1
|
Hotha A, Ganesh CB. GABA-immunoreactive neurons in the Central Nervous System of the viviparous teleost Poecilia sphenops. J Chem Neuroanat 2023; 133:102339. [PMID: 37689218 DOI: 10.1016/j.jchemneu.2023.102339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Gamma-aminobutyric acid (GABA) functions as the primary inhibitory neurotransmitter within the central nervous system (CNS) of vertebrates. In this study, we examined the distribution pattern of GABA-immunoreactive (GABA-ir) cells and fibres in the CNS of the viviparous teleost Poecilia sphenops using immunofluorescence method. GABA immunoreactivity was seen in the glomerular, mitral, and granular layers of the olfactory bulbs, as well as in most parts of the dorsal and ventral telencephalon. The preoptic area consisted of a small cluster of GABA-ir cells, whereas extensively labelled GABA-ir neurons were observed in the hypothalamic areas, including the paraventricular organ, tuberal hypothalamus, nucleus recessus lateralis, nucleus recessus posterioris, and inferior lobes. In the thalamus, GABA-positive neurons were only found in the ventral thalamic and central posterior thalamic nuclei, whereas the dorsal part of the nucleus pretectalis periventricularis consisted of a few GABA-ir cells. GABA-immunoreactivity was extensively seen in the alar and basal subdivisions of the midbrain, whereas in the rhombencephalon, GABA-ir cells and fibres were found in the cerebellum, motor nucleus of glossopharyngeal and vagal nerves, nucleus commissuralis of Cajal, and reticular formation. In the spinal cord, GABA-ir cells and fibres were observed in the dorsal horn, ventral horn, and around the central canal. Overall, the extensive distribution of GABA-ir cells and fibres throughout the CNS suggests several roles for GABA, including the neuroendocrine, viscerosensory, and somatosensory functions, for the first time in a viviparous teleost.
Collapse
Affiliation(s)
- Achyutham Hotha
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580 003, India
| | - C B Ganesh
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580 003, India.
| |
Collapse
|
2
|
Yáñez J, Souto Y, Piñeiro L, Folgueira M, Anadón R. Gustatory and general visceral centers and their connections in the brain of adult zebrafish: a carbocyanine dye tract-tracing study. J Comp Neurol 2016; 525:333-362. [PMID: 27343143 DOI: 10.1002/cne.24068] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 02/04/2023]
Abstract
The central connections of the gustatory/general visceral system of the adult zebrafish (Danio rerio) were examined by means of carbocyanine dye tracing. Main primary gustatory centers (facial and vagal lobes) received sensory projections from the facial and vagal nerves, respectively. The vagal nerve also projects to the commissural nucleus of Cajal, a general visceral sensory center. These primary centers mainly project on a prominent secondary gustatory and general visceral nucleus (SGN/V) located in the isthmic region. Secondary projections on the SGN/V were topographically organized, those of the facial lobe mainly ending medially to those of the vagal lobe, and those from the commissural nucleus ventrolaterally. Descending facial lobe projections to the medial funicular nucleus were also noted. Ascending fibers originating from the SGN/V mainly projected to the posterior thalamic nucleus and the lateral hypothalamus (lateral torus, lateral recess nucleus, hypothalamic inferior lobe diffuse nucleus) and an intermediate cell- and fiber-rich region termed here the tertiary gustatory nucleus proper, but not to a nucleus formerly considered as the zebrafish tertiary gustatory nucleus. The posterior thalamic nucleus, tertiary gustatory nucleus proper, and nucleus of the lateral recess gave rise to descending projections to the SGN/V and the vagal lobe. The connectivity between diencephalic gustatory centers and the telencephalon was also investigated. The present results showed that the gustatory connections of the adult zebrafish are rather similar to those reported in other cyprinids, excepting the tertiary gustatory nucleus. Similarities between the gustatory systems of zebrafish and other fishes are also discussed. J. Comp. Neurol. 525:333-362, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Julián Yáñez
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, A Coruña, Spain.,Neurover Group, Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña, A Coruña, Spain
| | - Yara Souto
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, A Coruña, Spain
| | - Laura Piñeiro
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, A Coruña, Spain
| | - Mónica Folgueira
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, A Coruña, Spain.,Neurover Group, Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña, A Coruña, Spain
| | - Ramón Anadón
- Department of Cell Biology and Ecology, Faculty of Biology, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
3
|
Vendrell-Llopis N, Yaksi E. Evolutionary conserved brainstem circuits encode category, concentration and mixtures of taste. Sci Rep 2015; 5:17825. [PMID: 26639368 PMCID: PMC4671064 DOI: 10.1038/srep17825] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/06/2015] [Indexed: 11/23/2022] Open
Abstract
Evolutionary conserved brainstem circuits are the first relay for gustatory information in the vertebrate brain. While the brainstem circuits act as our life support system and they mediate vital taste related behaviors, the principles of gustatory computations in these circuits are poorly understood. By a combination of two-photon calcium imaging and quantitative animal behavior in juvenile zebrafish, we showed that taste categories are represented by dissimilar brainstem responses and generate different behaviors. We also showed that the concentration of sour and bitter tastes are encoded by different principles and with different levels of sensitivity. Moreover, we observed that the taste mixtures lead to synergistic and suppressive interactions. Our results suggest that these interactions in early brainstem circuits can result in non-linear computations, such as dynamic gain modulation and discrete representation of taste mixtures, which can be utilized for detecting food items at broad range of concentrations of tastes and rejecting inedible substances.
Collapse
Affiliation(s)
| | - Emre Yaksi
- NERF, Leuven, Belgium.,KU Leuven, Leuven, Belgium.,VIB, Leuven, Belgium.,Kavli Institute for Systems Neuroscience and Centre for the Biology of Memory, Norwegian Brain Centre, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
4
|
Uezono S, Yamada Y, Kato T, Abe H, Yamamoto N. Connections of the commissural nucleus of Cajal in the goldfish, with special reference to the topographic organization of ascending visceral sensory pathways. J Comp Neurol 2014; 523:209-25. [PMID: 25209308 DOI: 10.1002/cne.23675] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 09/05/2014] [Accepted: 09/05/2014] [Indexed: 11/09/2022]
Abstract
The primary general visceral nucleus of teleosts is called the commissural nucleus of Cajal (NCC). The NCC of goldfish has been divided into the medial (NCCm) and lateral (NCCl) subnuclei that receive inputs from subdiaphragmatic gastrointestinal tract and the posterior pharynx, respectively. Fiber connections of the NCC were examined by tract-tracing methods in the goldfish Carassius auratus. Tracer injections into the NCC suggested that the NCC projects directly not only to the secondary visceral sensory region in the rhombencephalic isthmus and other brain stem centers, but also to the forebrain, similar to the situations in mammals, birds, and the Nile tilapia. Although fiber connections of the NCCm and NCCl were basically similar, the NCCm was the more important source of ascending general visceral fibers to the forebrain. Topographic organization was recognized regarding projections to the isthmic secondary visceral sensory zone; input from the NCCm is represented in the secondary general visceral sensory nucleus, while input from the NCCl in the lateral edge of the secondary gustatory nucleus. Moreover, specific injections into different regions of the vagal lobe revealed that the dorsomedio-ventrolateral axis of the lobe is represented in the lateromedial axis of the secondary gustatory nucleus. These observations suggest fine topographic organization of ascending visceral sensory pathways to the isthmic secondary centers. It should also be noted that the reception of primary afferents from the posterior pharynx and projections to the secondary gustatory nucleus suggest that the NCCl may be regarded as a gustatory rather than a general visceral sensory structure.
Collapse
Affiliation(s)
- Shiori Uezono
- Laboratory of Fish Biology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | | | | | | | | |
Collapse
|
5
|
Jiang E, Yu D, Feng Z. Subdiaphragmatic vagotomy reduces intake of sweet-tasting solutions in rats. Neural Regen Res 2014; 8:1560-7. [PMID: 25206451 PMCID: PMC4145969 DOI: 10.3969/j.issn.1673-5374.2013.17.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/04/2013] [Indexed: 11/18/2022] Open
Abstract
Studies have shown that there are strong interactions between gustatory and visceral sensations in the central nervous system when rats ingest sweet foods or solutions. To investigate the role of the subdiaphragmatic vagi in transmitting general visceral information during the process of drinking sweet-tasting solutions, we examined the effects of subdiaphragmatic vagotomy on the intake of 0.5 mol/L sucrose, 0.005 mol/L saccharin or distilled water over the course of 1 hour in rats deprived of water. Results showed no significant difference in consumption of these three solutions in vagotomized rats. However, rats in the sham-surgery group drank more saccharin solution than sucrose solution or distilled water. Moreover, the intake of distilled water was similar between vagotomized rats and sham-surgery group rats, but significantly less sucrose and saccharin were consumed by vagotomized rats compared with rats in the sham-surgery group. These findings indicate that subdiaphragmatic vagotomy reduces intake of sweet-tasting solution in rats, and suggest that vagal and extravagal inputs play a balanced role in the control of the intake of sweet-tasting solutions. They also suggest that subdiaphragmatic vagotomy eliminates the difference in hedonic perception induced by sweet-tasting solutions compared with distilled water.
Collapse
Affiliation(s)
- Enshe Jiang
- Institute of Public Hygiene, School of Nursing, Henan University, Kaifeng 475004, Henan Province, China
| | - Dongming Yu
- Department of Anatomy, Medical College of Henan University, Kaifeng 475004, Henan Province, China
| | - Zhifen Feng
- Institute of Public Hygiene, School of Nursing, Henan University, Kaifeng 475004, Henan Province, China
| |
Collapse
|
6
|
Nobata S, Ando M, Takei Y. Hormonal control of drinking behavior in teleost fishes; insights from studies using eels. Gen Comp Endocrinol 2013; 192:214-21. [PMID: 23707498 DOI: 10.1016/j.ygcen.2013.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/01/2013] [Accepted: 05/03/2013] [Indexed: 11/15/2022]
Abstract
Marine teleost fishes drink environmental seawater to compensate for osmotic water loss, and the amount of water intake is precisely regulated to prevent dehydration or hypernatremia. Unlike terrestrial animals in which thirst motivates a series of drinking behaviors, aquatic fishes can drink environmental water by reflex swallowing without searching for water. Hormones are key effectors for the regulation of drinking. In particular, angiotensin II and atrial natriuretic peptide are likely candidates for physiological regulators because of their potent dipsogenic and antidipsogenic activities, respectively. In the eel, these hormones act on the area postrema in the medulla oblongata, a circumventricular structure without blood-brain barrier, which then regulates the activity of the glossopharyngeal-vagal motor complex. These motor neurons in the hindbrain innervate the upper esophageal sphincter muscle and other swallowing-related muscles in the pharynx and esophagus for regulation of drinking. Thus, the neural circuitry for drinking in fishes appears to be confined within the hindbrain. This simple mechanism is much different from that of terrestrial animals in which thirst sensation is induced through hormonal actions on the subfornical organ and organum vasculosum of the lamina terminalis that are located in the forebrain. It seems that the neural and hormonal mechanism that regulates drinking behavior has evolved from fishes depending on the availability of water in their natural habitats.
Collapse
Affiliation(s)
- Shigenori Nobata
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| | | | | |
Collapse
|
7
|
Morona R, López JM, Northcutt RG, González A. Comparative Analysis of the Organization of the Cholinergic System in the Brains of Two Holostean Fishes, the Florida GarLepisosteus platyrhincusand the BowfinAmia calva. BRAIN, BEHAVIOR AND EVOLUTION 2013; 81:109-42. [DOI: 10.1159/000347111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/12/2013] [Indexed: 11/19/2022]
|
8
|
Abstract
The great number of species of teleosts permits highly specialized forms to evolve to occupy particular niches. This diversity allows for extreme variations in brain structure according to particular sensory or motor adaptations. In the case of the taste system, goldfish (Carassius auratus L., 1758) and some carps have evolved a specialized intraoral food-sorting apparatus along with corresponding specializations of gustatory centers in the brainstem. A comparison of circuitry within the complex vagal lobe of goldfish, and of the simpler gustatory lobes in catfish (Ictalurus punctatus Rafinesque, 1818) shows numerous similarities in organization and neurotransmitters. Double labeling studies using horseradish peroxidase and biotinylated dextran amine in catfish shows a direct projection from the vagal lobe to the motoneurons of nucleus ambiguous which innervate oropharyngeal musculature. Therefore, a three neuron reflex arc connects gustatory input to motor output. In the vagal lobe of goldfish, a similar three neuron arc can be identified: from primary gustatory afferent, to vagal lobe interneuron, thence to dendrites of the vagal motoneurons that innervate the pharyngeal muscles. Therefore, despite large differences in the gross appearance of the vagal gustatory systems in the brains of catfish and goldfish, the essential connectivity and circuitry is similar. This suggests that evolutionary change in the central nervous system largely proceeds by rearrangement and elaboration of existing systems, rather than by addition of new structures or circuits.
Collapse
Affiliation(s)
- Thomas E Finger
- Department of Cell and Developmental Biology, University of Colorado Denver, Aurora, CO, USA.
| |
Collapse
|
9
|
Nobata S, Takei Y. The area postrema in hindbrain is a central player for regulation of drinking behavior in Japanese eels. Am J Physiol Regul Integr Comp Physiol 2011; 300:R1569-77. [DOI: 10.1152/ajpregu.00056.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It is recognized that fish will drink the surrounding water by reflex swallowing without a thirst sensation. We evaluated the role of the area postrema (AP), a sensory circumventricular organ (CVO) in the medulla oblongata, in the regulation of drinking behavior of seawater (SW) eels. The antidipsogenic effects of ghrelin and atrial natriuretic peptide and hypervolemia and hyperosmolemia (1 M sucrose or 10% NaCl) as well as the dipsogenic effects of angiotensin II and hypovolemia (hemorrhage) were profoundly diminished after AP lesion (APx) in eels compared with sham controls. However, the antidipsogenic effect of urotensin II was not influenced by APx, possibly due to the direct baroreflex inhibition on the swallowing center in eels. When ingested water was drained via an esophageal fistula, water intake increased 30-fold in sham controls but only fivefold in APx eels, suggesting a role for the AP in continuous regulation of drinking by SW eels. After transfer from freshwater to SW, APx eels responded normally with an immediate burst of drinking, but after 4 wk these animals showed a much greater increase in plasma osmolality than controls, suggesting that the AP is involved in acclimation to SW by fine tuning of the drinking rate. Taken together, the AP in the hindbrain of eels plays an integral role in SW acclimation, acting as a conduit of information from plasma for the regulation of drinking, probably without a thirst sensation. This differs from mammals in which sensory CVOs in the forebrain play pivotal roles in thirst regulation.
Collapse
Affiliation(s)
- Shigenori Nobata
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Chiba, Japan
| | - Yoshio Takei
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Chiba, Japan
| |
Collapse
|
10
|
Yoshimoto M, Yamamoto N. Ascending general visceral sensory pathways from the brainstem to the forebrain in a cichlid fish, Oreochromis (Tilapia) niloticus. J Comp Neurol 2010; 518:3570-603. [DOI: 10.1002/cne.22415] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Central regulation of the pharyngeal and upper esophageal reflexes during swallowing in the Japanese eel. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 196:111-22. [PMID: 20035336 DOI: 10.1007/s00359-009-0498-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 11/24/2009] [Accepted: 12/08/2009] [Indexed: 10/20/2022]
Abstract
We investigated the regulation of the pharyngeal and upper esophageal reflexes during swallowing in eel. By retrograde tracing from the muscles, the motoneurons of the upper esophageal sphincter (UES) were located caudally within the mid-region of the glossopharyngeal-vagal motor complex (mGVC). In contrast, the motoneurons innervating the pharyngeal wall were localized medially within mGVC. Sensory pharyngeal fibers in the vagal nerve terminated in the caudal region of the viscerosensory column (cVSC). Using the isolated brain, we recorded 51 spontaneously active neurons within mGVC. These neurons could be divided into rhythmically (n = 8) and continuously (n = 43) firing units. The rhythmically firing neurons seemed to be restricted medially, whereas the continuously firing neurons were found caudally within mGVC. The rhythmically firing neurons were activated by the stimulation of the cVSC. In contrast, the stimulation of the cVSC inhibited firing of most, but not all the continuously firing neurons. The inhibitory effect was blocked by prazosin in 17 out of 38 neurons. Yohimbine also blocked the cVSC-induced inhibition in five of prazosin-sensitive neurons. We suggest that the neurons in cVSC inhibit the continuously firing motoneurons to relax the UES and stimulate the rhythmically firing neurons to constrict the pharynx simultaneously.
Collapse
|
12
|
Ikenaga T, Ogura T, Finger TE. Vagal gustatory reflex circuits for intraoral food sorting behavior in the goldfish: cellular organization and neurotransmitters. J Comp Neurol 2009; 516:213-25. [PMID: 19598285 DOI: 10.1002/cne.22097] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The sense of taste is crucial in an animal's determination as to what is edible and what is not. This gustatory function is especially important in goldfish, who utilize a sophisticated oropharyngeal sorting mechanism to separate food from substrate material. The computational aspects of this detection are carried out by the medullary vagal lobe, which is a large, laminated structure combining elements of both the gustatory nucleus of the solitary tract and the nucleus ambiguus. The sensory layers of the vagal lobe are coupled to the motor layers via a simple reflex arc. Details of this reflex circuit were investigated with histology and calcium imaging. Biocytin injections into the motor layer labeled vagal reflex interneurons that have radially directed dendrites ramifying within the layers of primary afferent terminals. Axons of reflex interneurons extend radially inward to terminate onto both vagal motoneurons and small, GABAergic interneurons in the motor layer. Functional imaging shows increases in intracellular Ca++ of vagal motoneurons following electrical stimulation in the sensory layer. These responses were suppressed under Ca(++)-free conditions and by interruption of the axons bridging between the sensory and motor layers. Pharmacological experiments showed that glutamate acting via (+/-)-alpha-amino-3-hydroxy- 5-ethylisoxazole-4-propioinc acid (AMPA)/kainate and N-methyl-D-aspartic acid (NMDA) receptors mediate neurotransmission between reflex interneurons and vagal motoneurons. Thus, the vagal gustatory portion of the viscerosensory complex is linked to branchiomotor neurons of the pharynx via a glutamatergic interneuronal system.
Collapse
Affiliation(s)
- Takanori Ikenaga
- Rocky Mountain Taste & Smell Center, Department of Cell and Developmental Biology, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
13
|
Yasuoka A, Abe K. Gustation in fish: search for prototype of taste perception. Results Probl Cell Differ 2009; 47:239-55. [PMID: 19145412 DOI: 10.1007/400_2008_6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Fish perceive water-soluble chemicals at the taste buds that are distributed on oropharyngeal and trunk epithelia. Recent progress in molecular analyses has revealed that teleosts and mammals share pivotal signaling components to transduce taste stimuli. The fish orthologs of taste receptors, fT1R and fT2R, show mutually exclusive expression in taste buds, and both are coexpressed with phospholipase C-beta2 and the transient receptor potential M5 channel as common downstream components of taste receptor signals. Interestingly, fT1R heteromers are activated by various L-amino acids but not by sugars. This may reflects that in fish the energy metabolism depends primarily on gluconeogenesis from amino acids. fT2Rs are activated by denatonium benzoate, which is a bitter substance for mammals. It is thus likely that the preferable and aversive tastes for vertebrates, though their taste modalities somewhat vary, are transduced by the sensory conserved pathways. The comparative molecular biology of the fish taste system would lead to understanding a general logic of encoding taste modalities in vertebrates.
Collapse
Affiliation(s)
- A Yasuoka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
14
|
Finger TE. Sorting food from stones: the vagal taste system in Goldfish, Carassius auratus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 194:135-43. [PMID: 18228077 DOI: 10.1007/s00359-007-0276-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2007] [Revised: 09/19/2007] [Accepted: 09/25/2007] [Indexed: 11/25/2022]
Abstract
The sense of taste, although a relatively undistinguished sensory modality in most mammals, is a highly developed sense in many fishes, e.g., catfish, gadids, and carps including goldfish. In these species, the amount of neural tissue devoted to this modality may approach 20% of the entire brain mass, reflecting an enormous number of taste buds scattered across the external surface of the animal as well as within the oral cavity. The primary sensory nuclei for taste form a longitudinal column of nuclei along the dorsomedial surface of the medulla. Within this column of gustatory nuclei, the sensory system is represented as a fine-grain somatotopic map, with external body parts being represented rostrally within the column, and oropharyngeal surfaces being represented caudally. Goldfish have a specialization of the oral cavity, the palatal organ, which enables them to sort food particles from particulate substrate material such as gravel. The palatal organ taste information reaches the large, vagal lobe with a complex laminar and columnar organization. This lobe also supports a radially-organized reflex system which activates the musculature of the palatal organ to effect the sorting operation. The stereotyped, laminated structure of this system in goldfish has facilitated studies of the circuitry and neurotransmitter systems underlying the goldfish's ability to sort food from stones.
Collapse
Affiliation(s)
- Thomas E Finger
- Department of Cell and Developmental Biology, University of Colorado at Denver and Health Sciences Center, Mail Stop 8108, PO Box 6511, Aurora, CO 80045-6511, USA.
| |
Collapse
|
15
|
Ito S, Mukuda T, Ando M. Catecholamines inhibit neuronal activity in the glossopharyngeal-vagal motor complex of the Japanese eel: significance for controlling swallowing water. ACTA ACUST UNITED AC 2006; 305:499-506. [PMID: 16555303 DOI: 10.1002/jez.a.282] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To clarify neuronal networks controlling swallowing water, inhibitory neurotransmitters were searched on the glossopharyngeal-vagal motor complex (GVC) of the medulla oblongata (MO), which is proposed as a motor nucleus controlling swallowing. Spontaneous firing (20-30 Hz) in the GVC was inhibited by adrenaline (AD), noradrenaline (NA) and dopamine (DA). The inhibitory effects of these catecholamines (CAs) were dose-dependent, and the effects of AD and NA were completely blocked by phenoxybenzamine or yohimbine, indicating that at least these two CAs act on the same receptor, presumably on alpha(2)-adrenoceptor. Even after blocking the alpha(2)-adrenoceptor with yohimbine, the inhibitory effect of DA still remained, indicating separate action of DA from AD or NA. Although DA receptor type was not determined in the present study, these results suggest existence of CA receptors in the GVC neurons. Almost 70% GVC neurons were inhibited by CAs. The CA-sensitive neurons were specifically restricted in the middle part of the GVC area. There were many tyrosine hydroxylase (TH)-immunoreactive somata and fibers in the eel MO. Among these TH-immunoreactive nuclei, the area postrema (AP) and the commissural nucleus of Cajal (NCC) appeared to project to the GVC morphologically. Significance of the catecholaminergic inhibition in the GVC activity is discussed in relation to controlling swallowing water.
Collapse
Affiliation(s)
- Sunao Ito
- Laboratory of Integrative Physiology, Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi, Hiroshima, Japan
| | | | | |
Collapse
|
16
|
Spector AC. The functional organization of the peripheral gustatory system: Lessons from behavior. PROGRESS IN PSYCHOBIOLOGY AND PHYSIOLOGICAL PSYCHOLOGY 2005. [DOI: 10.1016/s0363-0951(03)80008-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
17
|
Immunohistochemical localisation of FMRF-amide-like peptide in the brain of icefish and red-blooded Antarctic Teleosts. Polar Biol 2004. [DOI: 10.1007/s00300-004-0666-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Farrell WJ, Böttger B, Ahmadi F, Finger TE. Distribution of cholecystokinin, calcitonin gene-related peptide, neuropeptide Y, and galanin in the primary gustatory nuclei of the goldfish. J Comp Neurol 2002; 450:103-14. [PMID: 12124755 DOI: 10.1002/cne.10317] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cholecystokinin (CCK), neuropeptide Y (NPY), calcitonin gene-related peptide (CGRP), and galanin all are known to have central effects on food intake. Immunocytochemistry was used to examine the presence of these substances within the primary gustatory nuclei of the goldfish, including the vagal lobe, which is a large, laminated structure composed of discrete sensory, fiber, and motor layers. The vagal lobes receive primary afferent input from the gustatory portion of the vagus nerve and contain reflex circuitry involved in the ingestion or rejection of potential food items. Immunohistochemistry indicates a heavy concentration of CCK-, CGRP-, NPY-, and galanin-immunoreactive fibers in the capsular fiber layer as well as in deeper sensory layers of the vagal lobe. CGRP immunoreactivity throughout the sensory layers and capsular immunoreactivity for CCK are greatly reduced 1-2 weeks following vagus nerve transection, indicating that the majority of these fibers are primary sensory afferents. In contrast, NPY and galanin immunoreactivity in the capsular fiber layer and reactivity for CCK, NPY, and galanin in the deeper sensory and fiber layers are relatively unaffected by vagus transection. CCK-, NPY-, and galanin-immunoreactive fibers and puncta also were present in the motor layers, as were CGRP-immunoreactive motor somata. CCK-immunoreactive cell bodies are present in layer III and layer VII/VIII of the vagal lobe and in the superficial granular layer of the lateral subnucleus of the commissural nucleus of Cajal, which is caudally contiguous with the vagal lobe.
Collapse
Affiliation(s)
- William J Farrell
- Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Denver 80262, USA
| | | | | | | |
Collapse
|
19
|
Funakoshi K, Atobe Y, Nakano M, Hisajima T, Goris RC, Kishida R. Monoaminergic and peptidergic axonal projections to the vagal motor cell column of a teleost, the filefish Stephanolepis cirrhifer. J Comp Neurol 2002; 447:351-65. [PMID: 11992521 DOI: 10.1002/cne.10238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In an immunohistochemical study, the vagal motor nucleus of a teleost, the filefish Stephanolepis cirrhifer, could be divided into a rostral part and a caudal part, and the former into a dorsolateral group and a ventromedial group. The dorsolateral group consisted of neurons immunoreactive for calcitonin gene-related peptide, whereas the ventrolateral-caudal group was negative for calcitonin gene-related peptide. The latter group was retrogradely labeled after dextran amine injection to the visceral ramus of the vagus nerve, suggesting that it is a general visceral efferent column, made up of parasympathetic preganglionic neurons, whereas the dorsolateral rostral group is a special visceral efferent column. In the general visceral efferent column, a dense concentration of nerve fibers immunoreactive for serotonin, tyrosine hydroxylase, cholecystokinin-8, and substance P, and a small number of fibers immunoreactive for neuropeptide Y was observed. Perikarya in contact with varicose terminals immunoreactive for these substances were frequently seen. In contrast, in the special visceral efferent column, only a moderate concentration of neuropeptide Y-immunoreactive nerve fibers and a sparse distribution of fibers immunoreactive for tyrosine hydroxylase were observed. Perikarya in contact with varicose terminals immunoreactive for these substances were rare. These results suggest that the vagal parasympathetic preganglionic neurons might receive multiple inputs of monoaminergic and peptidergic fibers involved in the regulation of the visceral organs. On the other hand, monoaminergic and peptidergic afferent fibers might be of much less significance in the activity of the special visceral efferent component of the vagus nerve.
Collapse
Affiliation(s)
- Kengo Funakoshi
- Department of Anatomy, Yokohama City University School of Medicine, Yokohama 236-0004, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Smeraski CA, Böttger B, Finger TE. Kainate-activated cobalt uptake in the primary gustatory nucleus in goldfish: visualization of the morphology and distribution of cells expressing AMPA/kainate receptors in the vagal lobe. J Comp Neurol 2001; 431:59-74. [PMID: 11169990 DOI: 10.1002/1096-9861(20010226)431:1<59::aid-cne1055>3.0.co;2-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gustatory afferent fibers of the vagus nerve that innervate taste buds of the oropharynx of the goldfish, Carassius auratus, project to the vagal lobe, which is a laminated gustatory nucleus in the dorsal medulla. As in the mammalian gustatory system, responses by second-order cells in the goldfish medulla are mediated by N-methyl-D-aspartate (NMDA) and non-NMDA ionotropic glutamate receptors. We utilized a cobalt uptake technique to label vagal lobe neurons that possess cobalt-permeable ionotropic glutamate receptors. Vagal lobe slices were bathed in kainate (40 microM) or glutamate (0.5 or 1 mM) in the presence of CoCl(2), which can pass into cells through the ligand-gated cation channels of non-NMDA receptors made up of certain subunit combinations. Cobalt-filled cells and dendrites were observed in slices that were activated by kainate or glutamate, but not in control slices that were bathed in CoCl(2) alone, nor in slices that were bathed with the non-NMDA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (10 microM) in addition to an agonist. Likewise, simple depolarization of the cells with KCl failed to induce cobalt loading. Cobalt-filled round unipolar cells, elongate or globular bipolar cells, and multipolar cells with elongate or polygonal perikarya were distributed throughout the cell layers in the sensory zone of the vagal lobe. Numerous labeled neurons had dendrites spanning layers IV and VI, the two principal layers of primary afferent input. Apical and basal dendrites often extended radially through neighboring laminae, but many cells also extended dendrites tangential to the lamination of the sensory zone. In the motor layer, cell bodies and proximal dendrites of small, multipolar neurons, and large motoneurons were regularly loaded with cobalt.
Collapse
Affiliation(s)
- C A Smeraski
- Department of Cellular and Structural Biology, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | | | |
Collapse
|
21
|
Rink E, Wullimann MF. Some forebrain connections of the gustatory system in the goldfish Carassius auratus visualized by separate DiI application to the hypothalamic inferior lobe and the torus lateralis. J Comp Neurol 1998; 394:152-70. [PMID: 9552123 DOI: 10.1002/(sici)1096-9861(19980504)394:2<152::aid-cne2>3.0.co;2-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The neuroanatomical connections of the diencephalic torus lateralis and inferior lobe of the goldfish (Carassius auratus) were studied by retrograde and anterograde labeling with the carbocyanine dye DiI. Both structures have afferents originating in the central zone of the dorsal telencephalic area as well as in the supracommissural nucleus of the ventral telencephalic area, and in the secondary gustatory, tertiary gustatory, and posterior thalamic nuclei. Both structures investigated have efferents to the tertiary gustatory and posterior thalamic nuclei, as well as to the dorsal hypothalamus (dorsal hypothalamic neuropil) and superior reticular formation. The torus lateralis receives additional afferents from the secondary general visceral nucleus and, sparsely, from the dorsal tegmental nucleus. The inferior lobe receives additional afferents from the medial zone of the dorsal telencephalic area, as well as from the suprachiasmatic, posterior pretectal, central posterior thalamic, caudal preglomerular, two tegmental nuclei (T1 and T2), corpus mamillare, and, sparsely, from the cerebellar valvula. The inferior lobe has additional efferents to the dorsal and ventral thalamus and subglomerular nucleus. The lateral torus and inferior lobe are also mutually interconnected. The lateral torus and inferior lobe map topographically onto the vagal-related (intraoral) or onto the facial-related (extraoral) portions, respectively, of both the secondary and tertiary gustatory nuclei. Because the posterior thalamic nucleus is reciprocally connected with the lateral torus and inferior lobe and is further known to project in turn to the area doralis telencephali, it likely represents a quaternary gustatory projection nucleus to the telencephalon in cyprinids. Whereas the lateral torus seems to be exclusively involved with gustatory and general visceral systems, the inferior lobe has inputs from additional sensory (e.g., octavolateralis, visual) systems, and, thus, likely represents a multisensory integration center.
Collapse
Affiliation(s)
- E Rink
- Brain Research Institute and Center for Cognition Research, University of Bremen, Germany
| | | |
Collapse
|
22
|
Halsell CB, Travers SP, Travers JB. Ascending and descending projections from the rostral nucleus of the solitary tract originate from separate neuronal populations. Neuroscience 1996; 72:185-97. [PMID: 8730716 DOI: 10.1016/0306-4522(95)00528-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Anterograde studies have shown that neurons within the rostral (gustatory) nucleus of the solitary tract project to the parabrachial nucleus, as well as to sites within the medulla including the reticular formation and caudal nucleus of the solitary tract. In order to determine the degree to which the same neurons contribute to both projections, injections of retrograde tracers were made simultaneously into both the parabrachial nuclei and medullary reticular formation of the rat. Only a small proportion of neurons were double labeled. Consistent with studies in hamster, labeled neurons projecting to the parabrachial nuclei in rat consisted of both stellate and elongate neurons, concentrated within the central subdivision of the rostral nucleus of the solitary tract. Injections into the medullary reticular formation also labeled both stellate and elongate neurons but these were concentrated in the ventral subdivision of the nucleus. The results of the present study demonstrate that different populations of neurons in the nucleus of the solitary tract contribute to ascending and descending pathways. This suggest a possible functional specialization within the nucleus of the solitary tract for those neurons whose output eventually reaches the forebrain compared to those neurons with local connections.
Collapse
Affiliation(s)
- C B Halsell
- College of Dentistry, Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|
23
|
Brüning G, Katzbach R, Mayer B. Histochemical and immunocytochemical localization of nitric oxide synthase in the central nervous system of the goldfish, carassius auratus. J Comp Neurol 1995; 358:353-82. [PMID: 7560292 DOI: 10.1002/cne.903580305] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The distribution of the neuronal type of nitric oxide synthase in the goldfish brain and spinal cord was investigated via NADPH-diaphorase histochemistry and immunocytochemistry using an antiserum raised against the purified mammalian enzyme. Many structures, including magnocellular neurosecretory cells, motoneurons, mesencephalic trigeminal neurons, and radial glial fibers, were stained by the NADPH-diaphorase reaction but were not immunoreactive. This nonspecific NADPH-diaphorase activity was strongly reduced after preincubation of the sections. Therefore, when sections were first reacted for immunofluorescence and, thereafter, stained for NADPH-diaphorase, a corresponding staining pattern was obtained that allowed the reliable localization of neuronal nitric oxide synthase based on both complementary staining methods. In the telencephalon, positive neurons were concentrated in the ventral and posterior parts of the area ventralis. Many intensely stained neurons were present in various diencephalic nuclei, including the nucleus centralis posterior and the ventromedial nucleus of the thalamus, the nucleus tori lateralis, the nucleus recessus lateralis, the nucleus tuberis posterior, and the central nucleus of the inferior lobe. In the midbrain, neurons containing nitric oxide synthase were located in the periventricular zone of the optic tectum, the nucleus vermiformis, and the nucleus reticularis mesencephali. Specific staining in the cerebellum was concentrated in Golgi cells. In the hindbrain, nitroxergic neurons were numerous in all four sensory nuclei of the trigeminus, in the facial lobe, the superior olive, the inferior reticular formation, and the medial general visceral nucleus of the vagus. The dorsal horn of the spinal cord was enriched with positive neurons. A few strongly stained cells were also present in the ventral horn. In conclusion, neurons capable of synthesizing nitric oxide occur throughout the teleost central nervous system. The presence of nitric oxide synthase in projection areas of most afferent nerves suggests a widespread involvement of nitric oxide in sensory information processing. The distribution of nitric oxide synthase-containing neurons in certain areas, e.g., the tectum opticum and the spinal cord, indicates an evolutionarily conserved pattern. Similar to the case in other vertebrates, there appears to be no comprehensive overlap between the distribution of nitric oxide synthase and that of any other chemically characterized neuronal population described thus far. However, strongly positive cell groups in the mesencephalic reticular formation suggest the idea of an evolutionarily conserved mesopontine cholinergic system coexpressing nitric oxide synthase.
Collapse
Affiliation(s)
- G Brüning
- Department of Anatomy, Free University of Berlin, Germany
| | | | | |
Collapse
|
24
|
Valentincic T, Caprio J. Consummatory feeding behavior to amino acids in intact and anosmic channel catfish Ictalurus punctatus. Physiol Behav 1994; 55:857-63. [PMID: 8022905 DOI: 10.1016/0031-9384(94)90071-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The entire sequence of feeding behavior patterns exhibited by intact and anosmic channel catfish to food extracts was also released by single amino acids. L-arginine (> 10(-6) M), L-alanine (> 10(-6) M), and L-proline (> 10(-4) M) were each highly effective at releasing consummatory behavior patterns, such as turning, increasing pumping of water across the gill arches, and biting-snapping. Swallowing required solid objects, whereas rhythmic movement of the hyoid was released by > 10(-2) M L-arginine alone. For the biting-snapping behavior, the number of bites depended upon both the number of eddies containing the amino acid above the behavioral threshold concentration and the amino acid applied. Multiple eddies of > 10(-3) M L-proline and L-alanine provoked up to 25 bites per test; however, the most effective stimulus for releasing biting-snapping behavior at low concentrations was L-arginine (behavioral threshold 3 x 10(-7) M). In comparison to 10(-4) M L-alanine and L-arginine, other amino acids were less effective stimuli.
Collapse
Affiliation(s)
- T Valentincic
- Department of Zoology and Physiology, Louisiana State University, Baton Rouge 70803-1725
| | | |
Collapse
|
25
|
Finger TE, Kanwal JS. Ascending general visceral pathways within the brainstems of two teleost fishes: Ictalurus punctatus and Carassius auratus. J Comp Neurol 1992; 320:509-20. [PMID: 1629401 DOI: 10.1002/cne.903200408] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The primary general visceral nucleus in goldfish (Carassius auratus) and catfish (Ictalurus punctatus) is located at the ventroposterior boundary of the vagal gustatory lobe and receives coelomic visceral, but not gustatory inputs. The neuronal tracer horseradish peroxidase (HRP) was employed to visualize sources of input to and ascending projections from the primary general visceral nucleus in these species. In addition, immunocytochemical techniques were utilized to define the cytological divisions within the pontine gustatory-visceral complex. The pontine secondary visceral nuclei in both catfish and goldfish contains numerous somata and fibers immunoreactive for calcitonin gene-related peptide (CGRP). In contrast, the secondary gustatory nuclei are devoid of fibers and cells immunoreactive for CGRP. In both the goldfish and the channel catfish, the primary general visceral nucleus receives input from the vagal gustatory lobe, as well as the medullary reticular formation. In the channel catfish, the primary general visceral nucleus projects bilaterally to the secondary visceral nucleus, which lies rostrolateral to the secondary gustatory nucleus in the dorsal pons. Fibers cross the midline via the rostral part of the isthmic commissure. Injection of HRP into the primary general visceral nucleus of a goldfish labels ascending fibers that project to a secondary visceral nucleus situated ventral, lateral, and rostral to the secondary gustatory complex. In general, the results indicate that general visceral systems ascend in parallel to gustatory systems within the brainstem, and that general visceral but not gustatory nuclei are immunoreactive for the peptide CGRP.
Collapse
Affiliation(s)
- T E Finger
- Department of Cellular and Structural Biology, University of Colorado School of Medicine, Denver 80262
| | | |
Collapse
|