/2018] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Learning visual cues is an essential capability of bees for vital behaviors such as orientation in space and recognition of nest sites, food sources and mating partners. To study learning and memory in bees under controlled conditions, the proboscis extension response (PER) provides a well-established behavioral paradigm. While many studies have used the PER paradigm to test olfactory learning in bees because of its robustness and reproducibility, studies on PER conditioning of visual stimuli are rare. In this study, we designed a new setup to test the learning performance of restrained honey bees and the impact of several parameters: stimulus presentation length, stimulus size (i.e. visual angle) and ambient illumination. Intact honey bee workers could successfully discriminate between two monochromatic lights when the color stimulus was presented for 4, 7 and 10 s before a sugar reward was offered, reaching similar performance levels to those for olfactory conditioning. However, bees did not learn at shorter presentation durations. Similar to free-flying honey bees, harnessed bees were able to associate a visual stimulus with a reward at small visual angles (5 deg) but failed to utilize the chromatic information to discriminate the learned stimulus from a novel color. Finally, ambient light had no effect on acquisition performance. We discuss possible reasons for the distinct differences between olfactory and visual PER conditioning.
Collapse
Affiliation(s)
- Leonie Lichtenstein
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, 97074 Würzburg, Germany
| | - Matthias Lichtenstein
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, 97074 Würzburg, Germany
| | - Johannes Spaethe
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
9
|
Mustard JA, Alvarez V, Barocio S, Mathews J, Stoker A, Malik K. Nutritional value and taste play different roles in learning and memory in the honey bee (Apis mellifera). JOURNAL OF INSECT PHYSIOLOGY 2018; 107:250-256. [PMID: 29729260 DOI: 10.1016/j.jinsphys.2018.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/15/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Honey bees will learn to respond to an odor when their antennae are stimulated with sucrose, even if they are not fed during the conditioning phase. However, if they are not fed, the memory of this association is significantly reduced 24 h after conditioning. These results suggest that stimulation of proboscis with sucrose and/or the nutritional quality of the reward plays an important role in establishing a long lasting memory. Three sugars, xylose, sorbitol and mannitol, are used to investigate the relationship among learning, sensory perception and nutritional value. The proboscis extension reflex is used to show that honey bees cannot taste these sugars, whereas mortality data suggest that bees can metabolize all three sugars. Feeding with sorbitol or xylose during olfactory associative conditioning restores robust 24 h memories. However, when given a free choice between consuming sucrose alone or sucrose supplemented with these nutritional sugars, bees did not show a preference for food containing the higher nutritional content. Furthermore, bees did not ingest solutions containing only the tasteless sugar even when it was the only food source. Together, these results suggest that nutritional content and not just sensory information is important for establishing long term memories, but that bees may not be able to assess nutritional content when it is disassociated from taste.
Collapse
Affiliation(s)
- Julie A Mustard
- Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX 78520, United States.
| | - Valerie Alvarez
- Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX 78520, United States
| | - Sofy Barocio
- Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX 78520, United States
| | - Jamie Mathews
- Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX 78520, United States
| | - Alexander Stoker
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, United States
| | - Kashif Malik
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, United States
| |
Collapse
|
10
|
Schatton A, Mendoza E, Grube K, Scharff C. FoxP in bees: A comparative study on the developmental and adult expression pattern in three bee species considering isoforms and circuitry. J Comp Neurol 2018. [PMID: 29536541 DOI: 10.1002/cne.24430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mutations in the transcription factors FOXP1, FOXP2, and FOXP4 affect human cognition, including language. The FoxP gene locus is evolutionarily ancient and highly conserved in its DNA-binding domain. In Drosophila melanogaster FoxP has been implicated in courtship behavior, decision making, and specific types of motor-learning. Because honeybees (Apis mellifera, Am) excel at navigation and symbolic dance communication, they are a particularly suitable insect species to investigate a potential link between neural FoxP expression and cognition. We characterized two AmFoxP isoforms and mapped their expression in the brain during development and in adult foragers. Using a custom-made antiserum and in situ hybridization, we describe 11 AmFoxP expressing neuron populations. FoxP was expressed in equivalent patterns in two other representatives of Apidae; a closely related dwarf bee and a bumblebee species. Neural tracing revealed that the largest FoxP expressing neuron cluster in honeybees projects into a posterior tract that connects the optic lobe to the posterior lateral protocerebrum, predicting a function in visual processing. Our data provide an entry point for future experiments assessing the function of FoxP in eusocial Hymenoptera.
Collapse
Affiliation(s)
- Adriana Schatton
- Institute for Animal Behavior, Freie Universität Berlin, Berlin, 14195, Germany
| | - Ezequiel Mendoza
- Institute for Animal Behavior, Freie Universität Berlin, Berlin, 14195, Germany
| | - Kathrin Grube
- Institute for Animal Behavior, Freie Universität Berlin, Berlin, 14195, Germany
| | - Constance Scharff
- Institute for Animal Behavior, Freie Universität Berlin, Berlin, 14195, Germany
| |
Collapse
|
11
|
Ribi W, Zeil J. Three-dimensional visualization of ocellar interneurons of the orchid beeEuglossa imperialisusing micro X-ray computed tomography. J Comp Neurol 2017; 525:3581-3595. [PMID: 28608425 DOI: 10.1002/cne.24260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/07/2017] [Accepted: 05/09/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Willi Ribi
- Research School of Biology, The Australian National University; Canberra Australian Capital Territory Australia
| | - Jochen Zeil
- Research School of Biology, The Australian National University; Canberra Australian Capital Territory Australia
| |
Collapse
|
12
|
Avarguès-Weber A, Mota T. Advances and limitations of visual conditioning protocols in harnessed bees. ACTA ACUST UNITED AC 2016; 110:107-118. [PMID: 27998810 DOI: 10.1016/j.jphysparis.2016.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/06/2016] [Accepted: 12/14/2016] [Indexed: 12/12/2022]
Abstract
Bees are excellent invertebrate models for studying visual learning and memory mechanisms, because of their sophisticated visual system and impressive cognitive capacities associated with a relatively simple brain. Visual learning in free-flying bees has been traditionally studied using an operant conditioning paradigm. This well-established protocol, however, can hardly be combined with invasive procedures for studying the neurobiological basis of visual learning. Different efforts have been made to develop protocols in which harnessed honey bees could associate visual cues with reinforcement, though learning performances remain poorer than those obtained with free-flying animals. Especially in the last decade, the intention of improving visual learning performances of harnessed bees led many authors to adopt distinct visual conditioning protocols, altering parameters like harnessing method, nature and duration of visual stimulation, number of trials, inter-trial intervals, among others. As a result, the literature provides data hardly comparable and sometimes contradictory. In the present review, we provide an extensive analysis of the literature available on visual conditioning of harnessed bees, with special emphasis on the comparison of diverse conditioning parameters adopted by different authors. Together with this comparative overview, we discuss how these diverse conditioning parameters could modulate visual learning performances of harnessed bees.
Collapse
Affiliation(s)
- Aurore Avarguès-Weber
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Theo Mota
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas - ICB, Universidade Federal de Minas Gerais - UFMG, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
13
|
Zwaka H, Münch D, Manz G, Menzel R, Rybak J. The Circuitry of Olfactory Projection Neurons in the Brain of the Honeybee, Apis mellifera. Front Neuroanat 2016; 10:90. [PMID: 27746723 PMCID: PMC5040750 DOI: 10.3389/fnana.2016.00090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 09/12/2016] [Indexed: 11/13/2022] Open
Abstract
In the honeybee brain, two prominent tracts - the medial and the lateral antennal lobe tract - project from the primary olfactory center, the antennal lobes (ALs), to the central brain, the mushroom bodies (MBs), and the protocerebral lobe (PL). Intracellularly stained uniglomerular projection neurons were reconstructed, registered to the 3D honeybee standard brain atlas, and then used to derive the spatial properties and quantitative morphology of the neurons of both tracts. We evaluated putative synaptic contacts of projection neurons (PNs) using confocal microscopy. Analysis of the patterns of axon terminals revealed a domain-like innervation within the MB lip neuropil. PNs of the lateral tract arborized more sparsely within the lips and exhibited fewer synaptic boutons, while medial tract neurons occupied broader regions in the MB calyces and the PL. Our data show that uPNs from the medial and lateral tract innervate both the core and the cortex of the ipsilateral MB lip but differ in their innervation patterns in these regions. In the mushroombody neuropil collar we found evidence for ALT boutons suggesting the collar as a multi modal input site including olfactory input similar to lip and basal ring. In addition, our data support the conclusion drawn in previous studies that reciprocal synapses exist between PNs, octopaminergic-, and GABAergic cells in the MB calyces. For the first time, we found evidence for connections between both tracts within the AL.
Collapse
Affiliation(s)
- Hanna Zwaka
- Institute of Neurobiology, Free University BerlinBerlin, Germany; Abteilung Genetik von Lernen und Gedächtnis, Leibniz Institut für NeurobiologieMagdeburg, Germany
| | - Daniel Münch
- Neurobiology, University of Konstanz Konstanz, Germany
| | - Gisela Manz
- Institute of Neurobiology, Free University Berlin Berlin, Germany
| | - Randolf Menzel
- Institute of Neurobiology, Free University BerlinBerlin, Germany; Bernstein Center for Computational NeuroscienceBerlin, Germany
| | - Jürgen Rybak
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology Jena, Germany
| |
Collapse
|
14
|
Mertes M, Dittmar L, Egelhaaf M, Boeddeker N. Visual motion-sensitive neurons in the bumblebee brain convey information about landmarks during a navigational task. Front Behav Neurosci 2014; 8:335. [PMID: 25309374 PMCID: PMC4173878 DOI: 10.3389/fnbeh.2014.00335] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/07/2014] [Indexed: 11/13/2022] Open
Abstract
Bees use visual memories to find the spatial location of previously learnt food sites. Characteristic learning flights help acquiring these memories at newly discovered foraging locations where landmarks—salient objects in the vicinity of the goal location—can play an important role in guiding the animal's homing behavior. Although behavioral experiments have shown that bees can use a variety of visual cues to distinguish objects as landmarks, the question of how landmark features are encoded by the visual system is still open. Recently, it could be shown that motion cues are sufficient to allow bees localizing their goal using landmarks that can hardly be discriminated from the background texture. Here, we tested the hypothesis that motion sensitive neurons in the bee's visual pathway provide information about such landmarks during a learning flight and might, thus, play a role for goal localization. We tracked learning flights of free-flying bumblebees (Bombus terrestris) in an arena with distinct visual landmarks, reconstructed the visual input during these flights, and replayed ego-perspective movies to tethered bumblebees while recording the activity of direction-selective wide-field neurons in their optic lobe. By comparing neuronal responses during a typical learning flight and targeted modifications of landmark properties in this movie we demonstrate that these objects are indeed represented in the bee's visual motion pathway. We find that object-induced responses vary little with object texture, which is in agreement with behavioral evidence. These neurons thus convey information about landmark properties that are useful for view-based homing.
Collapse
Affiliation(s)
- Marcel Mertes
- Department of Neurobiology, Center of Excellence 'Cognitive Interaction Technology' (CITEC), Bielefeld University Bielefeld, Germany
| | - Laura Dittmar
- Department of Neurobiology, Center of Excellence 'Cognitive Interaction Technology' (CITEC), Bielefeld University Bielefeld, Germany
| | - Martin Egelhaaf
- Department of Neurobiology, Center of Excellence 'Cognitive Interaction Technology' (CITEC), Bielefeld University Bielefeld, Germany
| | - Norbert Boeddeker
- Department of Neurobiology, Center of Excellence 'Cognitive Interaction Technology' (CITEC), Bielefeld University Bielefeld, Germany
| |
Collapse
|
15
|
Hempel de Ibarra N, Vorobyev M, Menzel R. Mechanisms, functions and ecology of colour vision in the honeybee. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:411-33. [PMID: 24828676 PMCID: PMC4035557 DOI: 10.1007/s00359-014-0915-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/15/2014] [Accepted: 04/17/2014] [Indexed: 11/06/2022]
Abstract
Research in the honeybee has laid the foundations for our understanding of insect colour vision. The trichromatic colour vision of honeybees shares fundamental properties with primate and human colour perception, such as colour constancy, colour opponency, segregation of colour and brightness coding. Laborious efforts to reconstruct the colour vision pathway in the honeybee have provided detailed descriptions of neural connectivity and the properties of photoreceptors and interneurons in the optic lobes of the bee brain. The modelling of colour perception advanced with the establishment of colour discrimination models that were based on experimental data, the Colour-Opponent Coding and Receptor Noise-Limited models, which are important tools for the quantitative assessment of bee colour vision and colour-guided behaviours. Major insights into the visual ecology of bees have been gained combining behavioural experiments and quantitative modelling, and asking how bee vision has influenced the evolution of flower colours and patterns. Recently research has focussed on the discrimination and categorisation of coloured patterns, colourful scenes and various other groupings of coloured stimuli, highlighting the bees' behavioural flexibility. The identification of perceptual mechanisms remains of fundamental importance for the interpretation of their learning strategies and performance in diverse experimental tasks.
Collapse
Affiliation(s)
- N Hempel de Ibarra
- Department of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK,
| | | | | |
Collapse
|
16
|
Kropf J, Kelber C, Bieringer K, Rössler W. Olfactory subsystems in the honeybee: sensory supply and sex specificity. Cell Tissue Res 2014; 357:583-95. [PMID: 24817103 PMCID: PMC4148592 DOI: 10.1007/s00441-014-1892-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/08/2014] [Indexed: 12/21/2022]
Abstract
The antennae of honeybee (Apis mellifera) workers and drones differ in various aspects. One striking difference is the presence of Sensilla basiconica in (female) workers and their absence in (male) drones. We investigate the axonal projection patterns of olfactory receptor neurons (ORNs) housed in S. basiconica in honeybee workers by using selective anterograde labeling with fluorescent tracers and confocal-microscopy analysis of axonal projections in antennal lobe glomeruli. Axons of S. basiconica-associated ORNs preferentially projected into a specific glomerular cluster in the antennal lobe, namely the sensory input-tract three (T3) cluster. T3-associated glomeruli had previously been shown to be innervated by uniglomerular projection (output) neurons of the medial antennal lobe tract (mALT). As the number of T3 glomeruli is reduced in drones, we wished to determine whether this was associated with the reduction of glomeruli innervated by medial-tract projection neurons. We retrogradely traced mALT projection neurons in drones and counted the innervated glomeruli. The number of mALT-associated glomeruli was strongly reduced in drones compared with workers. The preferential projections of S. basiconica-associated ORNs in T3 glomeruli together with the reduction of mALT-associated glomeruli support the presence of a female (worker)-specific olfactory subsystem that is partly innervated by ORNs from S. basiconica and is associated with the T3 cluster of glomeruli and mALT projection neurons. We propose that this olfactory subsystem supports parallel olfactory processing related to worker-specific olfactory tasks such as the coding of colony odors, colony pheromones and/or odorants associated with foraging on floral resources.
Collapse
Affiliation(s)
- Jan Kropf
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany,
| | | | | | | |
Collapse
|
17
|
Rossi Stacconi MV, Hansson BS, Rybak J, Romani R. Comparative neuroanatomy of the antennal lobes of 2 homopteran species. Chem Senses 2014; 39:283-94. [PMID: 24443423 DOI: 10.1093/chemse/bjt114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We compared the morphology of the primary olfactory center, the antennal lobe (AL), in 2 homopteran insects, Hyalesthes obsoletus Signoret (Homoptera: Cixiidae) and Scaphoideus titanus Ball (Homoptera: Cicadomorpha). The comparison between the ALs of the 2 species is particularly interesting considering that, although both use volatile cues to locate their host plants, their feeding behavior differs considerably: specifically, H. obsoletus is a highly polyphagous species, whereas S. titanus is strictly monophagous (on grapevine). Our investigation of the AL structure using immunocytochemical staining and antennal backfills did not reveal any sexual dimorphism in either the size of the ALs or in the size of individual glomeruli for either species. Instead, the AL of H. obsoletus displayed numerous and well-delineated glomeruli (about 130 in both sexes) arranged in a multilayered structure, whereas the smaller AL of S. titanus contained fewer than 15 glomerular-like structures. This difference is likely to reflect the comparatively reduced olfactory abilities in S. titanus, probably as a consequence of the reduced number of volatiles coming from the single host plant. Instead, in H. obsoletus, the ability to distinguish among several host plants may require a more complex olfactory neuronal network.
Collapse
|
18
|
Ai H, Hagio H. Morphological analysis of the primary center receiving spatial information transferred by the waggle dance of honeybees. J Comp Neurol 2014; 521:2570-84. [PMID: 23297020 DOI: 10.1002/cne.23299] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 12/08/2012] [Accepted: 12/27/2012] [Indexed: 11/07/2022]
Abstract
The waggle dancers of honeybees encodes roughly the distance and direction to the food source as the duration of the waggle phase and the body angle during the waggle phase. It is believed that hive-mates detect airborne vibrations produced during the waggle phase to acquire distance information and simultaneously detect the body axis during the waggle phase to acquire direction information. It has been further proposed that the orientation of the body axis on the vertical comb is detected by neck hairs (NHs) on the prosternal organ. The afferents of the NHs project into the prothoracic and mesothoracic ganglia and the dorsal subesophageal ganglion (dSEG). This study demonstrates somatotopic organization within the dSEG of the central projections of the mechanosensory neurons of the NHs. The terminals of the NH afferents in dSEG are in close apposition to those of Johnston's organ (JO) afferents. The sensory axons of both terminate in a region posterior to the crossing of the ventral intermediate tract (VIT) and the maxillary dorsal commissures I and III (MxDCI, III) in the subesophageal ganglion. These features of the terminal areas of the NH and JO afferents are common to the worker, drone, and queen castes of honeybees. Analysis of the spatial relationship between the NH neurons and the morphologically and physiologically characterized vibration-sensitive interneurons DL-Int-1 and DL-Int-2 demonstrated that several branches of DL-Int-1 are in close proximity to the central projection of the mechanosensory neurons of the NHs in the dSEG.
Collapse
Affiliation(s)
- Hiroyuki Ai
- Division of Biology, Department of Earth System Science, Fukuoka University, Fukuoka 814-0180, Japan.
| | | |
Collapse
|
19
|
Krishnan A, Sane SP. Visual feedback influences antennal positioning in flying hawk moths. ACTA ACUST UNITED AC 2013; 217:908-17. [PMID: 24265427 DOI: 10.1242/jeb.094276] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Insect antennae serve a variety of sensory functions including tactile sensing, olfaction and flight control. For all of these functions, the precise positioning of the antenna is essential to ensure the proper acquisition of sensory feedback. Although antennal movements in diverse insects may be elicited or influenced by multimodal sensory stimuli, the relative effects of these cues and their integration in the context of antennal positioning responses are not well understood. In previous studies, we have shown that fields of Böhm's bristles located at the base of the antennae provide crucial mechanosensory input for antennal positioning in flying hawk moths. Here, we present electrophysiological and behavioral evidence to show that, in addition to the Böhm's bristles, antennal muscles of hawk moths also respond to bilateral visual input. Moreover, in contrast to the mechanosensory-motor circuit, which is entirely contained within the ipsilateral side, visual feedback influences antennal positioning on both contralateral and ipsilateral sides. Electromyograms recorded from antennal muscles show that the latency of muscle responses to visual stimulation ranged from 35 to 60 ms, considerably slower than their responses to mechanosensory stimuli (<10 ms). Additionally, the visual inputs received by antennal muscles are both motion-sensitive and direction-selective. We characterized the influence of visual feedback on antennal positioning by presenting open-loop translational and rotational visual stimuli to tethered flying moths. During rotational stimuli, we observed that the antenna contralateral to the direction of the turn moved forward through larger angles than the ipsilateral antenna. These observations suggest that whereas input from the Böhm's bristles mediates rapid corrections of antennal position, visual feedback may be involved in slower, bilaterally coordinated movements of the antenna during visually guided flight maneuvers. Thus, visual feedback can modulate the set point at which the antenna is held during flight in hawk moths.
Collapse
Affiliation(s)
- Anand Krishnan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore 560065, India
| | | |
Collapse
|
20
|
Cousin M, Silva-Zacarin E, Kretzschmar A, El Maataoui M, Brunet JL, Belzunces LP. Size changes in honey bee larvae oenocytes induced by exposure to Paraquat at very low concentrations. PLoS One 2013; 8:e65693. [PMID: 23724149 PMCID: PMC3665783 DOI: 10.1371/journal.pone.0065693] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 05/01/2013] [Indexed: 12/04/2022] Open
Abstract
The effects of the herbicide Paraquat were investigated in honey bee larvae with attention focused on oenocytes. Honey bee larvae were exposed to Paraquat at different concentrations in the food: 0, 0.001, 0.01, 0.1 and 1 µg/kg. In controls, between 24 h and 48 h, oenocytes grew from 630.1 to 1643.8 µm(2) while nuclei changed in size from 124.9 to 245.6 µm(2). At 24 h, Paraquat induced a slight decrease in the size of oenocytes and nuclei. N-acetylcysteine (NAC), an antioxidant substance, slightly lowered the effects of Paraquat. At 48 h, Paraquat elicited a strong concentration-dependent decrease in the size of oenocytes, even at the lowest concentration. NAC reversed the effect of Paraquat at a concentration of ≥0.01 µg/kg. This reversion suggested different modes of action of Paraquat, with an oxidant action prevalent at concentrations ≥0.01 µg/kg. This study is the first which reports an effect of a pesticide at the very low concentration of 1 ng/kg, a concentration below the detection limits of the most efficient analytic methods. It shows that chemicals, including pesticides, are likely to have a potential impact at such exposure levels. We also suggest that Paraquat could be used as a suitable tool for investigating the functions of oenocytes.
Collapse
Affiliation(s)
- Marianne Cousin
- INRA, UR 406 Abeilles & Environnement, Laboratoire de Toxicologie Environnementale, Avignon, France
| | - Elaine Silva-Zacarin
- Universidade Federal de São Carlos, Laboratory of Structural and Functional Biology, Sorocaba, São Paulo State, Brazil
| | | | | | - Jean-Luc Brunet
- INRA, UR 406 Abeilles & Environnement, Laboratoire de Toxicologie Environnementale, Avignon, France
| | - Luc P. Belzunces
- INRA, UR 406 Abeilles & Environnement, Laboratoire de Toxicologie Environnementale, Avignon, France
| |
Collapse
|
21
|
Gil M. Reward expectations in honeybees. Commun Integr Biol 2011; 3:95-100. [PMID: 20585498 DOI: 10.4161/cib.3.2.10621] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 11/12/2009] [Indexed: 11/19/2022] Open
Abstract
The study of expectations of reward helps to understand rules controlling goal-directed behavior as well as decision making and planning. I shall review a series of recent studies focusing on how the food gathering behavior of honeybees depends upon reward expectations. These studies document that free-flying honeybees develop long-term expectations of reward and use them to regulate their investment of energy/time during foraging. Also, they present a laboratory procedure suitable for analysis of neural substrates of reward expectations in the honeybee brain. I discuss these findings in the context of individual and collective foraging, on the one hand, and neurobiology of learning and memory of reward.
Collapse
Affiliation(s)
- Mariana Gil
- Free University of Berlin; Department of Biology/Chemistry/Pharmacy; Institute of Biology/Neurobiology; Berlin, Germany
| |
Collapse
|
22
|
Duistermars BJ, Frye MA. Multisensory integration for odor tracking by flying Drosophila: Behavior, circuits and speculation. Commun Integr Biol 2011; 3:60-3. [PMID: 20539786 DOI: 10.4161/cib.3.1.10076] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 09/12/2009] [Indexed: 11/19/2022] Open
Abstract
Many see fruit flies as an annoyance, invading our homes with a nagging persistence and efficiency. Yet from a scientific perspective, these tiny animals are a wonder of multisensory integration, capable of tracking fragmented odor plumes amidst turbulent winds and constantly varying visual conditions. The peripheral olfactory, mechanosensory, and visual systems of the fruit fly, Drosophila melanogaster, have been studied in great detail;1-4 however, the mechanisms by which fly brains integrate information from multiple sensory modalities to facilitate robust odor tracking remain elusive. Our studies on olfactory orientation by flying flies reveal that these animals do not simply follow their "nose"; rather, fruit flies require mechanosensory and visual input to track odors in flight.5,6 Collectively, these results shed light on the neural circuits involved in odor localization by fruit flies in the wild and illuminate the elegant complexity underlying a behavior to which the annoyed and amazed are familiar.
Collapse
|
23
|
Mota T, Giurfa M, Sandoz JC. Color modulates olfactory learning in honeybees by an occasion-setting mechanism. Learn Mem 2011; 18:144-55. [PMID: 21330377 DOI: 10.1101/lm.2073511] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A sophisticated form of nonelemental learning is provided by occasion setting. In this paradigm, animals learn to disambiguate an uncertain conditioned stimulus using alternative stimuli that do not enter into direct association with the unconditioned stimulus. For instance, animals may learn to discriminate odor rewarded from odor nonrewarded trials if these two situations are indicated by different colors that do not themselves become associated with the reward. Despite a growing interest in nonelemental learning in insects, no study has so far attempted to study occasion setting in restrained honeybees, although this would allow direct access to the neural basis of nonelemental learning. Here we asked whether colors can modulate olfactory conditioning of the proboscis extension reflex (PER) via an occasion-setting mechanism. We show that intact, harnessed bees are not capable of learning a direct association between color and sucrose. Despite this incapacity, bees solved an occasion-setting discrimination in which colors set the occasion for appropriate responding to an odor that was rewarded or nonrewarded depending on the color. We therefore provide the first controlled demonstration of bimodal (color-odor) occasion setting in harnessed honeybees, which opens the door for studying the neural basis of such bimodal, nonelemental discriminations in insects.
Collapse
Affiliation(s)
- Theo Mota
- Université de Toulouse, UPS, Centre de Recherches sur la Cognition Animale, Toulouse Cedex 9, France
| | | | | |
Collapse
|
24
|
Ai H. Vibration-processing interneurons in the honeybee brain. Front Syst Neurosci 2010; 3:19. [PMID: 20130757 PMCID: PMC2805430 DOI: 10.3389/neuro.06.019.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 12/14/2009] [Indexed: 11/21/2022] Open
Abstract
The afferents of the Johnston's organ (JO) in the honeybee brain send their axons to three distinct areas, the dorsal lobe, the dorsal subesophageal ganglion (DL-dSEG), and the posterior protocerebral lobe (PPL), suggesting that vibratory signals detected by the JO are processed differentially in these primary sensory centers. The morphological and physiological characteristics of interneurons arborizing in these areas were studied by intracellular recording and staining. DL-Int-1 and DL-Int-2 have dense arborizations in the DL-dSEG and respond to vibratory stimulation applied to the JO in either tonic excitatory, on-off-phasic excitatory, or tonic inhibitory patterns. PPL-D-1 has dense arborizations in the PPL, sends axons into the ventral nerve cord (VNC), and responds to vibratory stimulation and olfactory stimulation simultaneously applied to the antennae in long-lasting excitatory pattern. These results show that there are at least two parallel pathways for vibration processing through the DL-dSEG and the PPL. In this study, Honeybee Standard Brain was used as the common reference, and the morphology of two types of interneurons (DL-Int-1 and DL-Int-2) and JO afferents was merged into the standard brain based on the boundary of several neuropiles, greatly supporting the understanding of the spatial relationship between these identified neurons and JO afferents. The visualization of the region where the JO afferents are closely appositioned to these DL interneurons demonstrated the difference in putative synaptic regions between the JO afferents and these DL interneurons (DL-Int-1 and DL-Int-2) in the DL. The neural circuits related to the vibration-processing interneurons are discussed.
Collapse
Affiliation(s)
- Hiroyuki Ai
- Division of Biology, Department of Earth System Science, Fukuoka University Fukuoka, Japan
| |
Collapse
|
25
|
Abstract
Visual scenes comprise enormous amounts of information from which nervous systems extract behaviorally relevant cues. In most model systems, little is known about the transformation of visual information as it occurs along visual pathways. We examined how visual information is transformed physiologically as it is communicated from the eye to higher-order brain centers using bumblebees, which are known for their visual capabilities. We recorded intracellularly in vivo from 30 neurons in the central bumblebee brain (the lateral protocerebrum) and compared these neurons to 132 neurons from more distal areas along the visual pathway, namely the medulla and the lobula. In these three brain regions (medulla, lobula, and central brain), we examined correlations between the neurons' branching patterns and their responses primarily to color, but also to motion stimuli. Visual neurons projecting to the anterior central brain were generally color sensitive, while neurons projecting to the posterior central brain were predominantly motion sensitive. The temporal response properties differed significantly between these areas, with an increase in spike time precision across trials and a decrease in average reliable spiking as visual information processing progressed from the periphery to the central brain. These data suggest that neurons along the visual pathway to the central brain not only are segregated with regard to the physical features of the stimuli (e.g., color and motion), but also differ in the way they encode stimuli, possibly to allow for efficient parallel processing to occur.
Collapse
|
26
|
Ai H, Rybak J, Menzel R, Itoh T. Response characteristics of vibration-sensitive interneurons related to Johnston's organ in the honeybee, Apis mellifera. J Comp Neurol 2009; 515:145-60. [PMID: 19412925 DOI: 10.1002/cne.22042] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Honeybees detect airborne vibration by means of Johnston's organ (JO), located in the pedicel of each antenna. In this study we identified two types of vibration-sensitive interneurons with arborizations in the primary sensory area of the JO, namely, the dorsal lobe-interneuron 1 (DL-Int-1) and dorsal lobe-interneuron 2 (DL-Int-2) using intracellular recordings combined with intracellular staining. For visualizing overlapping areas between the JO sensory terminals and the branches of these identified interneurons, the three-dimensional images of the individual neurons were registered into the standard atlas of the honeybee brain (Brandt et al. [2005] J Comp Neurol 492:1-19). Both DL-Int-1 and DL-Int-2 overlapped with the central terminal area of receptor neurons of the JO in the DL. For DL-Int-1 an on-off phasic excitation was elicited by vibrational stimuli applied to the JO when the spontaneous spike frequency was low, whereas tonic inhibition was induced when it was high. Moreover, current injection into a DL-Int-1 led to changes of the response pattern from on-off phasic excitation to tonic inhibition, in response to the vibratory stimulation. Although the vibration usually induced on-off phasic excitation in DL-Int-1, vibration applied immediately after odor stimulation induced tonic inhibition in it. DL-Int-2 responded to vibration stimuli applied to the JO by a tonic burst and were most sensitive to 265 Hz vibration, which is coincident with the strongest frequency of airborne vibrations arising during the waggle dance. These results suggest that DL-Int-1 and DL-Int-2 are related to coding of the duration of the vibration as sensed by the JO.
Collapse
Affiliation(s)
- Hiroyuki Ai
- Division of Biology, Department of Earth System Science, Fukuoka University, Fukuoka 814-0180, Japan.
| | | | | | | |
Collapse
|
27
|
|
28
|
Barrozo RB, Couton L, Lazzari CR, Insausti TC, Minoli SA, Fresquet N, Rospars JP, Anton S. Antennal pathways in the central nervous system of a blood-sucking bug, Rhodnius prolixus. ARTHROPOD STRUCTURE & DEVELOPMENT 2009; 38:101-110. [PMID: 18809510 DOI: 10.1016/j.asd.2008.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 06/30/2008] [Accepted: 08/18/2008] [Indexed: 05/26/2023]
Abstract
The haematophagous bug Rhodnius prolixus has been a model system in insect physiology for a long time. Recently, several studies have been devoted to its sensory systems, including olfaction. However, few data are available on the basic organisation of the nervous system in this species. By means of neuronal backfills, histology, confocal microscopy and three-dimensional reconstruction methods, we have characterized the projection patterns of antennal sensory neurons within the central nervous system of this disease-vector insect. We established the first partial three-dimensional map of the antennal lobe (AL) of a hemipteran insect. The ALs of this species are relatively diffuse structures, which nevertheless show a glomerular organisation. Based on computer reconstruction of the AL, 22 glomeruli with a radius of 8-25 microm could be identified. No obvious sexual dimorphism of the glomerular architecture was observed. Antennal afferents project not only into the deutocerebrum, but also some fibres descend through the ventral nerve cord to ganglia belonging to the abdominal segments.
Collapse
Affiliation(s)
- Romina B Barrozo
- Institut de Recherche sur la Biologie de l'Insecte, Faculté des Sciences et Techniques, Université François Rabelais, Avenue Monge, Parc Grandmont, 37200 Tours, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ai H, Nishino H, Itoh T. Topographic organization of sensory afferents of Johnston's organ in the honeybee brain. J Comp Neurol 2007; 502:1030-46. [PMID: 17444491 DOI: 10.1002/cne.21341] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Johnston's organ (JO) in insects is a multicellular mechanosensory organ stimulated by movement of the distal part of the antenna. In honeybees JO is thought to be a primary sensor detecting air-particle movements caused by the waggling dance of conspecifics. In this study projection patterns of JO afferents within the brain were investigated. About 720 somata, distributed around the periphery of the second segment of the antenna (pedicel), were divided into three subgroups based on their soma location: an anterior group, a ventral group, and a dorsal group. These groups sent axons to different branches (N2 to N4) diverged from the antennal nerve. Dye injection into individual nerve branches revealed that all three groups of afferents, having fine collaterals in the dorsal lobe, sent axons broadly through tracts T6I, T6II, and T6III to terminate ipsilaterally in the medial posterior protocerebral lobe, the dorsal region of the subesophageal ganglion, and the central posterior protocerebral lobe, respectively. Within these termination fields only axon terminals running in T6I were characterized by thick processes with large varicosities. Differential staining using fluorescent dyes revealed that the axon terminals of the three groups were spatially segregated, especially in T6I, showing some degree of somatotopy. This spatial segregation was not observed in axon terminals running in other tracts. Our results show that projection patterns of JO afferents in the honeybee brain fundamentally resemble those in the dipteran brain. The possible roles of extensive termination fields of JO afferents in parallel processings of mechanosensory signals are discussed.
Collapse
Affiliation(s)
- Hiroyuki Ai
- Division of Biology, Department of Earth System Science, Fukuoka University, Fukuoka 814-0180, Japan.
| | | | | |
Collapse
|
30
|
Brockmann A, Robinson GE. Central projections of sensory systems involved in honey bee dance language communication. BRAIN, BEHAVIOR AND EVOLUTION 2007; 70:125-36. [PMID: 17519525 DOI: 10.1159/000102974] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 11/27/2006] [Indexed: 11/19/2022]
Abstract
Honey bee dance language is a unique and complex form of animal communication used to inform nest mates in the colony about the specific location of food sources or new nest sites. Five different sensory systems have been implicated in acquiring and communicating the information necessary for dance language communication. We present results from neuronal tracer studies identifying the central projections from four of the five. Sensory neurons of the dorsal rim area of the compound eyes, involved in acquiring sun-compass based information, project to the dorsal-most part of the medulla. Sensory neurons of the neck hair plates, required to transpose sun-compass based information to gravity-based information in the dark hive, project to the dorsal labial neuromere of the subesophageal ganglion. Sensory neurons from the antennal joint hair sensilla and the Johnston's organ, which perceive information on dance direction and distance from mechanostimuli generated by abdomen waggling and wing vibration, project to the deutocerebral dorsal lobe and the subesophageal ganglion, and the posterior protocerebrum, respectively. We found no 'dance-specific' projections relative to those previously described for drone and queen honey bees and other insect species that do not exhibit dance communication. We suggest that the evolution of dance language communication was likely based on the modification of central neural pathways associated with path integration, the capability to calculate distance, and directional information during flight.
Collapse
Affiliation(s)
- Axel Brockmann
- Department of Entomology, and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | |
Collapse
|
31
|
Haupt SS. Central gustatory projections and side-specificity of operant antennal muscle conditioning in the honeybee. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2007; 193:523-35. [PMID: 17265152 DOI: 10.1007/s00359-007-0208-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 12/20/2006] [Accepted: 12/31/2006] [Indexed: 11/29/2022]
Abstract
Gustatory stimuli to the antennae, especially sucrose, are important for bees and are employed in learning paradigms as unconditioned stimulus. The present study identified primary antennal gustatory projections in the bee brain and determined the impact of stimulation of the antennal tip on antennal muscle activity and its plasticity. Central projections of antennal taste hairs contained axons of two morphologies projecting into the dorsal lobe, which is also the antennal motor centre. Putative mechanosensory axons arborised in a dorso-lateral area. Putative gustatory axons projected to a ventro-medial area. Bees scan gustatory and mechanical stimuli with their antennae using variable strategies but sensory input to the motor system has not been investigated in detail. Mechanical, gustatory, and electrical stimulation of the ipsilateral antennal tip were found to evoke short-latency responses in an antennal muscle, the fast flagellum flexor. Contralateral gustatory stimulation induced smaller responses with longer latency. The activity of the fast flagellum flexor was conditioned operantly by pairing high muscle activity with ipsilateral antennal sucrose stimulation. A proboscis reward was unnecessary for learning. With contralateral antennal sucrose stimulation, conditioning was unsuccessful. Thus, muscle activity induced by gustatory stimulation was important for learning success and conditioning was side-specific.
Collapse
Affiliation(s)
- S Shuichi Haupt
- Neurobiologie, Institut für Okologie, TU Berlin FR1-1, Franklinstr. 28/9, 10587, Berlin, Germany.
| |
Collapse
|
32
|
Ignell R, Dekker T, Ghaninia M, Hansson BS. Neuronal architecture of the mosquito deutocerebrum. J Comp Neurol 2005; 493:207-40. [PMID: 16255032 DOI: 10.1002/cne.20800] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mosquito behavior is heavily dependent on olfactory and mechanosensory cues, which are detected by receptor neurons on the antenna and on the palps. Recent progress in mosquito sensory genomics highlights the need for an up-to-date understanding of the neural architecture of the mosquito brain. Here we present a detailed description of the neural structure of the primary target of the majority of these neurons, the deutocerebrum, in the African malaria (Anopheles gambiae) and yellow fever (Aedes aegypti) mosquitoes. Special focus is made on the olfactory system, the antennal lobe (AL), where we present high-resolution three-dimensional models of the ALs of male and female Ae. aegypti. These models reveal a sexual dimorphism in the number of glomeruli, 49 and 50 glomeruli in male and female mosquitoes, respectively, and in the size of several of the identified glomeruli. The fine structure of receptor neuron terminations in the AL and the rest of the deutocerebrum is described, as are the arborizations of intrinsic deutocerebral neurons and neurons providing output to higher brain areas. In the AL a specific and very large center receiving input from the mechanosensory Johnston's organ is revealed as a multilobed structure receiving peripheral input according to a somatotopic pattern. Within the antennal nerve a specific neuropil containing early, bouton-like ramifications of receptor neurons is described. Within the glomerular array of the AL, neurons providing a possible feedback circuit to antennal receptor neurons are shown. With these results we provide a new resolution in mosquito deutocerebral architecture.
Collapse
Affiliation(s)
- Rickard Ignell
- Division of Chemical Ecology, Department of Crop Science, Swedish University of Agricultural Sciences, SE-23053 Alnarp, Sweden.
| | | | | | | |
Collapse
|
33
|
Giurfa M, Malun D. Associative mechanosensory conditioning of the proboscis extension reflex in honeybees. Learn Mem 2004; 11:294-302. [PMID: 15169859 PMCID: PMC419732 DOI: 10.1101/lm.63604] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The present work introduces a form of associative mechanosensory conditioning of the proboscis extension reflex (PER) in honeybees. In our paradigm, harnessed honeybees learn the elemental association between mechanosensory, antennal stimulation and a reward of sucrose solution delivered to the proboscis. Thereafter, bees extend their proboscis to the antennal mechanosensory stimulation alone. We show that bees can learn such an association in a side-specific manner, that is, they learn the association on the antennal side that was rewarded and not on the side that was not rewarded. Responding produced by the paired training does likely contain a substantial Pavlovian component. Responding is only elicited by mechanosensory stimulation and not by spurious cues such as olfactory, visual, and contextual ones. The interstimulus interval (ISI) affects one-trial mechanosensory learning: a bell-shaped curve with a maximum of responding approximately 4 sec ISI was obtained. Mechanosensory memory is still operative 24 h after conditioning. Apart from absolute conditioning in which mechanosensory stimulation of one antenna is paired with sucrose, differential, side-specific, mechanosensory conditioning using two mechanosensory stimulations, one rewarded and the other not, is also possible. This paradigm constitutes, therefore, a new standard procedure for further learning studies in honeybees.
Collapse
Affiliation(s)
- Martin Giurfa
- Centre de Recherches sur la Cognition Animale, CNRS-Université Paul-Sabatier, 31062 Toulouse cedex 4, France.
| | | |
Collapse
|
34
|
Thany SH, Lenaers G, Crozatier M, Armengaud C, Gauthier M. Identification and localization of the nicotinic acetylcholine receptor alpha3 mRNA in the brain of the honeybee, Apis mellifera. INSECT MOLECULAR BIOLOGY 2003; 12:255-262. [PMID: 12752659 DOI: 10.1046/j.1365-2583.2003.00409.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The nicotinic acetylcholine receptors are ligand-gated ion channels responsible for rapid neurotransmission and are target sites for pesticides in insects. In the honeybee Apis mellifera, pharmacological and electrophysiological studies have shown that different nicotinic acetylcholine receptor subtypes may exist in the brain. Here, we have identified a honeybee cDNA that encodes a 537 amino acid protein with features typical of nicotinic acetylcholine receptor alpha subunit, and sequence homology to human alpha3. In situ hybridization on cryosections shows that the Apisalpha3 mRNA is differently expressed in larvae and adult. In larvae, Apisalpha3 mRNA expression is restricted to the suboesophageal ganglia. In adult, it is further expressed in the optic lobes, the dorsal lobes, the antennal lobes and the calyces of mushroom bodies. Together our results suggest that Apisalpha3 shows a controlled expression pattern during development.
Collapse
Affiliation(s)
- S H Thany
- Laboratoire de Neurobiologie de l'Insecte E.A. 3037, Toulouse France.
| | | | | | | | | |
Collapse
|
35
|
Okada J, Toh Y. Peripheral representation of antennal orientation by the scapal hair plate of the cockroach Periplaneta americana. J Exp Biol 2001; 204:4301-9. [PMID: 11815654 DOI: 10.1242/jeb.204.24.4301] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Arthropods have hair plates that are clusters of mechanosensitive hairs, usually positioned close to joints, which function as proprioceptors for joint movement. We investigated how angular movements of the antenna of the cockroach (Periplaneta americana) are coded by antennal hair plates. A particular hair plate on the basal segment of the antenna, the scapal hair plate, can be divided into three subgroups: dorsal, lateral and medial. The dorsal group is adapted to encode the vertical component of antennal direction, while the lateral and medial groups are specialized for encoding the horizontal component. Of the three subgroups of hair sensilla, those of the lateral scapal hair plate may provide the most reliable information about the horizontal position of the antenna, irrespective of its vertical position. Extracellular recordings from representative sensilla of each scapal hair plate subgroup revealed the form of the single-unit impulses in response to hair deflection. The mechanoreceptors were characterized as typically phasic-tonic. The tonic discharge was sustained indefinitely (>20 min) as long as the hair was kept deflected. The spike frequency in the transient (dynamic) phase was both velocity- and displacement-dependent, while that in the sustained (steady) phase was displacement-dependent.
Collapse
Affiliation(s)
- J Okada
- Department of Biology, Graduate School of Sciences, Kyushu University, Fukuoka 812-8581, Japan.
| | | |
Collapse
|
36
|
Abel R, Rybak J, Menzel R. Structure and response patterns of olfactory interneurons in the honeybee, Apis mellifera. J Comp Neurol 2001; 437:363-83. [PMID: 11494262 DOI: 10.1002/cne.1289] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To analyze morphologic and physiological properties of olfactory interneurons in the honeybee, Apis mellifera, antennal lobe (AL) neurons were intracellularly recorded and subsequently labeled with Neurobiotin. Additional focal injections were carried out with cobalt hexamine chloride and dextran fluorescent markers. Olfactory interneurons (projection neurons, PNs) project by means of five tracts, the lateral, the median, and three mediolateral antennocerebral tracts (l-, m-, and ml-ACT, respectively) to the mushroom bodies (MBs) and the protocerebral lobe (PL) of the ipsilateral protocerebrum. Uniglomerular PNs of the m- and l-ACT receiving input from a single glomerulus of the AL also arborize in different regions of the AL. The vast majority of l-ACT innervate the T1 region, whereas m-ACT neurons arborize exclusively in the T2, T3, and T4 regions (T1-4 : AL projection area of sensory cells from the antennae). In the calyces of the MB, uniglomerular PNs form varicosities in the basal ring and the lip region. Individual neurons of both types exhibit unequal innervation within and between the two calyces. In addition, m-ACT fibers ramify more densely within the lip neuropil and show a higher incidence of spine-like processes than l-ACTs. In the PL, l-ACTs arborize exclusively within the lateral horn, whereas some m-ACT neurons innervate a broader region. Multiglomerular neurons of the ml-ACT leave the AL by means of three subtracts (ml-ACT 1-3). Two different types can be distinguished according to their protocerebral target areas: ml-ACTs projecting to the lateral PL (LPL) and to the neuropil around the alpha-lobe (tracts 2 and 3) and neurons projecting only to the LPL (tract 1). Intracellular recordings indicate that both l- and m-ACT neurons respond to general odors but with different response properties, indicating that odor information is processed in parallel pathways with different functional characteristics. Just like m-ACT neurons, ml-ACT neurons respond to odors with complex activity patterns. Bilateral interneurons, originating in the suboesophageal ganglion, connect glomeruli of both AL, and send an axon through the m-ACT in each hemisphere of the brain, terminating in the lip region of the calyces. These neurons respond to contact chemical stimuli.
Collapse
Affiliation(s)
- R Abel
- Freie Universitaet Berlin, Fachbereich Biologie/Chemie/Pharmazie, Institut für Biologie-Neurobiologie, Berlin, Germany
| | | | | |
Collapse
|
37
|
|
38
|
Abstract
An operant learning protocol was developed for honeybees that are fixed in small tubes. The bees had to touch one or two small silver plates within the range of one antenna. The contacts of the antenna with the silver plates were registered electronically. Three conditioning protocols were analysed. In the first series the conditioned increase of the contact frequency was tested. The animals could touch one plate and received a reward (a small drop of sucrose) whenever the instantaneous frequency at this plate was more than one or two standard deviations above the spontaneous frequency. After conditioning the bees showed a significant increase of the contact frequency. No significant changes were found in a group of yoked controls. In the second series differential conditioning was tested. The animals could touch two silver plates. The spontaneous behaviour was measured and the animals received the reward upon touching the plate with the lower spontaneous frequency. The rewards were only applied whenever the instantaneous frequency exceeded a defined threshold. After ten conditioning trials the animals showed a significant increase in contact frequency for the conditioned plate compared to spontaneous behaviour. No significant changes were found in a group of yoked controls. In the third series reversal learning was tested. The animals were able to touch two silver plates. They were first conditioned to touch the plate which had the lower spontaneous contact frequency. After these conditioning trials they were tested for 10 min and subsequently conditioned to the alternative plate. The experiments demonstrated significant reversal learning compared to yoked controls. This new operant conditioning paradigm for the bee offers the possibility to analyse at the physiological level the mechanisms underlying different forms of learning in this insect.
Collapse
Affiliation(s)
- J Kisch
- Institut für Okologie und Biologie, Technische Universität Berlin, Germany.
| | | |
Collapse
|
39
|
Kloppenburg P, Kirchhof BS, Mercer AR. Voltage-activated currents from adult honeybee (Apis mellifera) antennal motor neurons recorded in vitro and in situ. J Neurophysiol 1999; 81:39-48. [PMID: 9914265 DOI: 10.1152/jn.1999.81.1.39] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Voltage-activated currents from adult honey bee antennal motor neurons were characterized with in vitro studies in parallel with recordings taken from cells in situ. Two methods were used to ensure unequivocal identification of cells as antennal motor neurons: 1) selective backfilling of the neurons with fluorescent markers before dissociation for cell culture or before recording from cells in intact brains, semiintact brains, or in brain slices or 2) staining with a fluorescent marker via the patch pipette during recordings and identifying antennal motor neurons in situ on the basis of their characteristic morphology. Four voltage-activated currents were isolated in these antennal motor neurons with pharmacological, voltage, and ion substitution protocols. The neurons expressed at least two distinct K+ currents, a transient current (IA) that was blocked by 4-aminopyridine (4-5 x 10(-3) M), and a sustained current (IK(V)) that was partially blocked by tetraethylammonium (2-3 x 10(-2) M) and quinidine (5 x 10(-5) M). IA activated above -40 to -30 mV and the half-maximal voltages for steady-state activation and inactivation were -8.8 and -43.2 mV, respectively. IK(V) activated above -50 to -40 mV and the midpoint of the steady-state activation curve was +11.2 mV. IK(V) did not show steady-state inactivation. Additionally, two inward currents were isolated: a tetrodotoxin (10(-7) M)-sensitive, transient Na+ current (INa) that activated above -35 mV, with a maximum around -5 mV and a half-maximal voltage for inactivation of -72.6 mV, and a CdCl2 (5 x 10(-5) M)-sensitive Ca2+ current that activated above -45 to -40 mV, with a maximum around -15 mV. This study represents the first step in our effort to analyze the cellular and ionic mechanisms underlying the intrinsic properties and plasticity of antennal motor neurons.
Collapse
Affiliation(s)
- P Kloppenburg
- Centre for Neuroscience and Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
40
|
Kloppenburg P. Anatomy of the antennal motoneurons in the brain of the honeybee (Apis mellifera). J Comp Neurol 1995; 363:333-43. [PMID: 8642079 DOI: 10.1002/cne.903630213] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This paper describes the morphology and location of the cerebral motoneurons that control the movement of the antennae in the honeybee. The position of each antenna is controlled by two muscle systems; the basal segment (scape) is moved by four muscles within the head capsule, and two muscles within the scape control the distal segments (flagellum) of the antenna. The motor system of the scape is controlled by nine motoneurons, and that of the flagellum by six motoneurons. All of these motoneurons share the dorsal lobe as a common projection area where their dendritic fields overlap extensively. These motoneurons do not have contralateral projections. The cell bodies of the antennal motoneurons are located in the soma layer lateral to the dorsal lobe. The somata for each muscle system are arranged in three clusters; two clusters are located in a region of the cortex dorsal to the dorsal lobe and one cluster is located in the cortex ventral to the dorsal lobe. In the cortex dorsal to the dorsal lobe, one cluster of each muscle system shares the same region. Altogether five groups of cell bodies can be distinguished. Double labeling of the motoneurons and presumptive mechanosensory primary antennal afferents with fluorescent dyes has shown that there is an extensive overlap of axonal projections of antennal mechanosensory afferents with dendritic fields of antennal motoneurons.
Collapse
Affiliation(s)
- P Kloppenburg
- Technische Universität Berlin, Institut für Biologie, Germany
| |
Collapse
|
41
|
Brockmann A, Brückner D. Projection pattern of poreplate sensory neurones in honey bee worker, Apis mellifera L. (Hymenoptera : Apidae). ACTA ACUST UNITED AC 1995. [DOI: 10.1016/0020-7322(95)00010-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Kreissl S, Eichmüller S, Bicker G, Rapus J, Eckert M. Octopamine-like immunoreactivity in the brain and subesophageal ganglion of the honeybee. J Comp Neurol 1994; 348:583-95. [PMID: 7530730 DOI: 10.1002/cne.903480408] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The organization of putative octopaminergic pathways in the brain and subesophageal ganglion of the honeybee was investigated with a well-defined polyclonal antiserum against octopamine. Five prominent groups of just over 100 immunoreactive (IR) somata were found in the cerebral ganglion: Neurosecretory cells in the pars intercerebralis innervating the corpora cardiaca via NCC I, one cluster mediodorsal to the antennal lobe, one scattered on both sides of the midline of the protocerebrum, one between the lateral protocerebral lobes and the dorsal lobes, and a single soma on either side of the central body. With the exception of the pedunculi and beta-lobes of the mushroom bodies, varicose immunoreactive fibers penetrate all parts of the cerebral ganglion. Strong labelling was found in the central complex and the protocerebral bridge. Fine networks of labelled processes invade the antennal lobes, the calyces and a small part of the alpha-lobes of the mushroom bodies, the protocerebrum, and all three optic ganglia. In the subesophageal ganglion, one labelled cell body was found in the lateral soma layer of the mandibular segment. Each of the three neuromeres contains a group of six to ten somata in the ventral median parts. Most of the ventral median cells send their neurites dorsally through the midline tracts, whereas the neurites of a few cells follow the ventral cell body neurite tracts. Octopamine-IR was demonstrated in all neuropils that contain pathways for proboscis extension learning in honeybees. Because octopaminergic mechanisms seem to be involved in the behavioral plasticity of the proboscis extension reflex, our study provides anatomical data on the neurochemical organization of an appetitive learning paradigm.
Collapse
Affiliation(s)
- S Kreissl
- Institut für Neurobiologie, FU-Berlin, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
43
|
Neuromodulation by serotonin and octopamine in the honeybee: behaviour, neuroanatomy and electrophysiology. ACTA ACUST UNITED AC 1993. [DOI: 10.1007/bf01929916] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Orona E, Ache BW. Physiological and pharmacological evidence for histamine as a neurotransmitter in the olfactory CNS of the spiny lobster. Brain Res 1992; 590:136-43. [PMID: 1384929 DOI: 10.1016/0006-8993(92)91089-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Perfusing histamine (HA, 0.1 microM-1 mM) into the brain of the spiny lobster reversibly altered the spontaneous activity in 24 (86%) of 28 morphologically unidentified, odor-responsive interneurons. The effects of HA were dose-dependent and could be selectively and reversibly antagonized by cimetidine, a vertebrate H2 antagonist, suggesting that the action of HA in the central nervous system (CNS) was mediated by a receptor pharmacologically similar to an HA receptor expressed by lobster olfactory receptor cells. Perfusing HA into the brain also reversibly altered the spontaneous and/or odor-evoked activity of 6 (67%) of 9 morphologically identified, odor responsive interneurons that arborized in the olfactory lobe (OL). These results extend previous evidence from our lab that the OL contains HA-immunoreactive interneurons and that OL tissue can synthesize HA from its precursor and further implicate HA as a putative neurotransmitter in the olfactory CNS of the spiny lobster.
Collapse
Affiliation(s)
- E Orona
- Whitney Laboratory, University of Florida, St. Augustine 32086
| | | |
Collapse
|