1
|
Sciarrillo R, Capaldo A, Valiante S, Laforgia V, De Falco M. Localization and role of galanin in the thyroid gland of Podarcis sicula lizard (reptilia, lacertide). ACTA ACUST UNITED AC 2009; 311:199-206. [PMID: 19130603 DOI: 10.1002/jez.519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Galanin (GAL) is a 29-amino acid residue neuropeptide, which was initially isolated from porcine intestine extracts and since then, widely found in a variety of vertebrate organs, in correlation with multiple neuro-hormonal actions exerted and so receiving a constantly growing attention. Moreover, although the studies undertaken so far suggest a local intrathyroidal peptidergic regulatory action, the exact role of GAL on thyroid gland remains to be established. The aim of this study was to determine in the lizard, Podarcis sicula, (1) the presence of GAL immunoreactivity in the thyroid gland and (2) the short- and long-term effects of in vivo GAL administration by intraperitoneal injection on thyroid gland physiology. First of all, the presence of GAL in the thyroid gland of P. sicula was demonstrated by immunohistochemical technique (avidin-biotin-peroxidase complex--ABC method). Second, the role of GAL in the control of thyroid gland activity was studied in vivo using light microscopy (LM) technique coupled to a specific radioimmunoassay for thyroid-stimulating hormone (TSH) and thyroid hormones (T(4) and T(3)). Prolonged GAL administration [(0.4 mg/100 g body wt)/day] increased T(4) and T(3) release, but decreased the plasma concentration of TSH. In addition, using LM clear signs of stimulation of the thyroid gland were observed. These findings suggest that systemic administration of GAL was able to stimulate the thyroid gland of the lizard both at morphological and physiological level.
Collapse
Affiliation(s)
- Rosaria Sciarrillo
- Department of Biological and Environmental Sciences, University of Sannio, Benevento, Italy.
| | | | | | | | | |
Collapse
|
2
|
López JM, Morona R, Moreno N, Domínguez L, González A. Origins of spinal cholinergic pathways in amphibians demonstrated by retrograde transport and choline acetyltransferase immunohistochemistry. Neurosci Lett 2007; 425:73-7. [PMID: 17822845 DOI: 10.1016/j.neulet.2007.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 08/09/2007] [Indexed: 11/15/2022]
Abstract
The existence of propriospinal cholinergic pathways and the origin of supraspinal cholinergic descending projections have been investigated in anuran and urodele amphibians. Retrograde tract tracing techniques with dextran amines injected in the spinal cord at different levels were combined with immunohistochemistry for choline acetyltransferase (ChAT). The analysis of the brachial, thoracic and lumbar spinal cord demonstrated that doubly labeled cells were present only close to the injection site. Thus, the participation of the spinal cholinergic cells in distant intersegmental connections is not present, or is very limited, in amphibians. In anurans, tracer applications to the brachial cord revealed cholinergic cells of origin of spinal projections located in four distinct brain nuclei. The most rostrally located cells were found bilaterally in the preoptic area, among the magnocellular cells. In the ipsilateral isthmic region, the laterodorsal tegmental nucleus also showed doubly labeled cells. Throughout the brainstem, abundant codistribution was observed but actual coexistence of the tracer and ChAT was only found in the nucleus of the solitary tract and the inferior reticular nucleus. In the case of the urodele, abundant codistribution between retrogradely labeled cells and ChAT-positive neurons in zones like the suprachiasmatic nucleus, the isthmic region and the rhombencephalic reticular formation was observed, but the only doubly labeled cells were the Mauthner neurons. The present results in amphibians contrast with previous data in mammals in which is striking the presence of a widespread intrinsic cholinergic innervation of the spinal cord and the virtual absence of cholinergic projections descending from the brainstem.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
3
|
Alponti RF, Mancera JM, Martín-del-Río MP, Silveira PF. Galanin-like immunoreactivity in the brain of the snake Bothrops jararaca. Gen Comp Endocrinol 2006; 149:269-77. [PMID: 16860322 DOI: 10.1016/j.ygcen.2006.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 06/08/2006] [Accepted: 06/13/2006] [Indexed: 11/20/2022]
Abstract
The distribution of galanin-like immunoreactive perikarya and nerve fibers in the brain of the snake Bothrops jararaca was studied by means of immunohistochemistry using an antiserum against porcine galanin. Immunoreactive neurons were only detected in the infundibular recess nucleus. Immunoreactive fibers were found in the telencephalic, diencephalic and mesencephalic areas such as the dorsal cortex, nucleus accumbens, lamina terminalis, preoptic area, mediodorsal region of the supraoptic nucleus, subfornical organ, nucleus of the paraventricular organ, subcommisural organ and periventricular grey region. The habenula, paraventricular nucleus, infundibular recess nucleus and hypothalamo-hypophyseal tract presented denser innervations. The outer layer of the median eminence displayed numerous fibers located close to the portal system, while scarce fibers were seen in the inner median eminence and neural lobe of the hypophysis. The distribution of labelled neurons in the brain of this snake was more restricted than that described in a turtle. The wide hypothalamic and extrahypothalamic distribution of labelled fibers suggests that galanin peptides may have hypophysiotropic, neuromodulator and neurotransmitter roles in the snake B. jararaca.
Collapse
Affiliation(s)
- R F Alponti
- Laboratory of Pharmacology, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900 São Paulo, Brazil
| | | | | | | |
Collapse
|
4
|
Morona R, Moreno N, López JM, González A. Immunohistochemical localization of calbindin-D28k and calretinin in the spinal cord of Xenopus laevis. J Comp Neurol 2006; 494:763-83. [PMID: 16374814 DOI: 10.1002/cne.20836] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Immunohistochemical techniques were used to investigate the distribution and morphology of neurons containing the calcium-binding proteins calbindin-D28k (CB) and calretinin (CR) in the spinal cord of Xenopus laevis and determine the extent to which this organization is comparable to that of mammals. Most CB- and CR-containing neurons were located in the superficial dorsal gray field, but with distinct topography. The lateral, ventrolateral, and ventromedial fields also possessed abundant neurons labeled for either CB or CR. Double immunohistofluorescence demonstrated that a subpopulation of dorsal root ganglion cells and neurons in the dorsal and ventrolateral fields contained CB and CR. By means of a similar technique, a cell population in the dorsal field was doubly labeled only for CB and nitric oxide synthase (NOS), whereas in the ventrolateral field colocalization of NOS with CB and CR was found. Choline acetyltransferase immunohistochemistry revealed that a subpopulation of ventral horn neurons, including motoneurons, colocalized CB and CR. The involvement of CB- and CR-containing neurons in ascending spinal projections was demonstrated combining the retrograde transport of dextran amines and immunohistochemistry. Cells colocalizing the tracer and CB or CR were quite numerous, primarily in the dorsal and ventrolateral fields. Similar experiments demonstrated supraspinal projections from CB- and CR-containing cells in the brainstem and diencephalon. The distribution, projections, and colocalization with neurotransmitters of the neuronal systems containing CB and CR in Xenopus suggest that CB and CR are important neuromodulator substances with functions conserved in the spinal cord from amphibians through mammals.
Collapse
Affiliation(s)
- Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
5
|
Guedes RP, Marchi MI, Viola GG, Xavier LL, Achaval M, Partata WA. Somatostatin-, calcitonin gene-related peptide, and γ-aminobutyric acid-like immunoreactivitity in the frog lumbosacral spinal cord: distribution and effects of sciatic nerve transection. Comp Biochem Physiol B Biochem Mol Biol 2004; 138:19-28. [PMID: 15142533 DOI: 10.1016/j.cbpc.2004.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Revised: 01/15/2004] [Accepted: 01/16/2004] [Indexed: 11/19/2022]
Abstract
Using immunohistochemistry and optical densitometry, somatostatin (SOM), calcitonin gene-related peptide (CGRP), and gamma-aminobutyric acid (GABA) were investigated in the lumbosacral spinal cord of the frog Rana catesbeiana after sciatic nerve transection. In control animals, the densest network of the SOM-, CGRP- and GABA-like immunoreactive fibers was located in the dorsal part of the lateral funiculus. SOM and GABA-like fibers were found in the dorsal terminal field and in the mediolateral band. The latter region showed CGRP and SOM-like immunoreactive cell bodies. SOM- and GABA-like immunoreactive neurons also occurred around the cavity of the central canal, and other GABA-like fibers were found in the ventral terminal field. While the ventral horn showed scarce somatostatin-like fibers, the putative motoneurons were immunoreactive for the two peptides investigated and GABA, but only a few SOM- and GABA-like fibers occurred in the ventral funiculus. After axotomy, GABA-like immunoreactivity decreased in the dorsal part of the lateral funiculus on the same side of the lesion. The other regions remained labeled. These changes were observed at 3 days following axonal injury and persisted at 5, 8 and 15 days. There was no significant difference in the pattern of CGRP- and SOM- immunoreactivity between the axotomized and the control sides. These results are discussed in relation to the effects of the peripheral axotomy on GABA, SOM, and CGRP expression in vertebrates, emphasizing the use of frogs as a model to study the effects of peripheral nerve injury.
Collapse
Affiliation(s)
- Renata P Guedes
- Departamento de Fisiologia, Laboratório de Neurobiologia Comparada, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
6
|
Nakano M, Kishida R, Funakoshi K, Tsukagoshi M, Goris RC, Kadota T, Atobe Y, Hisajima T. Central projections of thoracic splanchnic and somatic nerves and the location of sympathetic preganglionic neurons in Xenopus laevis. J Comp Neurol 2003; 456:321-37. [PMID: 12532405 DOI: 10.1002/cne.10514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The central and peripheral organization of thoracic visceral and somatic nervous elements was studied by applying dextran amines to the proximal cut ends of the thoracic splanchnic and somatic nerves in Xenopus laevis. Many labeled dorsal root ganglion cells of visceral afferents, and all somatic afferents, were located in a single ganglion of one spinal segment, and the two types of cells were distributed topographically within the ganglion. The labeled sympathetic preganglionic neurons were located predominantly in the same area of the thoracic spinal gray as in other frogs and in mammals. The labeled visceral afferents projected to Lissauer's tract and the dorsal funiculus. The visceral fibers of the tract ascended to the level of the subcerebellar area, supplying collateral branches to the lateral one-third of the dorsal horn and to the area of brainstem nuclei, including lateral cervical and descending trigeminal nucleus, and descended to the filum terminale. The visceral fibers of the dorsal funiculus were distributed to the dorsal column nucleus and the solitary tract. A similar longitudinal projection was also seen in the somatic afferents. The dual central pathway of thoracic primary afferents in the anuran spinal cord is a property held in common with mammals, but the widespread rostrocaudal projection through Lissauer's tract may be a characteristic of the anuran central nervous system. In frogs, the direct transmission of primary afferent information to an extremely wide area of the central nervous system may be important for prompt assessment of environmental factors and control of body functions.
Collapse
Affiliation(s)
- Masato Nakano
- Department of System Neuroanatomy, Yokohama City University School of Medicine, Yokohama, 236-0004 Japan.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Pieribone VA, Porton B, Rendon B, Feng J, Greengard P, Kao HT. Expression of synapsin III in nerve terminals and neurogenic regions of the adult brain. J Comp Neurol 2002; 454:105-14. [PMID: 12412137 DOI: 10.1002/cne.10417] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We have examined the distribution of synapsin III in the adult mouse brain. Expression of synapsin III was observed in puncta throughout the brain, but demonstrated greater regional variation than that of synapsins I or II. This punctate staining is typical for synaptic vesicle proteins located at nerve terminals. These findings are also consistent with the well-established role for synapsins in regulating neurotransmitter release. However, unexpectedly, synapsin III was also highly expressed in the cell body and processes of immature neurons in neurogenic regions of the adult brain, such as the hippocampal dentate gyrus, rostral migratory stream, and olfactory bulb. Many synapsin III-positive neurons also reacted with an antibody directed toward polysialylated-neuronal cell adhesion molecule, a marker of immature, migrating neurons. These results suggest that synapsin III may also play a role in adult neurogenesis.
Collapse
Affiliation(s)
- Vincent A Pieribone
- The John B Pierce Laboratory, Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Salio C, Cottone E, Conrath M, Franzoni MF. CB1 cannabinoid receptors in amphibian spinal cord: relationships with some nociception markers. J Chem Neuroanat 2002; 24:153-62. [PMID: 12297261 DOI: 10.1016/s0891-0618(02)00040-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The role of cannabinoids in spinal analgesia has so far been investigated in mammals and the interactions between cannabinoid receptors and markers involved in nociception have been described in the rat spinal cord. An endocannabinoid system is well developed also in the amphibian brain. However, the anatomical substrates of pain modulation have been scarcely investigated in anamniotes, neither is there reference to such a role for cannabinoids in lower vertebrates. In the present paper we employed multiple cytochemical approaches to study the distribution of CB1 cannabinoid receptors and their morphofunctional relationships with some nociception markers (i.e. Substance P, nitric oxide synthase, GABA and mu opioid receptors) in the spinal cord of the anuran amphibian Xenopus laevis. We found a co-distribution of CB1 receptors with the aforementioned signaling molecules, as well as a more limited cellular co-localization, in the dorsal and central fields of the spinal cord. These regions correspond to the mammalian laminae I-IV and X, respectively, areas strongly involved in spinal analgesia. Comparison of these results with those previously obtained in the mammalian spinal cord, reveals a number of similarities between the two systems and suggests that cannabinoids might participate in the control of pain sensitivity also in the amphibian spinal cord.
Collapse
Affiliation(s)
- C Salio
- Dipartimento di Biologia Animale e dell'Uomo, Università degli Studi di Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | | | | | | |
Collapse
|
9
|
Salio C, Fischer J, Wijkhuisen A, Franzoni MF, Conrath M. Distribution and ultrastructure of tachykinin-like immunoreactivity in the frog (Rana esculenta) spinal cord, notably, the dorsal horn. J Comp Neurol 2001; 433:183-92. [PMID: 11283958 DOI: 10.1002/cne.1134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tachykinins are involved in pain transmission at the spinal level. In frog, at least four tachykinins [TK] have been isolated from the brain, but their organization in the dorsal horn of the spinal cord is still poorly known. We have reexamined TK distribution by immunocytochemistry using an antibody recognizing the sequence common to all tachykinins in the spinal cord and dorsal root ganglia of the green frog Rana esculenta. A dense tachykinin-like immunoreactivity (TK-LI) was observed in the dorsolateral fasciculus or Lissauer's tract running ventromedial to the entry of the dorsal root and in numerous small and medium-sized dorsal root ganglion cells showing a primary afferent origin for part of TK-LI of the dorsal horn. The observation of numerous cell bodies in the dorsal horn, in addition, suggested a local or propriospinal origin. One group of cells was localized at the entrance of the Lissauer's tract TK-LI fibers into the dorsal horn, and another group was localized in the upper dorsal horn, a region with a low density of TK-LI fibers. It was suggested that the latter group may correspond to neurokinin B. Electron microscopic examination of the Lissauer's tract showed numerous immunoreactive axons, some located at the center of glomerular-like arrangements, suggesting that the information brought by these fibers may be transmitted and most probably modulated before their entry in the dorsal horn. In conclusion, the functional organization of tachykinins in the frog spinal cord seems to be similar to that of mammals, albeit with a different morphological organization.
Collapse
Affiliation(s)
- C Salio
- Departement de Neurobiologie des Signaux Intercellulaires, Institut des Neurosciences, CNRS UMR 7624, Université Pierre et Marie Curie, 75252 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
10
|
Muñoz M, Martínez A, Cuttitta F, González A. Distribution of adrenomedullin-like immunoreactivity in the central nervous system of the frog. J Chem Neuroanat 2001; 21:105-23. [PMID: 11312053 DOI: 10.1016/s0891-0618(00)00114-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adrenomedullin (AM) is a recently discovered peptide widely distributed in the mammalian brain. By using an antiserum specific for human AM, we have analyzed the localization of AM-like immunoreactivity in the brain and spinal cord of the anuran amphibian Rana perezi. Cell bodies immunoreactive (AMi) for AM were located in the dorsal, lateral and medial pallial regions, diagonal band of Broca, medial septum, and above and rostral to the anterior commissure. A large population of AMi neurons was located in the anterior preoptic area, suprachiasmatic nucleus and in the infundibular hypothalamus. The processes of these latter cells are part of the hypothalamo-hypophysial pathway to the neural and intermediate lobes. Labeled cells were observed in the pretectal region, posterior tubercle and the mesencephalic anteroventral tegmental nucleus. Strikingly, Purkinje cells in the cerebellum also showed AM immunoreactivity, albeit not all of these cells were equally stained. Additional cells were located in the parabrachial region, principal trigeminal sensory nucleus, reticular nuclei medius and inferior, and the intermediolateral gray of the spinal cord. Immunolabeled fibers were widespread throughout the brain and spinal cord of the frog. They were particularly abundant in the medial amygdala, hypothalamus, mesencephalic tectum, periventricular gray and spinal cord. The distribution pattern of AM-like immunoreactivity in the brain of the frog is very selective and does not correspond with the pattern observed for any other transmitter or neuroactive molecule. The wide distribution of this peptide strongly suggests that it may play a significant role in the multiple neuronal functions in the amphibian brain.
Collapse
Affiliation(s)
- M Muñoz
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | | | | | | |
Collapse
|
11
|
Endepols H, Walkowiak W, Luksch H. Chemoarchitecture of the anuran auditory midbrain. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 33:179-98. [PMID: 11011065 DOI: 10.1016/s0165-0173(00)00029-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The anuran torus semicircularis consists of several subnuclei that are part of the ascending auditory pathway as well as audiomotor interface structures. Additionally, recent anatomical studies suggest that the midbrain tegmentum is an integral part of the audiomotor network. To describe the chemoarchitecture of these nuclei, taking into account the toral subdivisions, we investigated the distribution of serotonin, leucine-enkephalin, substance P, tyrosine-hydroxylase, dopamine D2-receptor, parvalbumin, aspartate, GABA, and estrogen-binding protein-immunoreactivity in the midbrain of Bombina orientalis, Discoglossus pictus and Xenopus laevis. In the torus semicircularis, the highest density of immunoreactive fibers and terminals for all transmitters was found in the laminar nucleus. Parvalbumin-like immunoreactivity was highest in the principal nucleus, and D2-receptor-like immunoreactivity was uniformly distributed throughout the torus. In the tegmentum, axons and/or dendrites were stained with all antibodies except estrogen-binding protein. Additionally, heavily stained enkephalin and substance P-immunopositive fiber plexus were found in the lateral and dorsal tegmentum. The immunostainings revealed no qualitative differences between the three species. Immunopositive cell bodies were labeled in several brain areas, the connectivity of which with torus and tegmentum is discussed on the background of functional questions. The putative neuromodulatory innervation of both the laminar nucleus of the torus semicircularis and the tegmentum may be the anatomical basis for the influence of the animal's endogenous state on the behavioral reaction to sensory stimuli. These data corroborate earlier anatomical and physiological findings that the neurons of these nuclei are key elements in the audio-motor interface.
Collapse
Affiliation(s)
- H Endepols
- Universität zu Köln, Zoologisches Institut, Weyertal 119, 50923, Köln, Germany.
| | | | | |
Collapse
|
12
|
Brodin L, Söderberg C, Pieribone V, Larhammar D. Peptidergic neurons in the vertebrate spinal cord: evolutionary trends. PROGRESS IN BRAIN RESEARCH 1995; 104:61-74. [PMID: 8552784 DOI: 10.1016/s0079-6123(08)61784-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- L Brodin
- Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|