1
|
Suwabe T, Bradley RM. Characteristics of rostral solitary tract nucleus neurons with identified afferent connections that project to the parabrachial nucleus in rats. J Neurophysiol 2009; 102:546-55. [PMID: 19439671 DOI: 10.1152/jn.91182.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Afferent information derived from oral chemoreceptors is transmitted to second-order neurons in the rostral solitary tract nucleus (rNST) and then relayed to other CNS locations responsible for complex sensory and motor behaviors. Here we investigate the characteristics of rNST neurons sending information rostrally to the parabrachial nucleus (PBN). Afferent connections to these rNST-PBN projection neurons were identified by anterograde labeling of the chorda tympani (CT), glossopharyngeal (IX), and lingual (LV) nerves. We used voltage- and current-clamp recordings in brain slices to characterize the expression of both the transient A-type potassium current, IKA and the hyperpolarization-activated inward current, Ih, important determinants of neuronal repetitive discharge characteristics. The majority of rNST-PBN neurons express IKA, and these IKA-expressing neurons predominate in CT and IX terminal fields but were expressed in approximately half of the neurons in the LV field. rNST-PBN neurons expressing Ih were evenly distributed among CT, IX and LV terminal fields. However, expression patterns of IKA and Ih differed among CT, IX, and LV fields. IKA-expressing neurons frequently coexpress Ih in CT and IX terminal fields, whereas neurons in LV terminal field often express only Ih. After GABAA receptor block all rNST-PBN neurons responded to afferent stimulation with all-or-none excitatory synaptic responses. rNST-PBN neurons had either multipolar or elongate morphologies and were distributed throughout the rNST, but multipolar neurons were more often encountered in CT and IX terminal fields. No correlation was found between the biophysical and morphological characteristics of the rNST-PBN projection neurons in each terminal field.
Collapse
Affiliation(s)
- Takeshi Suwabe
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | | |
Collapse
|
2
|
Hill D, May O. Development and Plasticity of the Gustatory Portion of Nucleus of the Solitary Tract. Front Neurosci 2006. [DOI: 10.1201/9781420005974.ch6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
3
|
|
4
|
Grabauskas G, Bradley RM. Postnatal development of inhibitory synaptic transmission in the rostral nucleus of the solitary tract. J Neurophysiol 2001; 85:2203-12. [PMID: 11353035 DOI: 10.1152/jn.2001.85.5.2203] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To explore the postnatal development of inhibitory synaptic activity in the rostral (gustatory) nucleus of the solitary tract (rNST), whole cell and gramicidin perforated patch-clamp recordings were made in five age groups of rats [postnatal day 0-7 (P0-7), P8-14, P15-21, P22-30, and P >55]. The passive membrane properties of the developing rNST neurons as well as the electrophysiological and pharmacological characteristics of single and tetanic stimulus-evoked inhibitory postsynaptic potentials (IPSPs) were studied in brain slices under glutamate receptor blockade. During the first postnatal weeks, significant changes in resting membrane potential, spontaneous activity, input resistance, and neuron membrane time constant of the rNST neurons occurred. Although all the IPSPs recorded were hyperpolarizing, the rise and decay time constants of the single stimulus shock-evoked IPSPs decreased, and the inhibition response-concentration function to the gamma-aminobutyric acid (GABA) receptor antagonist bicuculline methiodide (BMI) shifted to the left during development. In P0-7 and P8-14, but not in older animals, the IPSPs had a BMI-insensitive component that was sensitive to block by picrotoxin, suggesting a transient expression of GABA(C) receptors. Tetanic stimulation resulted in both short- and long-term changes of inhibitory synaptic transmission in the rNST. For P0-7 and P8-14 animals tetanic stimulation resulted in a sustained hyperpolarization that was maintained for some time after termination of the tetanic stimulation. In contrast, tetanic stimulation of neurons in P15-21 and older animals resulted in hyperpolarization that was not sustained but decayed back to a more positive level with an exponential time course. Tetanic stimulation resulted in potentiation of single stimulus shock-evoked IPSPs in ~50% of neurons in all age groups. These developmental changes in inhibitory synaptic transmission in the rNST may play an important role in shaping synaptic activity in early development of the rat gustatory system during a time of maturation of taste preferences and aversions.
Collapse
Affiliation(s)
- G Grabauskas
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
5
|
Abstract
The rodent gustatory system has become a popular and useful model for the study of brain development because of this system's protracted period of postnatal maturation and its sensitivity to subtle changes in the animal's sensory environment. The goal of this investigation was to improve our understanding of dendritic remodeling exhibited by second-order gustatory neurons by presenting a comprehensive and definitive description of the development of the dendritic architecture of taste-sensitive neurons in the rostral nucleus of the solitary tract. Extracellular and intracellular recording and intracellular labeling techniques were used to examine the structure and function of individual gustatory neurons in three groups of rats: (1) Postnatal day 13-21 (PND13-21), (2) Postnatal day 22-28 (PND22-28), and (3) Adult (postnatal day 60-90). We found that neurons that responded to all three of the salts in our taste array ("Salt Sensitive") exhibited a striking increase in the number of dendritic branch points, maximum branch order, swelling density, and spine density between the PND13-21 and PND22-28 periods. These increases were followed by a period of dendritic remodeling during which the values for all measures except spine density decreased significantly. The neurons that did not respond to all three salts exhibited no change in the number of dendritic branches, branch order, or spine density during development, but they did undergo a decrease in swelling density. We also found that there was a significant decrease in the total dendritic length and cell volume of Salt Sensitive neurons between the PND22-28 and Adult periods, whereas the cells that did not respond to all three salts exhibited an increase in dendritic length and cell volume between postnatal day 28 and adulthood. Finally, we found that the dendrites of the Adult Salt Sensitive neurons were more restricted in the rostrocaudal axis than either the PND13-21 or PND22-28 Salt Sensitive cells. In contrast, there were no significant changes in the rostrocaudal extent of the dendritic arbors of cells that did not respond to all three salts. When viewed in the context of the extant literature and our own preliminary studies that used modified salt diets, we propose that these results provide strong support for the hypothesis that there is a relationship between postnatal dendritic development (particularly remodeling) and the animal's sensitivity to salts.
Collapse
Affiliation(s)
- Y S Liu
- Division of Gastroenterology, Henry Ford Health System, Detroit, Michigan 48202, USA
| | | | | |
Collapse
|
6
|
Briones TL, Therrien B, Metzger B. Effects of environment on enhancing functional plasticity following cerebral ischemia. Biol Res Nurs 2000; 1:299-309. [PMID: 11232208 DOI: 10.1177/109980040000100406] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Given the brain's capacity to recover from injury, plasticity may be enhanced following cerebral ischemia through environmental manipulation. Thus, the purpose of this study was to (1) determine the effects of early exposure to an enriched environment following ischemia on functional plasticity and (2) examine the relationship between morphological and behavioral plasticity. Adult female rats (n = 38) were divided into ischemia and control groups. Each group was further randomized to either standard (SC) or enriched conditions (EC). After 4 days of environmental exposure, rats were tested for 6 days in the water maze. Control and ischemia rats exposed to EC have increased total dendritic length (P < 0.05) as well as increased number of dendritic segments in the apical (P < 0.05) region of the hippocampal area compared to those housed in SC; furthermore, increased dendritic spine density in the apical (P < 0.05) region was also seen. Behavioral testing showed that ischemia rats exposed to SC have longer swim latencies (P < 0.05) and greater directional heading errors (P < 0.05) than ischemic rats exposed to EC; the latter group performed similar to controls. It is concluded that EC may be a potentially useful therapy in the recovery of spatial memory impairments seen after ischemia.
Collapse
|
7
|
Vincent A, Tell F. Postnatal development of rat nucleus tractus solitarius neurons: morphological and electrophysiological evidence. Neuroscience 1999; 93:293-305. [PMID: 10430493 DOI: 10.1016/s0306-4522(99)00109-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Postnatal development of neurons in the caudal nucleus tractus solitarii of rats was studied using the Golgi-Cox technique and whole-cell recordings. Two cell classes were defined on the basis of somatic and dendritic morphology. Elongated neurons have two thick primary dendrites originating from the long axis of the soma. The primary dendrites, tapering distally, give rise to one to four secondary dendrites. Multipolar neurons have pyramidal somas. Extending from each apex of the cell body was a long primary dendrite, which gave rise to a variable number of secondary dendrites. The relative proportion of the two classes was rather constant from birth to adulthood. During the first two postnatal weeks, dendritic length and area of influence increase, but neuronal geometry is not altered in either class. Dendritic appendages appear by postnatal day 5, reach a peak at postnatal day P12 and then almost disappear in adult neurons. Combined intracellular injection of neurobiotin and whole-cell recordings indicate that morphological alteration of caudal nucleus tractus solitarius neurons occurs in parallel with changes in passive properties and spike characteristics. However, the firing pattern of discharge is not correlated with morphology. The physiological significance of these results is discussed.
Collapse
Affiliation(s)
- A Vincent
- Département de Physiologie et Neurophysiologie, Centre National de la Recherche Scientifique ESA 6034, Faculté des Sciences de Saint-Jérôme, Marseille, France
| | | |
Collapse
|
8
|
Renehan WE, Massey J, Jin Z, Zhang X, Liu YZ, Schweitzer L. Developmental changes in the dendritic architecture of salt-sensitive neurons in the nucleus of the solitary tract. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 102:231-46. [PMID: 9352106 DOI: 10.1016/s0165-3806(97)00104-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent studies have provided evidence that brainstem gustatory neurons undergo substantial dendritic growth during a period of postnatal development that coincides with the maturation of their response to salts, suggesting a relationship (perhaps causal) between the physiology and morphology of developing salt-sensitive neurons. In an initial effort to explore this issue, we used extracellular and intracellular recording and intracellular labeling techniques to examine the structure and function of individual gustatory neurons in the rostral nucleus of the solitary tract (rNST) of young (postnatal day [P] 22-28) and adult rats. We found that P22-28 cells that responded to all three of the salts in our taste array had a greater dendritic length, a greater cell volume, and more dendritic branches than the cells that responded to one salt. As a group, taste-sensitive neurons in P22-28 animals had a higher maximum dendritic branch order and a trend toward more dendritic branch points than gustatory neurons in adult animals. The dendritic arbors of P22-28 taste neurons that responded to all three salts were larger (greater surface area and volume), more extensive in the rostrocaudal axis and exhibited a higher maximum branch order, more branch points and higher swelling density than adult cells that responded to all three salts. These results demonstrate that the morphology of salt-sensitive gustatory neurons in developing animals is closely related to the number of salts that evoke a response. The data also support the postulate that gustatory neurons in the rat brainstem undergo substantial dendritic remodeling between the fourth week of life and adulthood. Dendritic remodeling may play an important role in the maturation of the rNST response to NaCl.
Collapse
Affiliation(s)
- W E Renehan
- Laboratory of Gastrointestinal, Henry Ford Health Sciences Center, Case Western Reserve University, Detroit, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
9
|
Masmoudi K, Larnicol N, Wallois F, Gros F. Changes in Fos-like immunoreactivity evoked by maturation of the sneeze reflex triggered by nasal air puff stimulation in kittens. Brain Res 1997; 757:102-10. [PMID: 9200504 DOI: 10.1016/s0006-8993(97)00167-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The sneeze reflex is a valuable tool for exploring the maturation of the respiratory control in the newborn as it alters both inspiratory and expiratory activities. Air puff stimulation of the superior nasal meatus innervated by ethmoidal afferents consistently evokes sneeze in adult cats. Such stimulation evokes only a reinforcement of expiratory activities in newborn kittens. This study demonstrates that the pattern of Fos-like immunoreactivity evoked by nasal stimulation changes during functional maturation of sneeze. Nasal stimulation evoked immunoreactivity (i) in the trigeminal sensory complex, at the levels where nasal afferents project, (ii) in the reticular formation, (iii) in the solitary complex and (iv) in the parabrachial area of mature kittens. The evoked immunoreactivity was the same in newborn kittens as in mature kittens in the projection areas of the nasal primary afferents. Fos response was less than half that in mature kittens in the reticular formation and absent in the solitary complex or the parabrachial area. Sneeze can be elicited from the time when evoked immunoreactivity in the solitary complex and the parabrachial area is above control levels. These data provide evidence that the maturation of sneeze is dependent on the development of central relays allowing peripheral inputs to be integrated by neurons engaged in respiratory control.
Collapse
Affiliation(s)
- K Masmoudi
- CNRS URA 1331, Université de Picardie, UFR de Médecine, Amiens, France
| | | | | | | |
Collapse
|
10
|
Renehan WE, Jin Z, Zhang X, Schweitzer L. Structure and function of gustatory neurons in the nucleus of the solitary tract: II. Relationships between neuronal morphology and physiology. J Comp Neurol 1996; 367:205-21. [PMID: 8708005 DOI: 10.1002/(sici)1096-9861(19960401)367:2<205::aid-cne4>3.0.co;2-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This study employed intracellular recording and labeling techniques to examine potential relationships between the physiology and morphology of brainstem gustatory neurons. When we considered the neuronal response to the four "prototypic" tastants, we were able to demonstrate a positive correlation between breadth of responsiveness and the number of dendritic branch points. An analysis of the response to eight tastants also revealed an association between dendritic spine density and the breadth of responsiveness, with more narrowly tuned neurons exhibiting more spines. Interestingly, a neuron's "best response" was a relatively poor predictor of neuronal morphology. When we focused on those neurons that responded to only one tastant, however, a number of potentially important relationships became apparent. We found that the cells that only responded to quinine were smaller than the neurons that only responded to NaCl, HCl, or sucrose. The HCl-only neurons, however, were more widespread in the rostrocaudal dimension that the neurons that only responded to NaCl. A number of additional structure-function relationships were identified when we examined the neuronal response to selected tastants. We found that neurons that responded to sucrose but not quinine, as well as neurons that responded to quinine but not sucrose, were more widespread in the mediolateral dimension than neurons that responded to both sucrose and quinine. We also discovered that the neurons that responded to NaCl, but not to NH4Cl or KCl, were larger than neurons that responded to all three salts. We believe that these results support the hypothesis that there are relationships between the structure and function of gustatory neurons in the nucleus of the solitary tract, with the data highlighting the importance of three themes: 1) the relationship between dendritic specializations and tuning, 2) the relationship between dendritic arbor orientation and response properties, and 3) the potential importance of stimulus-specific neurons.
Collapse
Affiliation(s)
- W E Renehan
- Laboratory of Gastrointestinal, Gustatory and Somatic Sensation, Henry Ford Health Sciences Center, Detroit, Michigan 48202, USA
| | | | | | | |
Collapse
|
11
|
Mistretta CM, Haus LF. Temporal and spatial patterns of tenascin and laminin immunoreactivity suggest roles for extracellular matrix in development of gustatory papillae and taste buds. J Comp Neurol 1996; 364:535-555. [PMID: 8820882 DOI: 10.1002/(sici)1096-9861(19960115)364:3<535::aid-cne11>3.0.co;2-o] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Gustatory papillae are complex organs that are composed of 1) an epithelium, 2) specialized sensory cells within the epithelium (the taste buds), 3) a broad connective core, and 4) sensory innervation. During papilla development, cells in the various tissue compartments must divide, aggregate, detach, migrate, and reaggregate in relation to each other, but factors that regulate such steps are poorly understood and have not been extensively studied. All of these processes potentially require participation of the extracellular matrix. Therefore, we have studied temporal and spatial patterns of immunoreactivity for two extracellular matrix molecules, tenascin and laminin, in the developing fungiform and circumvallate papillae of fetal, perinatal, and adult sheep tongue. To determine relations of tenascin and laminin to sensory innervation, we used an antibody to growth-associated protein (GAP-43) to label growing nerves. Immunocytochemical distributions of tenascin and laminin alter during development in a manner that reflects morphogenesis rather than histologic boundaries of the taste papillae. In early fungiform papillae, tenascin immunoreactivity is very weak within the mesenchyme of the papilla core. However, there is a subsequent shift to an intense, restricted localization in the apical papilla core only--directly under taste bud-bearing regions of the papilla epithelium. In early circumvallate papillae, tenascin immunoreactivity is patchy within the papilla core and within the flanking, nongustatory papillae. Later, immunoreactivity is restricted to the perimeter of the central papilla core, under epithelium that contains developing taste buds. In fungiform and circumvallate papillae, the shift in tenascin immunolocalization is associated with periods of taste bud formation and multiplication within the papilla epithelium and with extensive branching of the sensory innervation in the papilla apex. Laminin immunoreactivity, although it is continuous throughout the basement membrane of general lingual epithelium, is interrupted in the epithelial basement membrane of early fungiform and circumvallate papillae in regions where taste buds are forming. The breaks are large in young fetuses, when taste buds first develop, and are evidenced later as punctate disruptions. Heparan sulfate proteoglycan immunoreactivity confirms that these are basement membrane discontinuities. GAP-43 label coincides with innervation of the papilla core and is most extensive in regions where tenascin immunoreactivity is weak or absent. GAP-43 immunoreactivity is also found in early taste buds: Later, it is extensive within more mature multiple taste buds, presumably in relation to synaptogenesis. We propose that tenascin has a role in promoting deadhesion of cells in the papilla epithelium during periods of taste bud formation and multiplication. Discontinuities in the epithelial basement membrane under developing taste buds, indicated with laminin and heparan sulfate proteoglycan immunoreactivity, may interact to facilitate taste bud morphogenesis and multiplication, to permit access of papilla innervation to the forming taste buds, and/or to allow epithelial/mesenchymal interactions during papilla and taste bud development.
Collapse
Affiliation(s)
- C M Mistretta
- Department of Biologic and Materials Sciences, University of Michigan, Ann Ar 48109-1078, USA
| | | |
Collapse
|
12
|
Wang L, Bradley RM. In vitro study of afferent synaptic transmission in the rostral gustatory zone of the rat nucleus of the solitary tract. Brain Res 1995; 702:188-98. [PMID: 8846076 DOI: 10.1016/0006-8993(95)01062-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The synaptic responses of rostral nucleus of the solitary tract (rNST) neurons to electrical stimulation of the solitary tract (ST) fibers were investigated using whole-cell recordings in brain slices of adult rat medulla. Most neurons of the rNST (47%) responded to stimulation of the ST with excitatory postsynaptic potentials (EPSPs), 28% responded with mixed excitatory and inhibitory postsynaptic potentials (PSPs) and 25% responded with inhibitory postsynaptic potentials (IPSPs). The estimated reversal potentials for the EPSPs (EEPSP) was -7 mV and for the IPSPs (EIPSP) was -69 mV. The glutamate antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) acting at the alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA)/kainate receptor, either reduced or blocked all EPSPs tested. D-2-Amino-5-phosphonovalerate (APV), a selective N-methyl-D-aspartate (NMDA) receptor antagonist, also reduced the amplitude of the EPSPs. These results suggest that glutamate is released following stimulation of afferent fibers in the ST and acts on both AMPA/kainate and NMDA glutamate receptors. The IPSPs result from release of gamma-aminobutyric acid (GABA) since superfusion of the GABAA receptor antagonist, bicuculline reversibly blocked the IPSPs. The GABAB receptor antagonist, phaclofen, also reduced the IPSP components in some neurons, indicating that both GABAA and GABAB receptors are involved in inhibitory transmission in the rNST. When the morphology of the recorded neurons was examined by filling the neurons with biocytin and reconstructing the neurons, each morphological type of rNST neuron responded with excitatory and inhibitory PSPs following stimulation of the ST.
Collapse
Affiliation(s)
- L Wang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor 48109-1078, USA
| | | |
Collapse
|
13
|
Bao H, Bradley RM, Mistretta CM. Development of intrinsic electrophysiological properties in neurons from the gustatory region of rat nucleus of solitary tract. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1995; 86:143-54. [PMID: 7656407 DOI: 10.1016/0165-3806(95)00020-e] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
There is no current understanding of the nature or time course of maturation of intrinsic electrophysiological properties for neurons in the gustatory region of the nucleus of the solitary tract (NST). Therefore, we used whole cell recordings in an in vitro slice preparation of the rat brainstem to characterize development of resting membrane, action potential and repetitive discharge properties of cells in gustatory NST at postnatal days 5, 10, 15, 20, and 30, and adult ages. Neurons were filled with Biocytin to verify location and characterize morphology. Membranes from younger neurons demonstrated a steeper current-voltage relation or higher input resistance, and a longer time constant than mature cells. Action potentials in younger cells had a slower rate of rise and were longer in duration. The afterhyperpolarization that typically follows the spike discharge usually had one phase in younger neurons, but was characterized by two or more phases in an increasing proportion of older cells. The repetitive discharge frequency in response to a range of depolarizing current pulses increased during development, and frequency/current plots were steeper in older compared with younger neurons. However, in all age groups there was clear accommodation of the discharge frequency. The greatest changes in resting membrane, action potential, and discharge properties were observed between P5 and P15, and mature values were generally reached by P20. At each postnatal age, neurons could be categorized in four neuron groups, based on the discharge pattern in response to a hyperpolarizing/depolarizing current protocol. Anatomical reconstructions indicated that although cells increased in overall dendritic expanse during development, neurons became less complex as illustrated by decreases in number of dendritic branch points, and in number and density of spines. The timing of major developmental differences in intrinsic electrical characteristics observed here is associated with a period of previously reported maturational changes in extracellular taste responses to number and concentration of chemical stimuli. However, further alterations in extracellular taste responses proceed after apparent maturation of intrinsic neural properties.
Collapse
Affiliation(s)
- H Bao
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor 48109-1078, USA
| | | | | |
Collapse
|