1
|
Bründl E, Proescholdt M, Schödel P, Rosengarth K, Störr EM, Bele S, Kieninger M, Malsy M, Schmidt NO, Schebesch KM. Both coiling and clipping induce the time-dependent release of endogenous neuropeptide Y into serum. Front Neurol 2024; 14:1325950. [PMID: 38425753 PMCID: PMC10902915 DOI: 10.3389/fneur.2023.1325950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/14/2023] [Indexed: 03/02/2024] Open
Abstract
Background The vaso- and psychoactive endogenous Neuropeptide Y (NPY) has repeatedly been shown to be excessively released after subarachnoid hemorrhage and in numerous psychiatric disorders. NPY is stored in sympathetic perivascular nerve fibers around the major cerebral arteries. This prospective study was designed to analyze the impact of microsurgical and endovascular manipulation of the cerebral vasculature versus cranio- and durotomy alone on the serum levels of NPY. Methods 58 patients (drop-out n = 3; m:f = 26:29; mean age 52.0 ± 14.1 years) were prospectively enrolled. The vascular group underwent repair for unruptured intracranial aneurysms (UIA) of the anterior circulation [endovascular aneurysm occlusion (EV) n = 13; microsurgical clipping (MS) n = 17]; in the non-vascular group, 14 patients received microsurgical resection of a small-sized convexity meningioma (CM), and 11 patients with surgically treated degenerative lumbar spine disease (LD) served as control. Plasma was drawn (1) before treatment (t0), (2) periprocedurally (t1), (3) 6 h postprocedurally (t2), (4) 72 h postprocedurally (t3), and (5) at the 6-week follow-up (FU; t4) to determine the NPY levels via competitive enzyme immunoassay in duplicate serum samples. We statistically evaluated differences between groups by calculating one-way ANOVA and for changes along the time points using repeated measure ANOVA. Results Except for time point t0, the serum concentrations of NPY ranged significantly higher in the vascular than in the non-vascular group (p < 0.001), with a slight decrease in both vascular subgroups 6 h postprocedurally, followed by a gradual increase above baseline levels until FU. At t3, the EV subgroup showed significantly higher NPY levels (mean ± standard deviation) than the MS subgroup (0.569 ± 0.198 ng/mL vs. 0.415 ± 0.192 ng/mL, p = 0.0217). The highest NPY concentrations were measured in the EV subgroup at t1, t3, and t4, reaching a climax at FU (0.551 ± 0.304 ng/mL). Conclusion Our study reveals a first insight into the short-term dynamics of the serum levels of endogenous NPY in neurosurgical and endovascular procedures, respectively: Direct manipulation within but also next to the major cerebral arteries induces an excessive release of NPY into the serum. Our findings raise the interesting question of the potential capacity of NPY in modulating the psycho-behavioral outcome of neurovascular patients.
Collapse
Affiliation(s)
- Elisabeth Bründl
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
| | - Martin Proescholdt
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
| | - Petra Schödel
- Department of Orthopedics, Trauma and Hand Surgery, Section Neurosurgery, Medical Center St. Elisabeth, Straubing, Germany
| | - Katharina Rosengarth
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
| | - Eva-Maria Störr
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
| | - Sylvia Bele
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
| | - Martin Kieninger
- Department of Anesthesiology, University Medical Center Regensburg, Regensburg, Germany
| | - Manuela Malsy
- Department of Anesthesiology, University Medical Center Regensburg, Regensburg, Germany
| | - Nils Ole Schmidt
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
| | - Karl-Michael Schebesch
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
- Department of Neurosurgery, Paracelsus Medical Private University, Nuremberg, Germany
| |
Collapse
|
2
|
Viudez-Martínez A, Torregrosa AB, Navarrete F, García-Gutiérrez MS. Understanding the Biological Relationship between Migraine and Depression. Biomolecules 2024; 14:163. [PMID: 38397400 PMCID: PMC10886628 DOI: 10.3390/biom14020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/25/2024] Open
Abstract
Migraine is a highly prevalent neurological disorder. Among the risk factors identified, psychiatric comorbidities, such as depression, seem to play an important role in its onset and clinical course. Patients with migraine are 2.5 times more likely to develop a depressive disorder; this risk becomes even higher in patients suffering from chronic migraine or migraine with aura. This relationship is bidirectional, since depression also predicts an earlier/worse onset of migraine, increasing the risk of migraine chronicity and, consequently, requiring a higher healthcare expenditure compared to migraine alone. All these data suggest that migraine and depression may share overlapping biological mechanisms. Herein, this review explores this topic in further detail: firstly, by introducing the common epidemiological and risk factors for this comorbidity; secondly, by focusing on providing the cumulative evidence of common biological aspects, with a particular emphasis on the serotoninergic system, neuropeptides such as calcitonin-gene-related peptide (CGRP), pituitary adenylate cyclase-activating polypeptide (PACAP), substance P, neuropeptide Y and orexins, sexual hormones, and the immune system; lastly, by remarking on the future challenges required to elucidate the etiopathological mechanisms of migraine and depression and providing updated information regarding new key targets for the pharmacological treatment of these clinical entities.
Collapse
Affiliation(s)
- Adrián Viudez-Martínez
- Hospital Pharmacy Service, Hospital General Dr. Balmis de Alicante, 03010 Alicante, Spain;
| | - Abraham B. Torregrosa
- Instituto de Neurociencias, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain; (A.B.T.); (F.N.)
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain; (A.B.T.); (F.N.)
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain; (A.B.T.); (F.N.)
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
3
|
Bale R, Doshi G. Cross talk about the role of Neuropeptide Y in CNS disorders and diseases. Neuropeptides 2023; 102:102388. [PMID: 37918268 DOI: 10.1016/j.npep.2023.102388] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
A peptide composed of a 36 amino acid called Neuropeptide Y (NPY) is employed in a variety of physiological processes to manage and treat conditions affecting the endocrine, circulatory, respiratory, digestive, and neurological systems. NPY naturally binds to G-protein coupled receptors, activating the Y-receptors (Y1-Y5 and y6). The findings on numerous therapeutic applications of NPY for CNS disease are presented in this review by the authors. New targets for treating diseases will be revealed by medication combinations that target NPY and its receptors. This review is mainly focused on disorders such as anxiety, Alzheimer's disease, Parkinson's disease, Huntington's disease, Machado Joseph disease, multiple sclerosis, schizophrenia, depression, migraine, alcohol use disorder, and substance use disorder. The findings from the preclinical studies and clinical studies covered in this article may help create efficient therapeutic plans to treat neurological conditions on the one hand and psychiatric disorders on the other. They may also open the door to the creation of novel NPY receptor ligands as medications to treat these conditions.
Collapse
Affiliation(s)
- Rajeshwari Bale
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai 400056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai 400056, India.
| |
Collapse
|
4
|
Tu T, Peng Z, Song Z, Ma Y, Zhang H. New insight into DAVF pathology—Clues from meningeal immunity. Front Immunol 2022; 13:858924. [PMID: 36189220 PMCID: PMC9520480 DOI: 10.3389/fimmu.2022.858924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, with the current access in techniques, studies have significantly advanced the knowledge on meningeal immunity, revealing that the central nervous system (CNS) border acts as an immune landscape. The latest concept of meningeal immune system is a tertiary structure, which is a comprehensive overview of the meningeal immune system from macro to micro. We comprehensively reviewed recent advances in meningeal immunity, particularly the new understanding of the dural sinus and meningeal lymphatics. Moreover, based on the clues from the meningeal immunity, new insights were proposed into the dural arteriovenous fistula (DAVF) pathology, aiming to provide novel ideas for DAVF understanding.
Collapse
Affiliation(s)
- Tianqi Tu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhenghong Peng
- Department of Health Management Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zihao Song
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongjie Ma
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yongjie Ma, ; Hongqi Zhang,
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yongjie Ma, ; Hongqi Zhang,
| |
Collapse
|
5
|
Bründl E, Proescholdt M, Störr EM, Schödel P, Bele S, Zeman F, Hohenberger C, Kieninger M, Schmidt NO, Schebesch KM. The endogenous neuropeptide calcitonin gene-related peptide after spontaneous subarachnoid hemorrhage–A potential psychoactive prognostic serum biomarker of pain-associated neuropsychological symptoms. Front Neurol 2022; 13:889213. [PMID: 35968282 PMCID: PMC9366609 DOI: 10.3389/fneur.2022.889213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/05/2022] [Indexed: 11/19/2022] Open
Abstract
Background The pronociceptive neuromediator calcitonin gene-related peptide (CGRP) is associated with pain transmission and modulation. After spontaneous subarachnoid hemorrhage (sSAH), the vasodilatory CGRP is excessively released into cerebrospinal fluid (CSF) and serum and modulates psycho-behavioral function. In CSF, the hypersecretion of CGRP subacutely after good-grade sSAH was significantly correlated with an impaired health-related quality of life (hrQoL). Now, we prospectively analyzed the treatment-specific differences in the secretion of endogenous CGRP into serum after good-grade sSAH and its impact on hrQoL. Methods Twenty-six consecutive patients (f:m = 13:8; mean age 50.6 years) with good-grade sSAH were enrolled (drop out n = 5): n = 9 underwent endovascular aneurysm occlusion, n = 6 microsurgery, and n = 6 patients with perimesencephalic SAH received standardized intensive medical care. Plasma was drawn daily from day 1 to 10, at 3 weeks, and at the 6-month follow-up (FU). CGRP levels were determined with competitive enzyme immunoassay in duplicate serum samples. All patients underwent neuropsychological self-report assessment after the onset of sSAH (t1: day 11–35) and at the FU (t2). Results During the first 10 days, the mean CGRP levels in serum (0.470 ± 0.10 ng/ml) were significantly lower than the previously analyzed mean CGRP values in CSF (0.662 ± 0.173; p = 0.0001). The mean serum CGRP levels within the first 10 days did not differ significantly from the values at 3 weeks (p = 0.304). At 6 months, the mean serum CGRP value (0.429 ± 0.121 ng/ml) was significantly lower compared to 3 weeks (p = 0.010) and compared to the first 10 days (p = 0.026). Higher mean serum CGRP levels at 3 weeks (p = 0.001) and at 6 months (p = 0.005) correlated with a significantly poorer performance in the item pain, and, at 3 weeks, with a higher symptom burden regarding somatoform syndrome (p = 0.001) at t2. Conclusion Our study reveals the first insight into the serum levels of endogenous CGRP in good-grade sSAH patients with regard to hrQoL. In serum, upregulated CGRP levels at 3 weeks and 6 months seem to be associated with a poorer mid-term hrQoL in terms of pain. In migraineurs, CGRP receptor antagonists have proven clinical efficacy. Our findings corroborate the potential capacity of CGRP in pain processing.
Collapse
Affiliation(s)
- Elisabeth Bründl
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
- *Correspondence: Elisabeth Bründl
| | - Martin Proescholdt
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
| | - Eva-Maria Störr
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
| | - Petra Schödel
- Section Neurosurgery, Department of Orthopedics, Trauma and Hand Surgery, Medical Center St. Elisabeth, Straubing, Germany
| | - Sylvia Bele
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
| | - Florian Zeman
- Center for Clinical Studies, University Medical Center Regensburg, Regensburg, Germany
| | - Christoph Hohenberger
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
| | - Martin Kieninger
- Department of Anesthesiology, University Medical Center Regensburg, Regensburg, Germany
| | - Nils Ole Schmidt
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
| | | |
Collapse
|
6
|
The role of the meningeal lymphatic system in local meningeal inflammation and trigeminal nociception. Sci Rep 2022; 12:8804. [PMID: 35614095 PMCID: PMC9133044 DOI: 10.1038/s41598-022-12540-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 04/20/2022] [Indexed: 12/23/2022] Open
Abstract
A system of lymphatic vessels has been recently characterized in the meninges, with a postulated role in ‘cleaning’ the brain via cerebral fluid drainage. As meninges are the origin site of migraine pain, we hypothesized that malfunctioning of the lymphatic system should affect the local trigeminal nociception. To test this hypothesis, we studied nociceptive and inflammatory mechanisms in the hemiskull preparations (containing the meninges) of K14-VEGFR3-Ig (K14) mice lacking the meningeal lymphatic system. We recorded the spiking activity of meningeal afferents and estimated the local mast cells population, calcitonin gene-related peptide (CGRP) and cytokine levels as well as the dural trigeminal innervation in freshly-isolated hemiskull preparations from K14-VEGFR3-Ig (K14) or wild type C57BL/6 mice (WT). Spiking activity data have been confirmed in an acquired model of meningeal lymphatic dysfunction (AAV-mVEGFR3(1–4)Ig induced lymphatic ablation). We found that levels of the pro-inflammatory cytokine IL12-p70 and CGRP, implicated in migraine, were reduced in the meninges of K14 mice, while the levels of the mast cell activator MCP-1 were increased. The other migraine-related pro-inflammatory cytokines (basal and stimulated), did not differ between the two genotypes. The patterns of trigeminal innervation in meninges remained unchanged and we did not observe alterations in basal or ATP-induced nociceptive firing in the meningeal afferents associated with meningeal lymphatic dysfunction. In summary, the lack of meningeal lymphatic system is associated with a new balance between pro- and anti-migraine mediators but does not directly trigger meningeal nociceptive state.
Collapse
|
7
|
Cohen F, Yuan H, Silberstein SD. Calcitonin Gene-Related Peptide (CGRP)-Targeted Monoclonal Antibodies and Antagonists in Migraine: Current Evidence and Rationale. BioDrugs 2022; 36:341-358. [PMID: 35476215 PMCID: PMC9043885 DOI: 10.1007/s40259-022-00530-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/25/2022]
Abstract
Calcitonin gene-related peptide (CGRP), a 37 amino-acid neuropeptide found mostly in peptidergic sensory C-fibers, has been suggested to be implicated in the pathogenesis of migraine, which is one of the most common neurological disorders seen in medical practice, affecting almost 16% of the US population. While previously thought to be a vascular condition, migraine attacks are the result of neurogenic inflammation and peripheral/central sensitization through dysfunctional activation of the trigeminovascular system. To date, two classes of therapeutic agents have been developed to interrupt the function of CGRP: CGRP-targeted monoclonal antibodies (mAbs) and small-molecule antagonists (gepants). There are currently four CGRP-targeted mAbs and three gepants that are US Food and Drug Administration (FDA) approved for the treatment of migraine. Multiple phase II and III studies have established the efficacies and tolerability of these treatments. Previously, we reviewed the fundamental role of CGRP in migraine pathogenesis. Here, we discuss in depth the clinical evidence (randomized controlled trials and real-world studies), safety, and tolerability of CGRP-targeted mAbs and gepants for treating migraine.
Collapse
Affiliation(s)
- Fred Cohen
- Jefferson Headache Center, Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Suite 200, Philadelphia, PA, 19107, USA
| | - Hsiangkuo Yuan
- Jefferson Headache Center, Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Suite 200, Philadelphia, PA, 19107, USA
| | - Stephen D Silberstein
- Jefferson Headache Center, Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Suite 200, Philadelphia, PA, 19107, USA.
| |
Collapse
|
8
|
Simonetta I, Riolo R, Todaro F, Tuttolomondo A. New Insights on Metabolic and Genetic Basis of Migraine: Novel Impact on Management and Therapeutical Approach. Int J Mol Sci 2022; 23:3018. [PMID: 35328439 PMCID: PMC8955051 DOI: 10.3390/ijms23063018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Migraine is a hereditary disease, usually one-sided, sometimes bilateral. It is characterized by moderate to severe pain, which worsens with physical activity and may be associated with nausea and vomiting, may be accompanied by photophobia and phonophobia. The disorder can occur at any time of the day and can last from 4 to 72 h, with and without aura. The pathogenic mechanism is unclear, but extensive preclinical and clinical studies are ongoing. According to electrophysiology and imaging studies, many brain areas are involved, such as cerebral cortex, thalamus, hypothalamus, and brainstem. The activation of the trigeminovascular system has a key role in the headache phase. There also appears to be a genetic basis behind the development of migraine. Numerous alterations have been identified, and in addition to the genetic cause, there is also a close association with the surrounding environment, as if on the one hand, the genetic alterations may be responsible for the onset of migraine, on the other, the environmental factors seem to be more strongly associated with exacerbations. This review is an analysis of neurophysiological mechanisms, neuropeptide activity, and genetic alterations that play a fundamental role in choosing the best therapeutic strategy. To date, the goal is to create a therapy that is as personalized as possible, and for this reason, steps forward have been made in the pharmacological field in order to identify new therapeutic strategies for both acute treatment and prophylaxis.
Collapse
Affiliation(s)
- Irene Simonetta
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.)
- Molecular and Clinical Medicine PhD Programme, University of Palermo, P.zza delle Cliniche n.2, 90127 Palermo, Italy
| | - Renata Riolo
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.)
| | - Federica Todaro
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.)
| | - Antonino Tuttolomondo
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.)
- Molecular and Clinical Medicine PhD Programme, University of Palermo, P.zza delle Cliniche n.2, 90127 Palermo, Italy
| |
Collapse
|
9
|
Edvinsson JCA, Maddahi A, Christiansen IM, Reducha PV, Warfvinge K, Sheykhzade M, Edvinsson L, Haanes KA. Lasmiditan and 5-Hydroxytryptamine in the rat trigeminal system; expression, release and interactions with 5-HT 1 receptors. J Headache Pain 2022; 23:26. [PMID: 35177004 PMCID: PMC8903724 DOI: 10.1186/s10194-022-01394-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/21/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND 5-Hydroxytryptamine (5-HT) receptors 1B, 1D and 1F have key roles in migraine pharmacotherapy. Selective agonists targeting these receptors, such as triptans and ditans, are effective in aborting acute migraine attacks and inhibit the in vivo release of calcitonin gene-related peptide (CGRP) in human and animal models. The study aimed to examine the localization, genetic expression and functional aspects of 5- HT1B/1D/1F receptors in the trigeminal system in order to further understand the molecular sites of action of triptans (5-HT1B/1D) and ditans (5-HT1F). METHODS Utilizing immunohistochemistry, the localization of 5-HT and of 5-HT1B/1D/1F receptors was examined in rat trigeminal ganglion (TG) and combined with quantitative polymerase chain reaction to quantify the level of expression for 5-HT1B/1D/1F receptors in the TG. The functional role of these receptors was examined ex vivo with a capsaicin/potassium induced 5-HT and CGRP release. RESULTS 5-HT immunoreactivity (ir) was observed in a minority of CGRP negative C-fibres, most neuron somas and faintly in A-fibres and Schwann cell neurolemma. 5-HT1B/1D receptors were expressed in the TG, while the 5-HT1F receptor displayed a weak ir. The 5-HT1D receptor co-localized with receptor activity-modifying protein 1 (RAMP1) in Aδ-fibres in the TG, while 5-HT1B-ir was weakly expressed and 5-HT1F-ir was not detected in these fibres. None of the 5-HT1 receptors co-localized with CGRP-ir in C-fibres. 5-HT1D receptor mRNA was the most prominently expressed, followed by the 5-HT1B receptor and lastly the 5-HT1F receptor. The 5-HT1B and 5-HT1D receptor antagonist, GR127935, could reverse the inhibitory effect of Lasmiditan (a selective 5-HT1F receptor agonist) on CGRP release in the soma-rich TG but not in soma-poor TG or dura mater. 5-HT release in the soma-rich TG, and 5-HT content in the baseline samples, negatively correlated with CGRP levels, showing for the first time a physiological role for 5-HT induced inhibition. CONCLUSION This study reveals the presence of a subgroup of C-fibres that store 5-HT. The data shows high expression of 5-HT1B/1D receptors and suggests that the 5-HT1F receptor is a relatively unlikely target in the rat TG. Furthermore, Lasmiditan works as a partial agonist on 5-HT1B/1D receptors in clinically relevant dose regiments.
Collapse
Affiliation(s)
- Jacob C A Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, 2600, Glostrup, Denmark.
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Aida Maddahi
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Isabella M Christiansen
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, 2600, Glostrup, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Philip V Reducha
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, 2600, Glostrup, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Karin Warfvinge
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, 2600, Glostrup, Denmark
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Majid Sheykhzade
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, 2600, Glostrup, Denmark
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Kristian A Haanes
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, 2600, Glostrup, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Tajti J, Szok D, Nyári A, Vécsei L. CGRP and CGRP-receptor as targets of migraine therapy: Brain Prize-2021. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:460-478. [PMID: 34635045 DOI: 10.2174/1871527320666211011110307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Migraine is a highly prevalent primary headache with an unclear pathomechanism. During the last 40 years numerous hypotheses have arisen, among them the theory of the trigeminovascular system is the primary one. It serves as a skeleton in successful preclinical studies and in the development of effective therapeutic options for migraine headache. OBJECTIVE The Brain Prize (awarded annually by the Lundbeck Foundation) is the most prestigious tribute in neuroscience. The winners in 2021 were Lars Edvinsson, Peter Goadsby, Michael Moskowitz and Jes Olesen. They are the fathers of the migraine pathomechanism which led to revolutionary new treatments. This review summarizes their landmark findings. METHODS Data related to this topic were reviewed from PubMed records published between 1979 and May 2021. Searches were based on preclinical and clinical studies in the covered field. The findings were listed in chronological order. From a therapeutic perspective, only randomized controlled trials and meta-analysis were discussed. RESULTS The calcitonin gene-related peptide-related pathogenesis of migraine is based on the activation of the trigeminovascular system. The therapeutic triad for migraine is triptans, gepants and calcitonin gene-related peptide-targeted monoclonal antibodies. CONCLUSION In the past 40 years, the systematic work of leading headache scientists has resulted in robust theoretical and therapeutic knowledge in the preclinical and clinical study of migraine.
Collapse
Affiliation(s)
- János Tajti
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, H-6725, Szeged. Hungary
| | - Délia Szok
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, H-6725, Szeged. Hungary
| | - Aliz Nyári
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, H-6725, Szeged. Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, H-6725, Szeged. Hungary
| |
Collapse
|
11
|
Abstract
Cluster headache is a primary headache form occurring in paroxysmal excruciatingly severe unilateral head pain attacks usually grouped in periods lasting 1-2months, the cluster periods. A genetic component is suggested by the familial occurrence of the disease but a genetic linkage is yet to be identified. Contemporary activation of trigeminal and cranial parasympathetic systems-the so-called trigemino-parasympathetic reflex-during the headache attacks seem to cause the pain and accompanying oculo-facial autonomic phenomena respectively. At peripheral level, the increased calcitonin gene related peptide (CGRP) plasma levels suggests trigeminal system activation during cluster headache attacks. The temporal pattern of the disease both in terms of circadian rhythmicity and seasonal recurrence has suggested involvement of the hypothalamic biological clock in the pathophysiology of cluster headache. The posterior hypothalamus was investigate as the cluster generator leading to activation of the trigemino-parasympathetic reflex, but the accumulated experience after 20 years of hypothalamic electrical stimulation to treat the condition indicate that this brain region rather acts as pain modulator. Efficacy of monoclonal antibodies to treat episodic cluster headache points to a key role of CGRP in the pathophysiology of the condition.
Collapse
|
12
|
Ma T, Wang F, Xu S, Huang JH. Meningeal immunity: Structure, function and a potential therapeutic target of neurodegenerative diseases. Brain Behav Immun 2021; 93:264-276. [PMID: 33548498 DOI: 10.1016/j.bbi.2021.01.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/14/2021] [Accepted: 01/23/2021] [Indexed: 12/25/2022] Open
Abstract
Meningeal immunity refers to immune surveillance and immune defense in the meningeal immune compartment, which depends on the unique position, structural composition of the meninges and functional characteristics of the meningeal immune cells. Recent research advances in meningeal immunity have demonstrated many new ways in which a sophisticated immune landscape affects central nervous system (CNS) function under physiological or pathological conditions. The proper function of the meningeal compartment might protect the CNS from pathogens or contribute to neurological disorders. Since the concept of meningeal immunity, especially the meningeal lymphatic system and the glymphatic system, is relatively new, we will provide a general review of the meninges' basic structural elements, organization, regulation, and functions with regards to meningeal immunity. At the same time, we will emphasize recent evidence for the role of meningeal immunity in neurodegenerative diseases. More importantly, we will speculate about the feasibility of the meningeal immune region as a drug target to provide some insights for future research of meningeal immunity.
Collapse
Affiliation(s)
- Tengyun Ma
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Fushun Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610060, PR China.
| | - Shijun Xu
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott & White Health Center, Temple, TX 76502, United States; Department of Surgery, Texas A&M University College of Medicine, Temple, TX 76502, United States
| |
Collapse
|
13
|
Henderson FC, Rowe PC, Narayanan M, Rosenbaum R, Koby M, Tuchmann K, Francomano CA. Refractory Syncope and Presyncope Associated with Atlantoaxial Instability: Preliminary Evidence of Improvement Following Surgical Stabilization. World Neurosurg 2021; 149:e854-e865. [PMID: 33540088 DOI: 10.1016/j.wneu.2021.01.084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND The proclivity to atlantoaxial instability (AAI) has been widely reported for conditions such as rheumatoid arthritis and Down syndrome. Similarly, we have found a higher than expected incidence of AAI in hereditary connective tissue disorders. We demonstrate a strong association of AAI with manifestations of dysautonomia, in particular syncope and lightheadedness, and make preliminary observations as to the salutary effect of surgical stabilization of the atlantoaxial motion segment. METHODS In an institutional review board-approved retrospective study, 20 subjects (16 women, 4 men) with hereditary connective tissue disorders had AAI diagnosed by computed tomography. Subjects underwent realignment (reduction), stabilization, and fusion of the C1-C2 motion segment. All subjects completed preoperative and postoperative questionnaires in which they were asked about performance, function, and autonomic symptoms, including lightheadedness, presyncope, and syncope. RESULTS All patients with AAI reported lightheadedness, and 15 had refractory syncope or presyncope despite maximal medical management and physical therapy. Postoperatively, subjects reported a statistically significant improvement in lightheadedness (P = 0.003), presyncope (P = 0.006), and syncope (P = 0.03), and in the frequency (P < 0.05) of other symptoms related to autonomic function, such as nausea, exercise intolerance, palpitations, tremors, heat intolerance, gastroesophageal reflux, and sleep apnea. CONCLUSIONS This study draws attention to the potential for AAI to present with syncope or presyncope that is refractory to medical management, and for surgical stabilization of AAI to lead to improvement of these and other autonomic symptoms.
Collapse
Affiliation(s)
- Fraser C Henderson
- Department Neurosurgery, University of Maryland Capital Region Health Center, Cheverly, Maryland, USA; Departments of Neurosurgery and Radiology, Doctors Community Hospital, Lanham, Maryland, USA; Metropolitan Neurosurgery Group LLC, Silver Spring, Maryland, USA.
| | - Peter C Rowe
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Malini Narayanan
- Department Neurosurgery, University of Maryland Capital Region Health Center, Cheverly, Maryland, USA; Departments of Neurosurgery and Radiology, Doctors Community Hospital, Lanham, Maryland, USA; Metropolitan Neurosurgery Group LLC, Silver Spring, Maryland, USA
| | - Robert Rosenbaum
- Department Neurosurgery, University of Maryland Capital Region Health Center, Cheverly, Maryland, USA; Departments of Neurosurgery and Radiology, Doctors Community Hospital, Lanham, Maryland, USA; Metropolitan Neurosurgery Group LLC, Silver Spring, Maryland, USA; Department of Neurosurgery, Walter Reed-Bethesda National Military Medical Center, Bethesda, Maryland, USA
| | - Myles Koby
- Departments of Neurosurgery and Radiology, Doctors Community Hospital, Lanham, Maryland, USA
| | - Kelly Tuchmann
- Metropolitan Neurosurgery Group LLC, Silver Spring, Maryland, USA
| | - Clair A Francomano
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
14
|
Elisevich L, Singer J, Walsh M. Recurrent activity-induced headache associated with posttraumatic dural adhesion of the middle meningeal artery: A case report. Cephalalgia 2019; 40:317-320. [PMID: 31635479 DOI: 10.1177/0333102419881682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The middle meningeal artery is surrounded by a plexus of afferent fibers shown to be involved in the progression of some forms of headache, especially migraine. Posttraumatic headache disorders sharing characteristics with migraine and involving the middle meningeal artery are not readily available in the literature. CASE DESCRIPTION This report describes a posttraumatic headache disorder in a middle-aged woman in which the causative factor proved to be a pathology of the left middle meningeal artery that resulted from trauma. Her pain could be triggered by moderate accelerative changes, occurring in the left frontotemporal region, and shared characteristics with migraine. Resection of a portion of the left middle meningeal artery has completely eliminated her pain syndrome. CONCLUSION This case further elucidates associations between the middle meningeal artery and headache. The presentation of posttraumatic headache sharing characteristics with migraine should suggest the possibility of a middle meningeal artery abnormality.
Collapse
Affiliation(s)
- Lee Elisevich
- Central Michigan University, Mount Pleasant, Michigan, USA
| | - Justin Singer
- Department of Clinical Neurosciences (Division of Neurosurgery), Spectrum Health, Grand Rapids, Michigan, USA
| | - Meggen Walsh
- Department of Pathology, Spectrum Health, Grand Rapids, Michigan, USA
| |
Collapse
|
15
|
De Simone R, Ranieri A, Sansone M, Marano E, Russo CV, Saccà F, Bonavita V. Dural sinus collapsibility, idiopathic intracranial hypertension, and the pathogenesis of chronic migraine. Neurol Sci 2019; 40:59-70. [PMID: 30838545 DOI: 10.1007/s10072-019-03775-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Available evidences suggest that a number of known assumption on idiopathic intracranial hypertension (IIH) with or without papilledema might be discussed. These include (1) the primary pathogenetic role of an excessive dural sinus collapsibility in IIH, allowing a new relatively stable intracranial fluids pressure balance at higher values; (2) the non-mandatory role of papilledema for a definite diagnosis; (3) the possibly much higher prevalence of IIH without papilledema than currently considered; (4) the crucial role of the cerebral compliance exhaustion that precede the raise in intracranial pressure and that may already be pathologic in cases showing a moderately elevated opening pressure; (5) the role as "intracranial pressure sensor" played by the trigeminovascular innervation of dural sinuses and cortical bridge veins, which could represent a major source of CGRP and may explain the high comorbidity and the emerging causative link between IIHWOP and chronic migraine (CM). Accordingly, the control of intracranial pressure is to be considered a promising new therapeutic target in CM.
Collapse
Affiliation(s)
- Roberto De Simone
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Headache Centre, University Federico II of Naples, Via Pansini, 5, 80122, Naples, Italy.
| | - Angelo Ranieri
- Division of Neurology and Stroke Unit, Hospital A. Cardarelli, Naples, Italy
| | - Mattia Sansone
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Headache Centre, University Federico II of Naples, Via Pansini, 5, 80122, Naples, Italy
| | - Enrico Marano
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Headache Centre, University Federico II of Naples, Via Pansini, 5, 80122, Naples, Italy
| | - Cinzia Valeria Russo
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Headache Centre, University Federico II of Naples, Via Pansini, 5, 80122, Naples, Italy
| | - Francesco Saccà
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Headache Centre, University Federico II of Naples, Via Pansini, 5, 80122, Naples, Italy
| | | |
Collapse
|
16
|
|
17
|
Mecheri B, Paris F, Lübbert H. Histological investigations on the dura mater vascular system of mice. Acta Histochem 2018; 120:846-857. [PMID: 30292321 DOI: 10.1016/j.acthis.2018.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/06/2018] [Accepted: 09/27/2018] [Indexed: 11/25/2022]
Abstract
The human dura mater encephali is a well innervated and vascularized membrane. Its vascular system plays a crucial role in disorders and pathological cases like dural hematoma, meningitis, and different headache types. To investigate these diseases mouse models are increasingly being used. However, the literature on the vascular system of the mouse dura mater is sparse and explicit studies concerned exclusively with its vasculature are lacking. Here we present a detailed light and scanning electron microscopic investigation of the supratentorial dura mater of the mouse species, with a focus on the largest part of it, the parietal dura mater. By utilizing different immunohistochemical and classical staining methods, a "cartography" of the vascular system was achieved. Additionally, the different blood vessel types with their mural cells were characterized. In contrast to humans, no arteries were found in the mouse parietal dura mater. Its supply is assured through frontolateral and occipital localized arteriolar branches. These arteriolar vessels exhibit in some specimens arteriolar anastomoses with one another. The venous blood is drained to the superior sagittal and transverse sinus through satellite venules accompanying the arterioles or through solitary venules. In all samples, large ruptured venules were identified in the frontolateral dural area. Scanning electron microscopy revealed that these vessels were ruptured on the dorsal side (skull bones-oriented side) of the dura. Our results contribute to the anatomical data on the mouse species and may set up a basis for fundamental investigation of disorders, for which the role of dural blood vessels is not yet clarified.
Collapse
|
18
|
Bründl E, Proescholdt M, Schödel P, Bele S, Höhne J, Zeman F, Stoerr EM, Brawanski A, Schebesch KM. Excessive release of endogenous neuropeptide Y into cerebrospinal fluid after treatment of spontaneous subarachnoid haemorrhage and its possible impact on self-reported neuropsychological performance - results of a prospective clinical pilot study on good-grade patients. Neurol Res 2018; 40:1001-1013. [PMID: 30213237 DOI: 10.1080/01616412.2018.1508547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVES Neuropsychological dysfunction after treatment of spontaneous subarachnoid haemorrhage (sSAH) is common but underreported. The vasoconstrictor neuropeptide Y (NPY) is excessively released after sSAH and in psychiatric disorders. We prospectively analysed the treatment-specific differences in the secretion of endogenous cerebrospinal fluid (CSF) NPY during the acute stage after sSAH and its impact on cognitive processing. METHODS A total of 26 consecutive patients (f:m = 13:8; mean age 50.6 years) with good-grade sSAH were enrolled (drop out n = 5): n = 9 underwent endovascular aneurysm occlusion, n = 6 microsurgery, and n = 6 patients with perimesencephalic SAH received standardized intensive medical care. Ventricular CSF was drawn daily from day 1-10. CSF NPY levels were determined with competitive enzyme immunoassay. All patients underwent neuropsychological self-report assessment [36-Item Short Form Health Survey (SF-36) and ICD-10-Symptom-Rating questionnaire (ISR)] after the onset of sSAH (day 11-35; t1) and at the 6-month follow-up (t2). RESULTS At t1, increased mean levels of NPY in CSF significantly correlated with impaired performance in most ISR scores (ISR total p = .018, depression p = .035, anxiety p = .008, nutrition disorder p = .047, supplementary items p = .038) and in several psychological SF-36 items (vitality p = .019, general mental health p = .001, mental component summary p = .025). DISCUSSION To the best of our knowledge, this study is the first to correlate the levels of endogenous NPY in supratentorial CSF with cognitive outcome in good-grade sSAH patients. Excessive NPY release into CSF may have a short-term influence on the pathogenesis of neuropsychological deficits. The impact of cerebrovascular manipulation on NPY release has to be further elucidated. ABBREVIATIONS ANOVA: analysis of variance; aSAH: aneurysmal subarachnoid haemorrhage; AUC: area under the curve; CBF: cerebral blood flow; CSF: cerebrospinal fluid; CT (scan): computed tomography (scan); CV: cerebral vasospasm; DIND: delayed ischemic neurological deficit; DSA: digital subtraction angiography; EIA: enzyme immunoassay; EV: endovascular aneurysm occlusion; EVD: external ventricular drainage; FU: 6-month follow-up; GCS: Glasgow Coma Scale; Ghp: general health perceptions; GOS: Glasgow Outcome Scale; h: hour/s; HH: Hunt and Hess; ICU: intensive care unit; ISR: ICD-10-Symptom-Rating questionnaire; MCS: mental component summary; Mhi: general mental health; min: minute/s; min-max: minimum - maximum; ml: millilitre; mRS: modified Ranking Scale; MS: microsurgical clipping, microsurgical aneurysm occlusion; ng: nanograms; no. [n]: number; NPY: Neuropeptide Y; p: p value; Pain: bodily pain; PCS: physical component summary; Pfi: physical functioning; pSAH: perimesencephalic subarachnoid haemorrhage; PTSD: posttraumatic stress disorder; QoL: quality of life; Rawhtran: health transition item; Rolem: role limitations because of emotional problems; Rolph: role limitations due to physical health problems; SAH: subarachnoid haemorrhage; SD: standard deviation; SF-36: 36-Item Short Form Health Survey; Social: social functioning; sSAH: spontaneous subarachnoid haemorrhage; TCD: trans-cranial Doppler ultrasound; (test) t1: test in the sub-acute phase after the onset of bleeding (between day 11 and 35 after subarachnoid haemorrhage); (test) t2: test in the short-term (chronic phase) after treatment at 6-month follow-up; test t1 - t2: intergroup development from t1 to t2; Vital: vitality; vs: versus.
Collapse
Affiliation(s)
- Elisabeth Bründl
- a Department of Neurosurgery , University Medical Centre Regensburg , Regensburg , Germany
| | - Martin Proescholdt
- a Department of Neurosurgery , University Medical Centre Regensburg , Regensburg , Germany
| | - Petra Schödel
- a Department of Neurosurgery , University Medical Centre Regensburg , Regensburg , Germany
| | - Sylvia Bele
- a Department of Neurosurgery , University Medical Centre Regensburg , Regensburg , Germany
| | - Julius Höhne
- a Department of Neurosurgery , University Medical Centre Regensburg , Regensburg , Germany
| | - Florian Zeman
- b Centre for Clinical Studies , University Medical Centre Regensburg , Regensburg , Germany
| | - Eva-Maria Stoerr
- a Department of Neurosurgery , University Medical Centre Regensburg , Regensburg , Germany
| | - Alexander Brawanski
- a Department of Neurosurgery , University Medical Centre Regensburg , Regensburg , Germany
| | - Karl-Michael Schebesch
- a Department of Neurosurgery , University Medical Centre Regensburg , Regensburg , Germany
| |
Collapse
|
19
|
Levy D, Labastida-Ramirez A, MaassenVanDenBrink A. Current understanding of meningeal and cerebral vascular function underlying migraine headache. Cephalalgia 2018; 39:1606-1622. [PMID: 29929378 DOI: 10.1177/0333102418771350] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The exact mechanisms underlying the onset of a migraine attack are not completely understood. It is, however, now well accepted that the onset of the excruciating throbbing headache of migraine is mediated by the activation and increased mechanosensitivity (i.e. sensitization) of trigeminal nociceptive afferents that innervate the cranial meninges and their related large blood vessels. OBJECTIVES To provide a critical summary of current understanding of the role that the cranial meninges, their associated vasculature, and immune cells play in meningeal nociception and the ensuing migraine headache. METHODS We discuss the anatomy of the cranial meninges, their associated vasculature, innervation and immune cell population. We then debate the meningeal neurogenic inflammation hypothesis of migraine and its putative contribution to migraine pain. Finally, we provide insights into potential sources of meningeal inflammation and nociception beyond neurogenic inflammation, and their potential contribution to migraine headache.
Collapse
Affiliation(s)
- Dan Levy
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Alejandro Labastida-Ramirez
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Antoinette MaassenVanDenBrink
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
20
|
Doherty TA, White AA. Postural orthostatic tachycardia syndrome and the potential role of mast cell activation. Auton Neurosci 2018; 215:83-88. [PMID: 30033040 DOI: 10.1016/j.autneu.2018.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 12/18/2022]
Abstract
Though a sizeable amount of data connects mast cell activity to the neurologic system, less is known about the true clinical implications of this relationship. Even less is understood about treatment strategies in those with both allergic and neurologic complaints. This is particularly true in postural orthostatic tachycardia syndrome (POTS), a common type of dysautonomia, where patients are burdened by symptoms of orthostatic cerebral hypoperfusion and several other comorbidities that are likely influenced by autonomic tone. Some patients describe characteristic allergic symptoms, in the absence of typical IgE mediated triggers, and also improvement with traditional mast cell directed medications. Further work is necessary to determine whether these anecdotal observations are valid. The answer to this question will likely be addressed as the mechanisms of POTS are better characterized, which may include a phenotype with distinct mast cell involvement.
Collapse
Affiliation(s)
- Taylor A Doherty
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego, United States
| | - Andrew A White
- Division of Allergy, Asthma and Immunology, Scripps Clinic, 3811 Valley Centre Drive, S99, San Diego, CA 92130, United States.
| |
Collapse
|
21
|
Rua R, McGavern DB. Advances in Meningeal Immunity. Trends Mol Med 2018; 24:542-559. [PMID: 29731353 PMCID: PMC6044730 DOI: 10.1016/j.molmed.2018.04.003] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 12/26/2022]
Abstract
The central nervous system (CNS) is an immunologically specialized tissue protected by a blood-brain barrier. The CNS parenchyma is enveloped by a series of overlapping membranes that are collectively referred to as the meninges. The meninges provide an additional CNS barrier, harbor a diverse array of resident immune cells, and serve as a crucial interface with the periphery. Recent studies have significantly advanced our understanding of meningeal immunity, demonstrating how a complex immune landscape influences CNS functions under steady-state and inflammatory conditions. The location and activation state of meningeal immune cells can profoundly influence CNS homeostasis and contribute to neurological disorders, but these cells are also well equipped to protect the CNS from pathogens. In this review, we discuss advances in our understanding of the meningeal immune repertoire and provide insights into how this CNS barrier operates immunologically under conditions ranging from neurocognition to inflammatory diseases.
Collapse
Affiliation(s)
- Rejane Rua
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
22
|
Ramachandran R. Neurogenic inflammation and its role in migraine. Semin Immunopathol 2018; 40:301-314. [PMID: 29568973 DOI: 10.1007/s00281-018-0676-y] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/06/2018] [Indexed: 11/28/2022]
Abstract
The etiology of migraine pain involves sensitized meningeal afferents that densely innervate the dural vasculature. These afferents, with their cell bodies located in the trigeminal ganglion, project to the nucleus caudalis, which in turn transmits signals to higher brain centers. Factors such as chronic stress, diet, hormonal fluctuations, or events like cortical spreading depression can generate a state of "sterile inflammation" in the intracranial meninges resulting in the sensitization and activation of trigeminal meningeal nociceptors. This sterile inflammatory phenotype also referred to as neurogenic inflammation is characterized by the release of neuropeptides (such as substance P, calcitonin gene related peptide) from the trigeminal innervation. This release leads to vasodilation, plasma extravasation secondary to capillary leakage, edema, and mast cell degranulation. Although neurogenic inflammation has been observed and extensively studied in peripheral tissues, its role has been primarily investigated in the genesis and maintenance of migraine pain. While some aspects of neurogenic inflammation has been disregarded in the occurrence of migraine pain, targeted analysis of factors have opened up the possibilities of a dialogue between the neurons and immune cells in driving such a sterile neuroinflammatory state in migraine pathophysiology.
Collapse
Affiliation(s)
- Roshni Ramachandran
- Anesthesiology Research, Department of Anesthesiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
23
|
Yuan H, Lauritsen CG, Kaiser EA, Silberstein SD. CGRP Monoclonal Antibodies for Migraine: Rationale and Progress. BioDrugs 2017; 31:487-501. [DOI: 10.1007/s40259-017-0250-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Sampaolo S, Liguori G, Vittoria A, Napolitano F, Lombardi L, Figols J, Melone MAB, Esposito T, Di Iorio G. First study on the peptidergic innervation of the brain superior sagittal sinus in humans. Neuropeptides 2017; 65:45-55. [PMID: 28460791 DOI: 10.1016/j.npep.2017.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/15/2017] [Accepted: 04/22/2017] [Indexed: 11/24/2022]
Abstract
The superior sagittal sinus (SSS) of the mammalian brain is a pain-sensitive intracranial vessel thought to play a role in the pathogenesis of migraine headaches. Here, we aimed to investigate the presence and the potential co-localization of some neurotransmitters in the human SSS. Immunohistochemical and double-labeling immunofluorescence analyses were applied to paraformaldehyde-fixed, paraffin-embedded, coronal sections of the SSS. Protein extraction and Western blotting technique were performed on the same material to confirm the morphological data. Our results showed nerve fibers clustered mainly in large bundles tracking parallel to the longitudinal axis of the sinus, close in proximity to the vascular endothelium. Smaller fascicles of fibers encircled the vascular lumen in a spiral fashion, extending through the subendothelial connective tissue. Isolated nerve fibers were observed around the openings of bridging veins in the sinus or around small vessels extending into the perisinusal dura. The neurotransmitters calcitonin gene related peptide (CGRP), substance P (SP), neuronal nitric oxide synthase (nNOS), vasoactive intestinal polypeptide (VIP), tyrosine hydroxylase (TH), and neuropeptide Y (NPY) were found in parietal nerve structures, distributed all along the length of the SSS. Overall, CGRP- and TH-containing nerve fibers were the most abundant. Neurotransmitters co-localized in the same fibers in the following pairs: CGRP/SP, CGRP/NOS, CGRP/VIP, and TH/NPY. Western blotting analysis confirmed the presence of such neurosubstances in the SSS wall. Overall our data provide the first evidence of the presence and co-localization of critical neurotransmitters in the SSS of the human brain, thus contributing to a better understanding of the sinus functional role.
Collapse
Affiliation(s)
- Simone Sampaolo
- Department of Medicine, Surgery, Neurology, Metabolic and Aging Science and Interuniversity Center for Research in Neurosciences, Second University of Naples, Italy
| | - Giovanna Liguori
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Alfredo Vittoria
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Filomena Napolitano
- Department of Medicine, Surgery, Neurology, Metabolic and Aging Science and Interuniversity Center for Research in Neurosciences, Second University of Naples, Italy; Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council, Naples, Italy
| | - Luca Lombardi
- Department of Medicine, Surgery, Neurology, Metabolic and Aging Science and Interuniversity Center for Research in Neurosciences, Second University of Naples, Italy
| | - Javier Figols
- Department of Pathology, Hospital Valdecilla, University of Cantabria Medical School, Santander, Spain
| | - Mariarosa Anna Beatrice Melone
- Department of Medicine, Surgery, Neurology, Metabolic and Aging Science and Interuniversity Center for Research in Neurosciences, Second University of Naples, Italy
| | - Teresa Esposito
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council, Naples, Italy; URT-IGB IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Giuseppe Di Iorio
- Department of Medicine, Surgery, Neurology, Metabolic and Aging Science and Interuniversity Center for Research in Neurosciences, Second University of Naples, Italy.
| |
Collapse
|
25
|
Fremanezumab-A Humanized Monoclonal Anti-CGRP Antibody-Inhibits Thinly Myelinated (Aδ) But Not Unmyelinated (C) Meningeal Nociceptors. J Neurosci 2017; 37:10587-10596. [PMID: 28972120 DOI: 10.1523/jneurosci.2211-17.2017] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/05/2017] [Accepted: 09/13/2017] [Indexed: 11/21/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP), the most abundant neuropeptide in primary afferent sensory neurons, is strongly implicated in the pathophysiology of migraine headache, but its role in migraine is still equivocal. As a new approach to migraine treatment, humanized anti-CGRP monoclonal antibodies (CGRP-mAbs) were developed to reduce the availability of CGRP, and were found effective in reducing the frequency of chronic and episodic migraine. We recently tested the effect of fremanezumab (TEV-48125), a CGRP-mAb, on the activity of second-order trigeminovascular dorsal horn neurons that receive peripheral input from the cranial dura, and found a selective inhibition of high-threshold but not wide-dynamic range class of neurons. To investigate the basis for this selective inhibitory effect, and further explore the mechanism of action of CGRP-mAbs, we tested the effect of fremanezumab on the cortical spreading depression-evoked activation of mechanosensitive primary afferent meningeal nociceptors that innervate the cranial dura, using single-unit recording in the trigeminal ganglion of anesthetized male rats. Fremanezumab pretreatment selectively inhibited the responsiveness of Aδ neurons, but not C-fiber neurons, as reflected in a decrease in the percentage of neurons that showed activation by cortical spreading depression. These findings identify Aδ meningeal nociceptors as a likely site of action of fremanezumab in the prevention of headache. The selectivity in its peripheral inhibitory action may partly account for fremanezumab's selective inhibition of high-threshold, as a result of a predominant A-δ input to high-threshold neurons, but not wide dynamic-range dorsal horn neurons, and why it may not be effective in all migraine patients.SIGNIFICANCE STATEMENT Recently, we reported that humanized CGRP monoclonal antibodies (CGRP-mAbs) prevent activation and sensitization of high-threshold (HT) but not wide-dynamic range trigeminovascular neurons by cortical spreading depression (CSD). In the current paper, we report that CGRP-mAbs prevent the activation of Aδ but not C-type meningeal nociceptors by CSD. This is the first identification of an anti-migraine drug that appears to be selective for Aδ-fibers (peripherally) and HT neurons (centrally). As the main CGRP-mAb site of action appears to be situated outside the brain, we conclude that the initiation of the headache phase of migraine depends on activation of meningeal nociceptors, and that for selected patients, activation of the Aδ-HT pain pathway may be sufficient for the generation of headache perception.
Collapse
|
26
|
Dux M, Will C, Eberhardt M, Fischer MJM, Messlinger K. Stimulation of rat cranial dura mater with potassium chloride causes CGRP release into the cerebrospinal fluid and increases medullary blood flow. Neuropeptides 2017; 64:61-68. [PMID: 28202186 DOI: 10.1016/j.npep.2017.02.080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/30/2016] [Accepted: 02/08/2017] [Indexed: 01/28/2023]
Abstract
Primary headaches may be accompanied by increased intracranial blood flow induced by the release of the potent vasodilator calcitonin gene-related peptide (CGRP) from activated meningeal afferents. We aimed to record meningeal and medullary blood flow simultaneously and to localize the sites of CGRP release in rodent preparations in vivo and ex vivo. Blood flow in the exposed rat parietal dura mater and the medulla oblongata was recorded by laser Doppler flowmetry, while the dura was stimulated by topical application of 60mM potassium chloride (KCl). Samples of jugular venous plasma and cerebrospinal fluid (CSF) collected from the cisterna magna were analysed for CGRP concentrations using an enzyme immunoassay. In a hemisected rat skull preparation lined with dura mater the CGRP releasing effect of KCl superfusion was examined. Superfusion of the dura mater with KCl decreased meningeal blood flow unless alpha-adrenoceptors were blocked by phentolamine, whereas the medullary blood flow was increased. The same treatment caused increased CGRP concentrations in jugular plasma and CSF and induced significant CGRP release in the hemisected rat skull preparation. Anaesthesia of the trigeminal ganglion by injection of lidocaine reduced increases in medullary blood flow and CGRP concentration in the CSF upon meningeal KCl application. CGRP release evoked by depolarisation of meningeal afferents is accompanied by increased blood flow in the medulla oblongata but not the dura mater. This discrepancy can be explained by the smooth muscle depolarising effect of KCl and the activation of sympathetic vasoconstrictor mechanisms. The medullary blood flow response is most likely mediated by CGRP released from activated central terminals of trigeminal afferents. Increased blood supply of the medulla oblongata and CGRP release into the CSF may also occur in headaches accompanying vigorous activation of meningeal afferents.
Collapse
Affiliation(s)
- Mária Dux
- Department of Physiology, University of Szeged. Dóm tér 10, H-6720 Szeged, Hungary
| | - Christine Will
- Institute of Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nürnberg, Universitätsstrasse 17, D-91054 Erlangen, Germany
| | - Mirjam Eberhardt
- Department of Anaesthesia and Critical Care Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Michael J M Fischer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nürnberg, Universitätsstrasse 17, D-91054 Erlangen, Germany
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nürnberg, Universitätsstrasse 17, D-91054 Erlangen, Germany.
| |
Collapse
|
27
|
Selective Inhibition of Trigeminovascular Neurons by Fremanezumab: A Humanized Monoclonal Anti-CGRP Antibody. J Neurosci 2017. [PMID: 28642283 DOI: 10.1523/jneurosci.0576-17.2017] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A large body of evidence supports an important role for calcitonin gene-related peptide (CGRP) in migraine pathophysiology. This evidence gave rise to a global effort to develop a new generation of therapeutics that inhibit the interaction of CGRP with its receptor in migraineurs. Recently, a new class of such drugs, humanized anti-CGRP monoclonal antibodies (CGRP-mAbs), were found to be effective in reducing the frequency of migraine. The purpose of this study was to better understand how the CGRP-mAb fremanezumab (TEV-48125) modulates meningeal sensory pathways. To answer this question, we used single-unit recording to determine the effects of fremanezumab (30 mg/kg, IV) and its isotype control Ab on spontaneous and evoked activity in naive and cortical spreading depression (CSD)-sensitized trigeminovascular neurons in the spinal trigeminal nucleus of anesthetized male and female rats. The study demonstrates that, in both sexes, fremanezumab inhibited naive high-threshold (HT) neurons, but not wide-dynamic range trigeminovascular neurons, and that the inhibitory effects on the neurons were limited to their activation from the intracranial dura but not facial skin or cornea. In addition, when given sufficient time, fremanezumab prevents the activation and sensitization of HT neurons by CSD. Mechanistically, these findings suggest that HT neurons play a critical role in the initiation of the perception of headache and the development of cutaneous allodynia and central sensitization. Clinically, the findings may help to explain the therapeutic benefit of CGRP-mAb in reducing headaches of intracranial origin such as migraine with aura and why this therapeutic approach may not be effective for every migraine patient.SIGNIFICANCE STATEMENT Calcitonin gene-related peptide (CGRP) monoclonal antibodies (CGRP-mAbs) are capable of preventing migraine. However, their mechanism of action is unknown. In the current study, we show that, if given enough time, a CGRP-mAb can prevent the activation and sensitization of high-threshold (central) trigeminovascular neurons by cortical spreading depression, but not their activation from the skin or cornea, suggesting a potential explanation for selectivity to migraine headache, but not other pains, and a predominantly peripheral site of action.
Collapse
|
28
|
Coles JA, Myburgh E, Brewer JM, McMenamin PG. Where are we? The anatomy of the murine cortical meninges revisited for intravital imaging, immunology, and clearance of waste from the brain. Prog Neurobiol 2017; 156:107-148. [PMID: 28552391 DOI: 10.1016/j.pneurobio.2017.05.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 04/25/2017] [Accepted: 05/08/2017] [Indexed: 12/15/2022]
Abstract
Rapid progress is being made in understanding the roles of the cerebral meninges in the maintenance of normal brain function, in immune surveillance, and as a site of disease. Most basic research on the meninges and the neural brain is now done on mice, major attractions being the availability of reporter mice with fluorescent cells, and of a huge range of antibodies useful for immunocytochemistry and the characterization of isolated cells. In addition, two-photon microscopy through the unperforated calvaria allows intravital imaging of the undisturbed meninges with sub-micron resolution. The anatomy of the dorsal meninges of the mouse (and, indeed, of all mammals) differs considerably from that shown in many published diagrams: over cortical convexities, the outer layer, the dura, is usually thicker than the inner layer, the leptomeninx, and both layers are richly vascularized and innervated, and communicate with the lymphatic system. A membrane barrier separates them and, in disease, inflammation can be localized to one layer or the other, so experimentalists must be able to identify the compartment they are studying. Here, we present current knowledge of the functional anatomy of the meninges, particularly as it appears in intravital imaging, and review their role as a gateway between the brain, blood, and lymphatics, drawing on information that is scattered among works on different pathologies.
Collapse
Affiliation(s)
- Jonathan A Coles
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davis Building, University of Glasgow, Glasgow, G12 8TA, United Kingdom.
| | - Elmarie Myburgh
- Centre for Immunology and Infection Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, United Kingdom
| | - James M Brewer
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davis Building, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Paul G McMenamin
- Department of Anatomy & Developmental Biology, School of Biomedical and Psychological Sciences and Monash Biomedical Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, 10 Chancellor's Walk, Clayton, Victoria, 3800, Australia
| |
Collapse
|
29
|
Li N, Zhang X, Dong H, Hu Y, Qian Y. Bidirectional relationship of mast cells-neurovascular unit communication in neuroinflammation and its involvement in POCD. Behav Brain Res 2017; 322:60-69. [PMID: 28082194 DOI: 10.1016/j.bbr.2017.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 12/31/2016] [Accepted: 01/02/2017] [Indexed: 11/26/2022]
Abstract
Postoperative cognitive dysfunction (POCD) has been hypothesized to be mediated by surgery-induced neuroinflammation, which is also a key element in the pathobiology of neurodegenerative diseases, stroke, and neuropsychiatric disorders. There is extensive communication between the immune system and the central nervous system (CNS). Inflammation resulting from activation of the innate immune system cells in the periphery can impact central nervous system behaviors, such as cognitive performance. Mast cells (MCs), as the"first responders" in the CNS, can initiate, amplify, and prolong other immune and nervous responses upon activation. In addition, MCs and their secreted mediators modulate inflammatory processes in multiple CNS pathologies and can thereby either contribute to neurological damage or confer neuroprotection. Neuroinflammation has been considered to be linked to neurovascular dysfunction in several neurological disorders. This review will provide a brief overview of the bidirectional relationship of MCs-neurovascular unit communication in neuroinflammation and its involvement in POCD, providing a new and unique therapeutic target for the adjuvant treatment of POCD.
Collapse
Affiliation(s)
- Nana Li
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Xiang Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Hongquan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Youli Hu
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Yanning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, PR China.
| |
Collapse
|
30
|
Jacobs B, Dussor G. Neurovascular contributions to migraine: Moving beyond vasodilation. Neuroscience 2016; 338:130-144. [PMID: 27312704 PMCID: PMC5083225 DOI: 10.1016/j.neuroscience.2016.06.012] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/27/2016] [Accepted: 06/07/2016] [Indexed: 12/31/2022]
Abstract
Migraine is the third most common disease worldwide, the most common neurological disorder, and one of the most common pain conditions. Despite its prevalence, the basic physiology and underlying mechanisms contributing to the development of migraine are still poorly understood and development of new therapeutic targets is long overdue. Until recently, the major contributing pathophysiological event thought to initiate migraine was cerebral and meningeal arterial vasodilation. However, the role of vasodilation in migraine is unclear and recent findings challenge its necessity. While vasodilation itself may not contribute to migraine, it remains possible that vessels play a role in migraine pathophysiology in the absence of vasodilation. Blood vessels consist of a variety of cell types that both release and respond to numerous mediators including growth factors, cytokines, adenosine triphosphate (ATP), and nitric oxide (NO). Many of these mediators have actions on neurons that can contribute to migraine. Conversely, neurons release factors such as norepinephrine and calcitonin gene-related peptide (CGRP) that act on cells native to blood vessels. Both normal and pathological events occurring within and between vascular cells could thus mediate bi-directional communication between vessels and the nervous system, without the need for changes in vascular tone. This review will discuss the potential contribution of the vasculature, specifically endothelial cells, to current neuronal mechanisms hypothesized to play a role in migraine. Hypothalamic activity, cortical spreading depression (CSD), and dural afferent input from the cranial meninges will be reviewed with a focus on how these mechanisms can influence or be impacted by blood vessels. Together, the data discussed will provide a framework by which vessels can be viewed as important potential contributors to migraine pathophysiology, even in light of the current uncertainty over the role of vasodilation in this disorder.
Collapse
Affiliation(s)
- Blaine Jacobs
- Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - Gregory Dussor
- Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States.
| |
Collapse
|
31
|
Rice FL, Xie JY, Albrecht PJ, Acker E, Bourgeois J, Navratilova E, Dodick DW, Porreca F. Anatomy and immunochemical characterization of the non-arterial peptidergic diffuse dural innervation of the rat and Rhesus monkey: Implications for functional regulation and treatment in migraine. Cephalalgia 2016; 37:1350-1372. [DOI: 10.1177/0333102416677051] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Objective The interplay between neuronal innervation and other cell types underlies the physiological functions of the dura mater and contributes to pathophysiological conditions such as migraine. We characterized the extensive, but understudied, non-arterial diffuse dural innervation (DDI) of the rat and Rhesus monkey. Methods We used a comprehensive integrated multi-molecular immunofluorescence labeling strategy to extensively profile the rat DDI and to a lesser extent that of the Rhesus monkey. Results The DDI was distributed across a dense, pervasive capillary network and included free nerve endings of peptidergic CGRP-expressing C fibers that were closely intertwined with noradrenergic (NA) sympathetic fibers and thin-caliber nonpeptidergic “C/Aδ” fibers. These newly identified C/Aδ fibers were unmyelinated, like C fibers, but expressed NF200, usually indicative of Aδ fibers, and uniquely co-labeled for the CGRP co-receptor, RAMP1. Slightly-larger caliber NF200-positive fibers co-labeled for myelin basic protein (MBP) and terminated as unbranched corpuscular endings. The DDI peptidergic fibers co-labeled for the lectin IB4 and expressed presumably excitatory α1-adrenergic receptors, as well as inhibitory 5HT1D receptors and the delta opioid receptor (δOR), but rarely the mu opioid receptor (µOR). Labeling for P2X3, TRPV1, TRPA1, and parasympathetic markers was not observed in the DDI. Interpretation These results suggest potential functional interactions, wherein peptidergic DDI fibers may be activated by stress-related sympathetic activity, resulting in CGRP release that could be detected in the circulation. CGRP may also activate nonpeptidergic C/Aδ fibers that are likely mechanosensitive or polymodal, leading to activation of post-synaptic pain transmission circuits. The distribution of α1-adrenergic receptors, RAMP1, and the unique expression of the δOR on CGRP-expressing DDI fibers suggest strategies for functional modulation and application to therapy.
Collapse
Affiliation(s)
- Frank L Rice
- Integrated Tissue Dynamics LLC, Rensselaer, NY, USA
| | - Jennifer Y Xie
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | | | - Emily Acker
- Integrated Tissue Dynamics LLC, Rensselaer, NY, USA
| | | | - Edita Navratilova
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - David W Dodick
- Departments of Collaborative Research and Neurology, Mayo Clinic, Scottsdale, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
- Departments of Collaborative Research and Neurology, Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
32
|
Edvinsson L. Blockade of CGRP Receptors in the Intracranial Vasculature: A New Target in the Treatment of Headache. Cephalalgia 2016; 24:611-22. [PMID: 15265049 DOI: 10.1111/j.1468-2982.2003.00719.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In primary headaches, there is a clear association between the headache and the release of calcitonin gene-related peptide (CGRP) but not with any of the other neuronal messengers. The purpose of this review is to describe the role of CGRP in the intracranial circulation and to elucidate a possible role for a specific CGRP receptor antagonist in the treatment of primary headaches. Acute treatment with a 5-HT1B/1D agonist (triptan) results in alleviation of the headache and normalization of the cranial venous CGRP levels, in part due to a presynaptic inhibitory effect on sensory nerves. The central role of CGRP in migraine and cluster headache pathophysiology has led to the search for small molecule CGRP antagonists with few cardiovascular side-effects. The initial pharmacological profile of such a group of compounds has recently been disclosed. One of these compounds has been found to be efficacious in the relief of acute attacks of migraine.
Collapse
Affiliation(s)
- L Edvinsson
- Department of Internal Medicine, Lund University Hospital, Lund, Sweden.
| |
Collapse
|
33
|
Tajti J, Szok D, Majláth Z, Tuka B, Csáti A, Vécsei L. Migraine and neuropeptides. Neuropeptides 2015; 52:19-30. [PMID: 26094101 DOI: 10.1016/j.npep.2015.03.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/22/2015] [Accepted: 03/25/2015] [Indexed: 12/25/2022]
Abstract
Migraine is a common disabling neurovascular primary headache disorder. The pathomechanism is not clear, but extensive preclinical and clinical studies are ongoing. The structural basis of the leading hypothesis is the trigeminovascular system, which includes the trigeminal ganglion, the meningeal vasculature, and the distinct nuclei of the brainstem, the thalamus and the somatosensory cortex. This review covers the effects of sensory (calcitonin gene-related peptide, pituitary adenylate cyclase-activating polypeptide and substance P), sympathetic (neuropeptide Y) and parasympathetic (vasoactive intestinal peptide) migraine-related neuropeptides and the functions of somatostatin, nociceptin and the orexins in the trigeminovascular system. These neuropeptides may take part in neurogenic inflammation (plasma protein extravasation and vasodilatation) of the intracranial vasculature and peripheral and central sensitization of the trigeminal system. The results of human clinical studies are discussed with regard to the alterations in these neuropeptides in the plasma, saliva and cerebrospinal fluid during or between migraine attacks, and the therapeutic possibilities involving migraine-related neuropeptides in the acute and prophylactic treatment of migraine headache are surveyed.
Collapse
Affiliation(s)
- János Tajti
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary.
| | - Délia Szok
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary
| | - Zsófia Majláth
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary
| | - Bernadett Tuka
- MTA - SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged H-6725, Hungary
| | - Anett Csáti
- MTA - SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged H-6725, Hungary
| | - László Vécsei
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary; MTA - SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged H-6725, Hungary
| |
Collapse
|
34
|
Dux M, Will C, Vogler B, Filipovic MR, Messlinger K. Meningeal blood flow is controlled by H2 S-NO crosstalk activating a HNO-TRPA1-CGRP signalling pathway. Br J Pharmacol 2015; 173:431-45. [PMID: 25884403 DOI: 10.1111/bph.13164] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/17/2015] [Accepted: 04/10/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Meningeal blood flow is controlled by CGRP released from trigeminal afferents and NO mainly produced in arterial endothelium. The vasodilator effect of NO may be due to the NO-derived compound, nitroxyl (HNO), generated through reaction with endogenous H2 S. We investigated the involvement of HNO in CGRP release and meningeal blood flow. EXPERIMENTAL APPROACH Blood flow in exposed dura mater of rats was recorded by laser Doppler flowmetry. CGRP release from the dura mater in the hemisected rat head was quantified using an elisa. NO and H2 S were localized histochemically with specific sensors. KEY RESULTS Topical administration of the NO donor diethylamine-NONOate increased meningeal blood flow by 30%. Pretreatment with oxamic acid, an inhibitor of H2 S synthesis, reduced this effect. Administration of Na2 S increased blood flow by 20%, an effect abolished by the CGRP receptor antagonist CGRP8-37 or the TRPA1 channel antagonist HC030031 and reduced when endogenous NO synthesis was blocked. Na2 S dose-dependently increased CGRP release two- to threefold. Co-administration of diethylamine-NONOate facilitated CGRP release, while inhibition of endogenous NO or H2 S synthesis lowered basal CGRP release. NO and H2 S were mainly localized in arterial vessels, HNO additionally in nerve fibre bundles. HNO staining was lost after treatment with L-NMMA and oxamic acid. CONCLUSIONS AND IMPLICATIONS NO and H2 S cooperatively increased meningeal blood flow by forming HNO, which activated TRPA1 cation channels in trigeminal fibres, inducing CGRP release. This HNO-TRPA1-CGRP signalling pathway may be relevant to the pathophysiology of headaches.
Collapse
Affiliation(s)
- Mária Dux
- Department of Physiology, University of Szeged, Szeged, Hungary
| | - Christine Will
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Birgit Vogler
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Milos R Filipovic
- Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
35
|
|
36
|
Lv X, Wu Z, Li Y. Innervation of the cerebral dura mater. Neuroradiol J 2014; 27:293-8. [PMID: 24976196 PMCID: PMC4202893 DOI: 10.15274/nrj-2014-10052] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 04/24/2014] [Indexed: 02/07/2023] Open
Abstract
The trigemino-cardiac reflex during Onyx embolization for dural arteriovenous fistula may be caused by mechanical or chemical stimulus to the terminals of the unencapsulated Ruffini-like receptors stemming from A-axons in the dural connective tissue at sites of dural arteries and sinuses. Slow A (Aδ) and fast A (Aβ) neurons may play a role in the stimulus afferent pathway due to their higher mechanosensitivity and chemosensitivity. These afferent pathway nerves are cholinergic innervations of the dura mater, which also contains vasoactive neuropeptides such as calcitonin gene-related peptide, substance P, and neurokinin A. Stimulation of meningeal sensory fibres can evoke cerebral vasodilation through the peripheral release of neuropeptides, which play a role in headache pathogenesis. These myelinated A-fibers terminate in the deep part (laminae III-V) of the spinal dorsal horn. Its efferent pathway has been defined as the acetylcholinergic vagus nerve. The A11 nucleus, located in the posterior hypothalamus, providing the only known source of descending dopaminergic innervation for the spinal grey matter, can inhibit the neurons in the spinal dorsal horn.
Collapse
Affiliation(s)
- Xianli Lv
- /> Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University; Beijing, China
| | - Zhongxue Wu
- /> Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University; Beijing, China
| | - Youxiang Li
- /> Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University; Beijing, China
| |
Collapse
|
37
|
Schueler M, Neuhuber WL, De Col R, Messlinger K. Innervation of Rat and Human Dura Mater and Pericranial Tissues in the Parieto-Temporal Region by Meningeal Afferents. Headache 2014; 54:996-1009. [DOI: 10.1111/head.12371] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Markus Schueler
- Institute of Physiology and Pathophysiology; Friedrich-Alexander University Erlangen-Nürnberg; Erlangen Germany
- Department of Nephrology and Hypertensiology; Friedrich-Alexander University Erlangen-Nürnberg; Erlangen Germany
| | - Winfried L. Neuhuber
- Institute of Anatomy; Friedrich-Alexander University Erlangen-Nürnberg; Erlangen Germany
| | - Roberto De Col
- Department of Anaesthesiology and Operative Intensive Care; Faculty of Clinical Medicine Mannheim; University of Heidelberg; Mannheim Germany
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology; Friedrich-Alexander University Erlangen-Nürnberg; Erlangen Germany
| |
Collapse
|
38
|
Sensory innervation of the dorsal longitudinal ligament and the meninges in the lumbar spine of the dog. Histochem Cell Biol 2014; 142:433-47. [PMID: 24748503 DOI: 10.1007/s00418-014-1218-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2014] [Indexed: 10/25/2022]
Abstract
Although intervertebral disc herniation is a well-known disease in dogs, pain management for this condition has remained a challenge. The goal of the present study is to address the lack of information regarding the innervation of anatomical structures within the canine vertebral canal. Immunolabeling was performed with antibodies against protein gene product 9.5, Tuj-1 (neuron-specific class III β-tubulin), calcitonin gene-related peptide, and neuropeptide Y in combination with the lectin from Lycopersicon esculentum as a marker for blood vessels. Staining was indicative of both sensory and sympathetic fibers. Innervation density was the highest in lateral areas, intermediate in dorsal areas, and the lowest in ventral areas. In the dorsal longitudinal ligament (DLL), the highest innervation density was observed in the lateral regions. Innervation was lower at mid-vertebral levels than at intervertebral levels. The presence of sensory and sympathetic fibers in the canine dura and DLL suggests that pain may originate from both these structures. Due to these regional differences in sensory innervation patterns, trauma to intervertebral DLL and lateral dura is expected to be particularly painful. The results ought to provide a better basis for the assessment of medicinal and surgical procedures.
Collapse
|
39
|
Noseda R, Burstein R. Migraine pathophysiology: anatomy of the trigeminovascular pathway and associated neurological symptoms, CSD, sensitization and modulation of pain. Pain 2013; 154 Suppl 1:10.1016/j.pain.2013.07.021. [PMID: 24347803 PMCID: PMC3858400 DOI: 10.1016/j.pain.2013.07.021] [Citation(s) in RCA: 547] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 06/19/2013] [Accepted: 07/15/2013] [Indexed: 02/08/2023]
Abstract
Scientific evidence support the notion that migraine pathophysiology involves inherited alteration of brain excitability, intracranial arterial dilatation, recurrent activation and sensitization of the trigeminovascular pathway, and consequential structural and functional changes in genetically susceptible individuals. Evidence of altered brain excitability emerged from clinical and preclinical investigation of sensory auras, ictal and interictal hypersensitivity to visual, auditory and olfactory stimulation, and reduced activation of descending inhibitory pain pathways. Data supporting the activation and sensitization of the trigeminovascular system include the progressive development of cephalic and whole-body cutaneous allodynia during a migraine attack. Also, structural and functional alterations include the presence of subcortical white mater lesions, thickening of cortical areas involved in processing sensory information, and cortical neuroplastic changes induced by cortical spreading depression. Here, we review recent anatomical data on the trigeminovascular pathway and its activation by cortical spreading depression, a novel understanding of the neural substrate of migraine-type photophobia, and modulation of the trigeminovascular pathway by the brainstem, hypothalamus and cortex.
Collapse
Affiliation(s)
- Rodrigo Noseda
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
Schueler M, Messlinger K, Dux M, Neuhuber WL, De R. Extracranial projections of meningeal afferents and their impact on meningeal nociception and headache. Pain 2013; 154:1622-1631. [DOI: 10.1016/j.pain.2013.04.040] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/23/2013] [Accepted: 04/23/2013] [Indexed: 01/29/2023]
|
41
|
Eftekhari S, Warfvinge K, Blixt FW, Edvinsson L. Differentiation of nerve fibers storing CGRP and CGRP receptors in the peripheral trigeminovascular system. THE JOURNAL OF PAIN 2013; 14:1289-303. [PMID: 23958278 DOI: 10.1016/j.jpain.2013.03.010] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 02/26/2013] [Accepted: 03/20/2013] [Indexed: 11/29/2022]
Abstract
UNLABELLED Primary headaches such as migraine are postulated to involve the activation of sensory trigeminal pain neurons that innervate intracranial blood vessels and the dura mater. It is suggested that local activation of these sensory nerves may involve dural mast cells as one factor in local inflammation, causing sensitization of meningeal nociceptors. Immunofluorescence was used to study the detailed distribution of calcitonin gene-related peptide (CGRP) and its receptor components calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1) in whole-mount rat dura mater and in human dural vessels. The relative distributions of CGRP, CLR, and RAMP1 were evaluated with respect to each other and in relationship to mast cells, myelin, substance P, neuronal nitric oxide synthase, pituitary adenylate cyclase-activating polypeptide, and vasoactive intestinal peptide. CGRP expression was found in thin unmyelinated fibers, whereas CLR and RAMP1 were expressed in thicker myelinated fibers coexpressed with an A-fiber marker. CLR and RAMP1 immunoreactivity colocalized with mast cell tryptase in rodent; however, expression of both receptor components was not observed in human mast cells. Immunoreactive substance P fibers coexpressed CGRP, although neuronal nitric oxide synthase and vasoactive intestinal peptide expression was very limited, and these fibers were distinct from the CGRP-positive fibers. Few pituitary adenylate cyclase-activating polypeptide immunoreactive fibers occurred and some colocalized with CGRP. PERSPECTIVE This study demonstrates the detailed distribution of CGRP and its receptor in the dura mater. These data suggest that CGRP is expressed in C-fibers and may act on A-fibers, rodent mast cells, and vascular smooth muscle cells that express the CGRP receptor. These sites represent potential pathophysiological targets of novel antimigraine agents such as the newly developed CGRP receptor antagonists.
Collapse
Affiliation(s)
- Sajedeh Eftekhari
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|
42
|
Schebesch KM, Brawanski A, Bele S, Schödel P, Herbst A, Bründl E, Kagerbauer SM, Martin J, Lohmeier A, Stoerr EM, Proescholdt M. Neuropeptide Y - an early biomarker for cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Neurol Res 2013; 35:1038-43. [PMID: 23915659 DOI: 10.1179/1743132813y.0000000246] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES In the human brain, the potent vasoconstrictive neuropeptide Y (NPY) is abundantly expressed. Neuropeptide Y, which is stored in perivascular nerve fibers of the cerebral arteries, regulates the cerebral vascular diameter as well as cerebral blood flow. However, the role of NPY in the pathogenesis of cerebral vasospasm (CV) related to subarachnoid hemorrhage (SAH) is unclear. We prospectively analyzed and compared the release of endogenous NPY in the cerebrospinal fluid (CSF) of 66 patients with SAH to NPY release in a control group. Additionally, we correlated the levels of NPY with CV and consecutive ischemic stroke. METHODS Sixty-six consecutive patients (40 women, 26 men; mean age 53·1 years) with aneurysmal SAH were included. In the SAH group, CSF was drawn daily from day 1 to day 10 after the onset of SAH. The CSF of 29 patients undergoing spinal anesthesia for orthopedic surgery served as control samples. The NPY levels were determined in duplicate CSF samples by means of a competitive enzyme immunoassay (EIA). The levels of NPY in CSF were correlated with the development of CV over the 10-day period after the onset of SAH and to the occurrence of consecutive ischemic stroke. To evaluate CSF NPY levels as a predictive biomarker for vasospasm, we calculated the sensitivity and specificity as well as the positive and negative predictive values. RESULTS The NPY levels were significantly higher in the SAH group than in the control group (p < 0·001). The treatment modality (clip versus coil) did not influence the level of NPY in CSF (p > 0·05). Patients with CV showed significantly higher NPY levels than patients without CV during the entire observation period. The NPY levels of the non-CV group dissipated over time, whereas the CV group showed continuously increasing values. The NPY levels from day 4 to 10 were significantly higher in patients with CV-related stroke than in non-stroke patients. Using 0·3 ng/ml as a cut-off value, NPY levels on day 3 predicted the occurrence of CV with a sensitivity and specificity of 82% and 72%, respectively. High NPY levels, starting on day 4, significantly correlated with poor Glasgow Outcome Score grading at the follow-up (p < 0·05). DISCUSSION Our data indicate that NPY is involved in the pathogenesis of SAH-related CV and ischemia. Neuropeptide Y represents an early and reliable biomarker for the prediction of CV and consecutive stroke due to aneurysmal SAH.
Collapse
|
43
|
Teodoro FC, Tronco Júnior MF, Zampronio AR, Martini AC, Rae GA, Chichorro JG. Peripheral substance P and neurokinin-1 receptors have a role in inflammatory and neuropathic orofacial pain models. Neuropeptides 2013. [PMID: 23177733 DOI: 10.1016/j.npep.2012.10.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is accumulating evidence that substance P released from peripheral sensory neurons participates in inflammatory and neuropathic pain. In this study it was investigated the ability of substance P to induce orofacial nociception and thermal and mechanical hyperalgesia, as well as the role of NK1 receptors on models of orofacial inflammatory and neuropathic pain. Substance P injected into the upper lip at 1, 10 and 100 μg/50 μL failed to induce nociceptive behavior. Also, substance P (0.1-10 μg/50 μL) injected into the upper lip did not evoke orofacial cold hyperalgesia and when injected at 1 μg/50 μL did not induce mechanical hyperalgesia. However, substance P at this latter dose induced orofacial heat hyperalgesia, which was reduced by the pre-treatment of rats with a non-peptide NK1 receptor antagonist (SR140333B, 3mg/kg). Systemic treatment with SR140333B (3 mg/kg) also reduced carrageenan-induced heat hyperalgesia, but did not exert any influence on carrageenan-induced cold hyperalgesia. Blockade of NK1 receptors with SR140333B also reduced by about 50% both phases of the formalin response evaluated in the orofacial region. Moreover, heat, but not cold or mechanical, hyperalgesia induced by constriction of the infraorbital nerve, a model of trigeminal neuropathic pain, was abolished by pretreatment with SR140333B. Considering that substance P was peripherally injected (i.e. upper lip) and the NK1 antagonist used lacks the ability to cross the blood-brain-barrier, our results demonstrate that the peripheral SP/NK1 system participates in the heat hyperalgesia associated with inflammation or nerve injury and in the persistent pain evoked by formalin in the orofacial region.
Collapse
Affiliation(s)
- Fernanda C Teodoro
- Department of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
| | | | | | | | | | | |
Collapse
|
44
|
Huang D, Li S, Dhaka A, Story GM, Cao YQ. Expression of the transient receptor potential channels TRPV1, TRPA1 and TRPM8 in mouse trigeminal primary afferent neurons innervating the dura. Mol Pain 2012; 8:66. [PMID: 22971321 PMCID: PMC3489865 DOI: 10.1186/1744-8069-8-66] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 08/18/2012] [Indexed: 11/13/2022] Open
Abstract
Background Migraine and other headache disorders affect a large percentage of the population and cause debilitating pain. Activation and sensitization of the trigeminal primary afferent neurons innervating the dura and cerebral vessels is a crucial step in the “headache circuit”. Many dural afferent neurons respond to algesic and inflammatory agents. Given the clear role of the transient receptor potential (TRP) family of channels in both sensing chemical stimulants and mediating inflammatory pain, we investigated the expression of TRP channels in dural afferent neurons. Methods We used two fluorescent tracers to retrogradely label dural afferent neurons in adult mice and quantified the abundance of peptidergic and non-peptidergic neuron populations using calcitonin gene-related peptide immunoreactivity (CGRP-ir) and isolectin B4 (IB4) binding as markers, respectively. Using immunohistochemistry, we compared the expression of TRPV1 and TRPA1 channels in dural afferent neurons with the expression in total trigeminal ganglion (TG) neurons. To examine the distribution of TRPM8 channels, we labeled dural afferent neurons in mice expressing farnesylated enhanced green fluorescent protein (EGFPf) from a TRPM8 locus. We used nearest-neighbor measurement to predict the spatial association between dural afferent neurons and neurons expressing TRPA1 or TRPM8 channels in the TG. Results and conclusions We report that the size of dural afferent neurons is significantly larger than that of total TG neurons and facial skin afferents. Approximately 40% of dural afferent neurons exhibit IB4 binding. Surprisingly, the percentage of dural afferent neurons containing CGRP-ir is significantly lower than those of total TG neurons and facial skin afferents. Both TRPV1 and TRPA1 channels are expressed in dural afferent neurons. Furthermore, nearest-neighbor measurement indicates that TRPA1-expressing neurons are clustered around a subset of dural afferent neurons. Interestingly, TRPM8-expressing neurons are virtually absent in the dural afferent population, nor do these neurons cluster around dural afferent neurons. Taken together, our results suggest that TRPV1 and TRPA1 but not TRPM8 channels likely contribute to the excitation of dural afferent neurons and the subsequent activation of the headache circuit. These results provide an anatomical basis for understanding further the functional significance of TRP channels in headache pathophysiology.
Collapse
Affiliation(s)
- Dongyue Huang
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
45
|
Messlinger K, Lennerz JK, Eberhardt M, Fischer MJ. CGRP and NO in the Trigeminal System: Mechanisms and Role in Headache Generation. Headache 2012; 52:1411-27. [DOI: 10.1111/j.1526-4610.2012.02212.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Bernstein C, Burstein R. Sensitization of the trigeminovascular pathway: perspective and implications to migraine pathophysiology. J Clin Neurol 2012; 8:89-99. [PMID: 22787491 PMCID: PMC3391624 DOI: 10.3988/jcn.2012.8.2.89] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 11/29/2011] [Accepted: 11/29/2011] [Indexed: 02/01/2023] Open
Abstract
Migraine headache is commonly associated with signs of exaggerated intracranial and extracranial mechanical sensitivities. Patients exhibiting signs of intracranial hypersensitivity testify that their headache throbs and that mundane physical activities that increase intracranial pressure (such as bending over or coughing) intensify the pain. Patients exhibiting signs of extracranial hypersensitivity testify that during migraine their facial skin hurts in response to otherwise innocuous activities such as combing, shaving, letting water run over their face in the shower, or wearing glasses or earrings (termed here cephalic cutaneous allodynia). Such patients often testify that during migraine their bodily skin is hypersensitive and that wearing tight cloth, bracelets, rings, necklaces and socks or using a heavy blanket can be uncomfortable and/or painful (termed her extracephalic cutaneous allodynia). This review summarizes the evidence that support the view that activation of the trigeminovascular pathway contribute to the headache phase of a migraine attack, that the development of throbbing in the initial phase of migraine is mediated by sensitization of peripheral trigeminovascular neurons that innervate the meninges, that the development of cephalic allodynia is propelled by sensitization of second-order trigeminovascular neurons in the spinal trigeminal nucleus which receive converging sensory input from the meninges as well as from the scalp and facial skin, and that the development of extracephalic allodynia is mediated by sensitization of third-order trigeminovascular neurons in the posterior thalamic nuclei which receive converging sensory input from the meninges, facial and body skin.
Collapse
Affiliation(s)
- Carolyn Bernstein
- Department of Anaesthesia Neuroscience, Comprehensive Headache Center, Harvard Medical School, Boston, MA, USA
- Departments of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Rami Burstein
- Department of Anaesthesia Neuroscience, Comprehensive Headache Center, Harvard Medical School, Boston, MA, USA
- Departments of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
47
|
Neuropeptide effects in the trigeminal system: pathophysiology and clinical relevance in migraine. Keio J Med 2012; 60:82-9. [PMID: 21979827 DOI: 10.2302/kjm.60.82] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The neuropeptides substance P, calcitonin gene-related peptide (CGRP) and vasoactive intestinal polypeptide (VIP) have been considered as important mediators in migraine and other primary headaches. CGRP and VIP have been found at increased concentrations in jugular venous plasma during attacks of migraine or cluster headache, and CGRP receptor antagonists have recently been shown to be effective in migraine therapy. Substance P and CGRP are produced from a subset of trigeminal afferents, whereas VIP derives from parasympathetic efferents. Release of these neuropeptides in the meninges can cause arterial vasodilatation, mast cell degranulation and plasma extravasation in animal experiments, but only CGRP seems to be relevant in migraine. Animal models have confirmed the important role of CGRP in meningeal nociception. The activity of spinal trigeminal neurons is a sensitive integrative measure of trigeminal activity and is partly under the control of CGRP, most likely via central mechanisms. CGRP released from central terminals of trigeminal afferents in the spinal trigeminal nucleus seems to facilitate nociceptive transmission via presynaptic mechanisms. The central effect of CGRP is substantiated by suppression of nociceptive c-fos activation and neuronal activity in the spinal trigeminal nucleus following CGRP receptor inhibition. These proposed functions are supported by the localization of CGRP receptor components in the rat cranial dura mater, trigeminal ganglion and spinal trigeminal nucleus. The currently available data indicate multiple sites of CGRP action in trigeminal nociception and the pathogenesis of migraine; however, central CGRP receptors are likely to be the essential targets in the treatment of migraine using CGRP receptor antagonists.
Collapse
|
48
|
Stucky NL, Gregory E, Winter MK, He YY, Hamilton ES, McCarson KE, Berman NEJ. Sex differences in behavior and expression of CGRP-related genes in a rodent model of chronic migraine. Headache 2011; 51:674-92. [PMID: 21521205 DOI: 10.1111/j.1526-4610.2011.01882.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The objectives of this study were to develop a preclinical rodent model that produces migraine-like behaviors based on International Headache Society diagnostic criteria, to determine whether sex differences are present, and to determine whether expression of calcitonin gene-related peptide (CGRP) and the genes encoding its receptor in trigeminal ganglion or medulla correlates with those behaviors. BACKGROUND Few animal studies of migraine have tested behaviors associated with migraine diagnostic criteria. In this study, changes in activity and in mechanical sensitivity of facial regions following application of inflammatory soup (IS) or vehicle (phosphate-buffered saline [PBS]) to the dura were measured to model changes in routine activity and allodynia. CGRP, an important mediator of migraine pathogenesis, and the 3 components of its receptor, calcitonin-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and receptor component protein (RCP) mRNAs were quantified in the trigeminal ganglion and medulla to identify baseline sex differences and changes associated with application of IS or PBS to the dura. METHODS Male and female Sprague-Dawley rats were implanted with a dural cannula. Groups of rats were treated with 10 or 20 µL volumes of IS or PBS. Baseline behavioral testing was conducted prior to surgery and again at 7 days postsurgery, and dural application of IS or PBS was performed repeatedly for a total of 8 applications. Locomotor activity was assessed using force plate actimetry during and following application to provide information on distance traveled, bouts of low mobility, spatial confinement, and focused energy. Periorbital and perimasseter sensory testing was performed 20 minutes post-application to measure allodynia. The rats were sacrificed 30 minutes following the final dural treatment, tissue was dissected and total RNAs were isolated from ipsilateral trigeminal ganglia and ipsilateral medulla. Quantitative real-time polymerase chain reactions were used to measure the expression of amplified constructs using gene-specific primers for CGRP, RAMP1, CLR, and RCP. RESULTS Both males and females showed behavioral effects of IS application, but there were pronounced sex differences. Females showed effects at the lower dose, and activity changes were present for a longer duration, but males required fewer applications of IS to exhibit behavioral changes. Females showed increased withdrawal responses for periorbital and perimasseter mechanical testing (10 µL IS groups), and males showed increased perimasseter withdrawal responses (20 µL IS group). In the trigeminal ganglion, there were no baseline sex differences in CGRP-encoding mRNA, but females had lower baseline expression of RAMP1, CLR, and RCP-encoding mRNAs. In the medulla, females had higher baseline levels of CGRP-encoding mRNAs and lower baseline levels of RAMP1, CLR, and RCP-encoding mRNAs than males. Both IS and PBS increased expression of mRNAs encoding CGRP, RAMP1, RCP, and CLR in the trigeminal ganglion in males, but in females, only CLR and RCP were increased. In the medulla both IS and PBS increased expression of CGRP, CLR in males and CLR and RCP in females. Thus, expression of CGRP-related genes did not mirror the behavioral differences between IS and PBS groups. Instead, CGRP-related genes were upregulated by both IS and PBS applications. CONCLUSIONS This study demonstrates significant changes in locomotor activity and facial allodynia associated with application of IS to the dura as well as significant sex differences, demonstrating that International Headache Society diagnostic criteria can be used to design a rodent behavioral model of migraine. In addition, there were prominent baseline sex differences in expression of CGRP and its receptor in both the trigeminal ganglion and medulla, but the majority of changes in expression of CGRP and its receptor were present in both the IS and PBS treated rats. This suggests that the CGRP pathway responds to changes in intracranial pressure or meningeal stretch, while migraine-like behaviors occur after meningeal inflammation.
Collapse
Affiliation(s)
- Nicholas L Stucky
- Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Abstract
This article reviews the baffling problem of the pathophysiology behind a peripheral genesis of migraine pain--or more particularly the baffling problem of its absence. I examine a number of pathophysiological states and the effector mechanisms for these states and find most of them very plausible and that they are all supported by abundant evidence. However, this evidence is mostly indirect; to date the occurrence of any of the presumed pathological states has not been convincingly demonstrated. Furthermore, there is little evidence of increased trigeminal sensory traffic into the central nervous system during a migraine attack. The article also examines a number of observations and experimental programs used to bolster a theory of peripheral pathology and suggests reasons why they may in fact not bolster it. I suggest that a pathology, if one exists, may be in the brain and even that it may not be a pathology at all. Migraine headache might just happen because of random noise in an exquisitely sensitive and complex network. The article suggests an experimental program to resolve these issues.
Collapse
Affiliation(s)
- Geoffrey A Lambert
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Australia
| |
Collapse
|