1
|
Marshall AT, Crewther SG. Osmotic gradients and transretinal water flow-a quantitative elemental microanalytical study of frozen hydrated chick eyes. Front Cell Neurosci 2022; 16:975313. [PMID: 36353149 PMCID: PMC9639504 DOI: 10.3389/fncel.2022.975313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/03/2022] [Indexed: 08/30/2023] Open
Abstract
Optical clarity and efficient phototransduction are necessary for optimal vision, however, how the associated processes of osmoregulation and continuous fluid drainage across the whole eye are achieved remains relatively unexplored. Hence, we have employed elemental microanalysis of planed surfaces of light-adapted bulk frozen-hydrated chick eyes to determine the unique intracellular elemental localization, compositions, and hydration states that contribute to maintaining osmotic gradients and water flow from the vitreous, across the retina, retinal pigment epithelium (RPE), to choroid and sclera. As expected, the greatest difference in resultant osmotic concentration gradients, [calculated using the combined concentrations of sodium (Na) and potassium (K)] and tissue hydration [oxygen-defined water concentration], occurs in the outer retina and, in particular, in the RPE where the apical and basal membranes are characterized by numerous bioenergetically active, osmoregulating ion transport mechanisms, aquaporins, and chloride (Cl) channels. Our results also demonstrate that the high intracellular Na+ and K+ concentrations in the apical region of the RPE are partially derived from the melanosomes. The inclusion of the ubiquitous osmolyte taurine to the calculation of the osmotic gradients suggests a more gradual increase in the osmotic transport of water from the vitreous into the ganglion cell layer across the inner retina to the outer segments of the photoreceptor/apical RPE region where the water gradient increases rapidly towards the basal membrane. Thus transretinal water is likely to cross the apical membrane from the retina into the RPE cells down the Na+ and K+ derived osmotic concentration gradient and leave the RPE for the choroid across the basal membrane down the Cl- derived osmotic concentration gradient that is sustained by the well-described bioenergetically active RPE ion transporters and channels.
Collapse
Affiliation(s)
- Alan T. Marshall
- Analytical Electron Microscopy Laboratory, Department of Genetics and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Sheila G. Crewther
- Department of Psychology and Counselling, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Karl A, Agte S, Zayas-Santiago A, Makarov FN, Rivera Y, Benedikt J, Francke M, Reichenbach A, Skatchkov SN, Bringmann A. Retinal adaptation to dim light vision in spectacled caimans (Caiman crocodilus fuscus): Analysis of retinal ultrastructure. Exp Eye Res 2018; 173:160-178. [PMID: 29753728 PMCID: PMC9930524 DOI: 10.1016/j.exer.2018.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 11/19/2022]
Abstract
It has been shown that mammalian retinal glial (Müller) cells act as living optical fibers that guide the light through the retinal tissue to the photoreceptor cells (Agte et al., 2011; Franze et al., 2007). However, for nonmammalian species it is unclear whether Müller cells also improve the transretinal light transmission. Furthermore, for nonmammalian species there is a lack of ultrastructural data of the retinal cells, which, in general, delivers fundamental information of the retinal function, i.e. the vision of the species. A detailed study of the cellular ultrastructure provides a basic approach of the research. Thus, the aim of the present study was to investigate the retina of the spectacled caimans at electron and light microscopical levels to describe the structural features. For electron microscopy, we used a superfast microwave fixation procedure in order to achieve more precise ultrastructural information than common fixation techniques. As result, our detailed ultrastructural study of all retinal parts shows structural features which strongly indicate that the caiman retina is adapted to dim light and night vision. Various structural characteristics of Müller cells suppose that the Müller cell may increase the light intensity along the path of light through the neuroretina and, thus, increase the sensitivity of the scotopic vision of spectacled caimans. Müller cells traverse the whole thickness of the neuroretina and thus may guide the light from the inner retinal surface to the photoreceptor cell perikarya and the Müller cell microvilli between the photoreceptor segments. Thick Müller cell trunks/processes traverse the layers which contain light-scattering structures, i.e., nerve fibers and synapses. Large Müller cell somata run through the inner nuclear layer and contain flattened, elongated Müller cell nuclei which are arranged along the light path and, thus, may reduce the loss of the light intensity along the retinal light path. The oblique arrangement of many Müller cell trunks/processes in the inner plexiform layer and the large Müller cell somata in the inner nuclear layer may suggest that light guidance through Müller cells increases the visual sensitivity. Furthermore, an adaptation of the caiman retina to low light levels is strongly supported by detailed ultrastructural data of other retinal parts, e.g. by (i) the presence of a guanine-based retinal tapetum, (ii) the rod dominance of the retina, (iii) the presence of photoreceptor cell nuclei, which penetrate the outer limiting membrane, (iv) the relatively low densities of photoreceptor and neuronal cells which is compensated by (v) the presence of rods with long and thick outer segments, that may increase the probability of photon absorption. According to a cell number analysis, the central and temporal areas of the dorsal tapetal retina, which supports downward prey detection in darker water, are the sites of the highest diurnal contrast/color vision, i.e. cone vision and of the highest retinal light sensitivity, i.e. rod vision.
Collapse
Affiliation(s)
- Anett Karl
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany; Carl Ludwig Institute for Physiology, University of Leipzig, Leipzig, Germany.
| | - Silke Agte
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Astrid Zayas-Santiago
- Department of Pathology and Laboratory Medicine, Universidad Central Del Caribe, Bayamón, Puerto Rico, USA
| | - Felix N Makarov
- Laboratory of Neuromorphology, Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Yomarie Rivera
- Department of Physiology, Universidad Central Del Caribe, Bayamón, Puerto Rico, USA
| | - Jan Benedikt
- Department of Physiology, Universidad Central Del Caribe, Bayamón, Puerto Rico, USA
| | - Mike Francke
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany; Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
| | - Andreas Reichenbach
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Serguei N Skatchkov
- Department of Biochemistry, Universidad Central Del Caribe, Bayamón, Puerto Rico, USA; Department of Physiology, Universidad Central Del Caribe, Bayamón, Puerto Rico, USA
| | - Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| |
Collapse
|
3
|
Agte S, Savvinov A, Karl A, Zayas-Santiago A, Ulbricht E, Makarov VI, Reichenbach A, Bringmann A, Skatchkov SN. Müller glial cells contribute to dim light vision in the spectacled caiman (Caiman crocodilus fuscus): Analysis of retinal light transmission. Exp Eye Res 2018; 173:91-108. [PMID: 29763583 PMCID: PMC9930533 DOI: 10.1016/j.exer.2018.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/23/2018] [Accepted: 05/11/2018] [Indexed: 10/16/2022]
Abstract
In this study, we show the capability of Müller glial cells to transport light through the inverted retina of reptiles, specifically the retina of the spectacled caimans. Thus, confirming that Müller cells of lower vertebrates also improve retinal light transmission. Confocal imaging of freshly isolated retinal wholemounts, that preserved the refractive index landscape of the tissue, indicated that the retina of the spectacled caiman is adapted for vision under dim light conditions. For light transmission experiments, we used a setup with two axially aligned objectives imaging the retina from both sides to project the light onto the inner (vitreal) surface and to detect the transmitted light behind the retina at the receptor layer. Simultaneously, a confocal microscope obtained images of the Müller cells embedded within the vital tissue. Projections of light onto several representative Müller cell trunks within the inner plexiform layer, i.e. (i) trunks with a straight orientation, (ii) trunks which are formed by the inner processes and (iii) trunks which get split into inner processes, were associated with increases in the intensity of the transmitted light. Projections of light onto the periphery of the Müller cell endfeet resulted in a lower intensity of transmitted light. In this way, retinal glial (Müller) cells support dim light vision by improving the signal-to-noise ratio which increases the sensitivity to light. The field of illuminated photoreceptors mainly include rods reflecting the rod dominance of the of tissue. A subpopulation of Müller cells with downstreaming cone cells led to a high-intensity illumination of the cones, while the surrounding rods were illuminated by light of lower intensity. Therefore, Müller cells that lie in front of cones may adapt the intensity of the transmitted light to the different sensitivities of cones and rods, presumably allowing a simultaneous vision with both receptor types under dim light conditions.
Collapse
Affiliation(s)
- Silke Agte
- Paul Flechsig Institute for Brain Research, Leipzig University, Leipzig, Germany.
| | - Alexey Savvinov
- Department of Physical Sciences, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
| | - Anett Karl
- Paul Flechsig Institute for Brain Research, Leipzig University, Leipzig, Germany,Carl Ludwig Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Astrid Zayas-Santiago
- Department of Pathology and Laboratory Medicine, Universidad Central del Caribe, Bayamón, Puerto Rico
| | - Elke Ulbricht
- Biotechnology Center, Technical University of Dresden, Dresden, Germany
| | - Vladimir I. Makarov
- Department of Physics, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
| | - Andreas Reichenbach
- Paul Flechsig Institute for Brain Research, Leipzig University, Leipzig, Germany
| | - Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Serguei N. Skatchkov
- Department of Biochemistry and Physiology, Universidad Central del Caribe, Bayamón, Puerto Rico
| |
Collapse
|
4
|
|
5
|
Zayas-Santiago A, Agte S, Rivera Y, Benedikt J, Ulbricht E, Karl A, Dávila J, Savvinov A, Kucheryavykh Y, Inyushin M, Cubano LA, Pannicke T, Veh RW, Francke M, Verkhratsky A, Eaton MJ, Reichenbach A, Skatchkov SN. Unidirectional photoreceptor-to-Müller glia coupling and unique K+ channel expression in Caiman retina. PLoS One 2014; 9:e97155. [PMID: 24831221 PMCID: PMC4022631 DOI: 10.1371/journal.pone.0097155] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/15/2014] [Indexed: 02/07/2023] Open
Abstract
Background Müller cells, the principal glial cells of the vertebrate retina, are fundamental for the maintenance and function of neuronal cells. In most vertebrates, including humans, Müller cells abundantly express Kir4.1 inwardly rectifying potassium channels responsible for hyperpolarized membrane potential and for various vital functions such as potassium buffering and glutamate clearance; inter-species differences in Kir4.1 expression were, however, observed. Localization and function of potassium channels in Müller cells from the retina of crocodiles remain, hitherto, unknown. Methods We studied retinae of the Spectacled caiman (Caiman crocodilus fuscus), endowed with both diurnal and nocturnal vision, by (i) immunohistochemistry, (ii) whole-cell voltage-clamp, and (iii) fluorescent dye tracing to investigate K+ channel distribution and glia-to-neuron communications. Results Immunohistochemistry revealed that caiman Müller cells, similarly to other vertebrates, express vimentin, GFAP, S100β, and glutamine synthetase. In contrast, Kir4.1 channel protein was not found in Müller cells but was localized in photoreceptor cells. Instead, 2P-domain TASK-1 channels were expressed in Müller cells. Electrophysiological properties of enzymatically dissociated Müller cells without photoreceptors and isolated Müller cells with adhering photoreceptors were significantly different. This suggests ion coupling between Müller cells and photoreceptors in the caiman retina. Sulforhodamine-B injected into cones permeated to adhering Müller cells thus revealing a uni-directional dye coupling. Conclusion Our data indicate that caiman Müller glial cells are unique among vertebrates studied so far by predominantly expressing TASK-1 rather than Kir4.1 K+ channels and by bi-directional ion and uni-directional dye coupling to photoreceptor cells. This coupling may play an important role in specific glia-neuron signaling pathways and in a new type of K+ buffering.
Collapse
Affiliation(s)
- Astrid Zayas-Santiago
- Departments of Pathology, Biochemistry and Physiology, Universidad Central Del Caribe, Bayamón, Puerto Rico, United States of America
| | - Silke Agte
- Paul Flechsig Institute of Brain Research, Faculty of Medicine, University of Leipzig, Leipzig, Germany
- Division of Soft Matter Physics, Department of Physics, University of Leipzig, Leipzig, Germany
| | - Yomarie Rivera
- Departments of Pathology, Biochemistry and Physiology, Universidad Central Del Caribe, Bayamón, Puerto Rico, United States of America
| | - Jan Benedikt
- Departments of Pathology, Biochemistry and Physiology, Universidad Central Del Caribe, Bayamón, Puerto Rico, United States of America
| | - Elke Ulbricht
- Paul Flechsig Institute of Brain Research, Faculty of Medicine, University of Leipzig, Leipzig, Germany
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Anett Karl
- Paul Flechsig Institute of Brain Research, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - José Dávila
- Departments of Pathology, Biochemistry and Physiology, Universidad Central Del Caribe, Bayamón, Puerto Rico, United States of America
| | - Alexey Savvinov
- Department of Physical Sciences, Universidad de Puerto Rico, Recinto de Río Piedras, Río Piedras, Puerto Rico, United States of America
| | - Yuriy Kucheryavykh
- Departments of Pathology, Biochemistry and Physiology, Universidad Central Del Caribe, Bayamón, Puerto Rico, United States of America
| | - Mikhail Inyushin
- Departments of Pathology, Biochemistry and Physiology, Universidad Central Del Caribe, Bayamón, Puerto Rico, United States of America
| | - Luis A. Cubano
- Departments of Pathology, Biochemistry and Physiology, Universidad Central Del Caribe, Bayamón, Puerto Rico, United States of America
| | - Thomas Pannicke
- Paul Flechsig Institute of Brain Research, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | | | - Mike Francke
- Paul Flechsig Institute of Brain Research, Faculty of Medicine, University of Leipzig, Leipzig, Germany
- Translational Centre for Regenerative Medicine (TRM) University of Leipzig, Leipzig, Germany
| | - Alexei Verkhratsky
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Misty J. Eaton
- Departments of Pathology, Biochemistry and Physiology, Universidad Central Del Caribe, Bayamón, Puerto Rico, United States of America
| | - Andreas Reichenbach
- Paul Flechsig Institute of Brain Research, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Serguei N. Skatchkov
- Departments of Pathology, Biochemistry and Physiology, Universidad Central Del Caribe, Bayamón, Puerto Rico, United States of America
- * E-mail:
| |
Collapse
|
6
|
Abstract
AbstractMany diverse retinal disorders are characterized by retinal edema; yet, little experimental attention has been given to understanding the fundamental mechanisms underlying and contributing to these fluid-based disorders. Water transport in and out of cells is achieved by specialized membrane channels, with most rapid water transport regulated by transmembrane water channels known as aquaporins (AQPs). The predominant AQP in the mammalian retina is AQP4, which is expressed on the Müller glial cells. Müller cells have previously been shown to modulate neuronal activity by modifying the concentrations of ions, neurotransmitters, and other neuroactive substances within the extracellular space between the inner and the outer limiting membrane. In doing so, Müller cells maintain extracellular homeostasis, especially with regard to the spatial buffering of extracellular potassium (K+) via inward rectifying K+ channels (Kir channels). Recent studies of water transport and the spatial buffering of K+ through glial cells have highlighted the involvement of both AQP4 and Kir channels in regulating the extracellular environment in the brain and retina. As both glial functions are associated with neuronal activation, controversy exists in the literature as to whether the relationship is functionally dependent. It is argued in this review that as AQP4 channels are likely to be the conduit for facilitating fluid homeostasis in the inner retina during light activation, AQP4 channels are also likely to play a consequent role in the regulation of ocular volume and growth. Recent research has already shown that the level of AQP4 expression is associated with environmentally driven manipulations of light activity on the retina and the development of myopia.
Collapse
|
7
|
Anezary L, Medina JI, Sánchez-Nogueiro J, López-Gallardo M, Prada C. Shape diversity among chick retina Müller cells and their postnatal differentiation. J Comp Neurol 2001; 438:32-49. [PMID: 11503151 DOI: 10.1002/cne.1300] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
It is currently believed that in each vertebrate species Müller cells in the central retina constitutes a fairly homogeneous population from the morphologic point of view and that particularly the chick Müller cell attains full shape differentiation at prenatal stages. However, in this study of the chick retina, from day 1 to day 55 of life, we show that there is a large variety of Müller cell shapes and that many of them complete shape differentiation postnatally. We used a cell dissociation method that preserves the whole shape of the Müller cells. Unstained living and unstained fixed cells were studied by phase-contrast microscopy, and fixed cells immunostained for intermediate filaments of the cytoskeleton were studied by fluorescence microscopy. Our results show that (1) Müller cell shapes vary in the origination of the hair of vitread processes, in the shape of the ventricular (outer or apical) process, in the presence or absence of an accessory process, as well as in the number and shape of processes leaving from the ventricular process at the level of the outer nuclear and outer plexiform layers (ONL/OPL); (2) during the first month of life, many Müller cells differentiate the portion of the ventricular process that traverses the ONL, most Müller cells differentiate the ONL/OPL processes, and all Müller cells differentiate the thin short lateral processes leaving from the vitread hair processes at the level of the inner plexiform layer (IPL). The number of cells differing in the shape of the ventricular process and that of cells with and without accessory process were estimated. The spatial relationship between the outer portion of the ventricular process of the Müller cell and the photoreceptor cells was also studied. Our results show that the branching of the ventricular process and the refinement of Müller cell shape is achieved without apparent participation of growth cones. We give a schematic view of how the branching of the ventricular process might take place and propose the size increase of photoreceptor soma as a factor responsible for this branching.
Collapse
Affiliation(s)
- L Anezary
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
8
|
Firth SI, Morgan IG, Boelen MK, Morgans CW. Localization of voltage-sensitive L-type calcium channels in the chicken retina. Clin Exp Ophthalmol 2001; 29:183-7. [PMID: 11446465 DOI: 10.1046/j.1442-9071.2001.00401.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
L-type calcium channels have been associated with synaptic transmission in the retina, and are a potential site for modulation of the release of neurotransmitters. The present study documents the immunohistochemical localization of neuronal alpha1 subunits of L-type calcium channels in chicken retina, using antibodies to the alpha1c, alpha1d and alpha1f subunits of L-type calcium channels. The alpha1c-like subunits were localized to Müller cells, with predominantly radial processes, and a prominent band of horizontal processes in the outer plexiform layer. The antibody to alpha1d subunits labelled most, if not all, cell bodies. The antibody to a human alpha1f subunit strongly labelled photoreceptor terminals. Fainter immunoreactivity was detected in the inner segments of the photoreceptors, a subset of amacrine cells, two bands of labelling in the inner plexiform layer and many ganglion cells. The differential cellular distributons of these alpha1-subunits suggests subtle functional differences in their roles at different cellular locations.
Collapse
Affiliation(s)
- S I Firth
- Visual Sciences Group, Research School of Biological Sciences & Centre for Visual Science, Australian National University, Canberra, Australian Capital Territory.
| | | | | | | |
Collapse
|
9
|
Abstract
The current state of research into experimentally induced refractive errors is reviewed. The area is analysed in three components-the transduction of defocus or deprivation, the vector for transmitting the error message from the retina to the outer tunics of the eye, and the identity of the effector for causing growth modulation in the sclera. Anatomical, pharmacological, electrophysiological and optical factors are considered in terms of which elements of the retina are necessary to support a refractive response to deprivation or defocus. Two of the current models are discussed-one emphasizing the role of the choroid in effecting ocular and refractive change, while the second model approaches the problem from the aspect of scleral changes that are associated with growth adaptation without emphasis on the error detection mechanism. A third model is proposed in which the error signal for deprivation or defocus is detected in the outer retina and where error is translated through separate signals for stimulus brightening and darkening into a net signal for fluid flow across and under the active control of the retinal pigment epithelium with the fluid communication between the vitreous chamber and the choroidal lymphatics. The directions of research both fundamental and clinical which are needed to create pharmaceutical or environmental solutions to refractive control are discussed.
Collapse
Affiliation(s)
- D P Crewther
- School of Psychological Science, La Trobe University, Bundoora, Victoria, Australia.
| |
Collapse
|
10
|
Abstract
In this paper, for the first time a quantitative description of the morphology and distribution of Müller cells in the macaque monkey retina using immunohistochemistry and high resolution confocal laser scanning microscopy is given. By their morphological features Müller cells are ideally adapted to their neuronal environment in the various retinal layers, with a dense network of horizontal processes, especially in the inner plexiform layer, and close contacts to neuronal somata especially in the outer nuclear layer and ganglion cell layer. Morphology varies with retinal eccentricity. The thickness of the inner trunk increases significantly with increasing retinal eccentricity. According to the overall thickness of the retina, Müller cells in central retina are longer than in peripheral regions. In the parafoveal region, the outer trunks of Müller cells in the outer plexiform layer are immensely elongated. These Müller fibres can reach lengths of several hundred micrometers as they travel through the outer plexiform layer from the foveal centre towards the foveal border where they enter the inner nuclear layer. Müller cell density varies between 6000 cells/mm2 in far peripheral and peak densities of > 30,000 cells/mm2 in the parafoveal retina. There is a close spatial relationship between Müller cells and blood vessels in the monkey retina, suggesting a role of Müller cells in the formation of the blood-retinal barrier, in the uptake of nutrients and the disposal of metabolites.
Collapse
|
11
|
Abstract
The present study aimed to characterize the reaction of mammalian (rat) retinal macroglia (Müller cells and astrocytes) to disturbances of their environment in the form of intraorbital section of the optic nerve, intraocular insertion of a thin glass capillary (without damage to the retina) or a combination of both. Glial reactivity was assessed through the use of a battery of antibodies which recognise four different proteins--glial fibrillary protein (GFAP) and three other proteins designated respectively MA1, 4D6 and 4H11. Retinal astrocytes did not exhibit any changes in normally expressed GFAP or MA1. By contrast, the expression of GFAP and MA1 in Müller cells increased 14 days following section of the optic nerve and/or intravitreal insertions of a glass capillary. Three days postoperatively, the expression of GFAP, but not MA1, had already increased significantly in Müller cells. 4D6 and 4H11 proteins were not expressed in astrocytes. In Müller cells, the levels of these proteins increased significantly following combined optic nerve section and intraocular insertion of a glass capillary. Thus, a mechanical disturbance of the intraocular environment constitutes a more effective stimulus in increasing the expression of some Müllerian proteins than damage to the axons of retinal ganglion cells. Such changes have important implications for various ocular treatments that involve intraocular administration of drugs, as well as for the survival/regeneration potential of retinal ganglion cells undergoing Wallerian degeneration.
Collapse
Affiliation(s)
- K R Huxlin
- Department of Physiology, University of Sydney, N.S.W., Australia
| | | | | | | |
Collapse
|
12
|
|