1
|
Terayama R, Tsuji K, Furugen H, Minh DNP, Nakatani A, Uchibe K. Effects of Peripheral Nerve Injury on the Induction of c-Fos and Phosphorylated ERK in the Brainstem Trigeminal Sensory Nuclear Complex. Ann Neurosci 2023; 30:177-187. [PMID: 37779546 PMCID: PMC10540764 DOI: 10.1177/09727531231156505] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/26/2022] [Indexed: 10/03/2023] Open
Abstract
Background Sequential changes in brainstem and spinal cord neurons after traumatic injury to peripheral nerves are related to neuropathic pain symptoms. Purpose This study was conducted to elucidate the influence of nerve insult on stimulus-induced c-Fos expression and ERK phosphorylation by brainstem neurons. Methods The brainstem trigeminal sensory nuclear complex (BTSNC) was examined for neuronal profiles immunolabeled with c-Fos and phosphorylated ERK (p-ERK) antibodies elicited by stimulation of the tongue with capsaicin after lingual or inferior alveolar nerve (IAN) injury. Results Abundant neuronal profiles immunolabeled for c-Fos and p-ERK elicited by capsaicin were distributed in the spinal trigeminal nucleus caudalis (Vc) without nerve injury. The spinal trigeminal nucleus oralis (Vo) contained limited numbers of these neuronal profiles after stimulation of the tongue. A significant reduction of these neuronal profiles in the ipsilateral Vc was detected after lingual nerve injury. After IAN injury, an increased number of neuronal profiles immunolabeled for c-Fos elicited by capsaicin was noted, while that of p-ERK was left unchanged in the ipsilateral Vc. On the both sides of the Vo, an increased number of capsaicin-induced neuronal profiles immunolabeled for c-Fos and p-ERK was detected after lingual or IAN injury. Conclusion Differential effects of lingual or IAN injury on stimulus-induced c-Fos expression and ERK phosphorylation by Vo and Vc neurons may be involved in the complex nature of symptoms of trigeminal neuralgia.
Collapse
Affiliation(s)
- Ryuji Terayama
- Department of Maxillofacial Anatomy and Neuroscience, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kenta Tsuji
- Department of Maxillofacial Anatomy and Neuroscience, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hironori Furugen
- Department of Maxillofacial Anatomy and Neuroscience, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Duong Nguyen Phat Minh
- Department of Maxillofacial Anatomy and Neuroscience, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Ayaka Nakatani
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kenta Uchibe
- Department of Maxillofacial Anatomy and Neuroscience, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
2
|
Efferent and afferent connections of supratrigeminal neurons conveying orofacial muscle proprioception in rats. Brain Struct Funct 2021; 227:111-129. [PMID: 34611777 DOI: 10.1007/s00429-021-02391-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022]
Abstract
The supratrigeminal nucleus (Su5) is a key structure for controlling jaw movements; it receives proprioceptive sensation from jaw-closing muscle spindles (JCMSs) and sends projections to the trigeminal motor nucleus (Mo5). However, the central projections and regulation of JCMS proprioceptive sensation are not yet fully understood. Therefore, we aimed to reveal the efferent and afferent connections of the Su5 using neuronal tract tracings. Anterograde tracer injections into the Su5 revealed that the Su5 sends contralateral projections (or bilateral projections with a contralateral predominance) to the Su5, basilar pontine nuclei, pontine reticular nucleus, deep mesencephalic nucleus, superior colliculus, caudo-ventromedial edge of the ventral posteromedial thalamic nucleus, parafascicular thalamic nucleus, zona incerta, and lateral hypothalamus, and ipsilateral projections (or bilateral projections with an ipsilateral predominance) to the intertrigeminal region, trigeminal oral subnucleus, dorsal medullary reticular formation, and hypoglossal nucleus as well as the Mo5. Retrograde tracer injections into the Su5 demonstrated that the Su5 receives bilateral projections with a contralateral predominance (or contralateral projections) from the primary and secondary somatosensory cortices, granular insular cortex, and Su5, and ipsilateral projections (or bilateral projections with an ipsilateral predominance) from the dorsal peduncular cortex, bed nuclei of stria terminalis, central amygdaloid nucleus, lateral hypothalamus, parasubthalamic nucleus, trigeminal mesencephalic nucleus, parabrachial nucleus, juxtatrigeminal region, trigeminal oral and caudal subnuclei, and dorsal medullary reticular formation. These findings suggest that the Su5, which receives JCMS proprioception, has efferent and afferent connections with multiple brain regions that are involved in emotional and autonomic functions as well as orofacial motor functions.
Collapse
|
3
|
Ofuji T, Nakayama K, Nakamura S, Mochizuki A, Dantsuji M, Ishiguro M, Yamamoto M, Inoue T. Responses evoked by electrical stimulation of the brainstem reticular formation in the jaw-opening and hypoglossal motor nerves of an arterially perfused rat preparation. Neurosci Lett 2020; 738:135400. [PMID: 32979458 DOI: 10.1016/j.neulet.2020.135400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/03/2020] [Accepted: 09/18/2020] [Indexed: 11/16/2022]
Abstract
The interneuronal system in the brainstem reticular formation plays an important role in elaborate muscle coordination during various orofacial motor behaviors. In this study, we examined the distribution in the brainstem reticular formation of the sites that induce monosynaptic motor activity in the mylohyoid (jaw-opening) and hypoglossal nerves using an arterially perfused rat preparation. Electrical stimulation applied to 286 and 247 of the 309 sites in the brainstem evoked neural activity in the mylohyoid and hypoglossal nerves, respectively. The mean latency of the first component in the mylohyoid nerve response was significantly shorter than that in the hypoglossal nerve response. Moreover, the latency histogram of the first component in the hypoglossal nerve responses was bimodal, which was separated by 4.0 ms. The sites that induced short-latency (<4.0 ms) motor activity in the mylohyoid nerve and the hypoglossal nerve were frequently distributed in the rostral portion and the caudal portion of the brainstem reticular formation, respectively. Such difference in distributions of short-latency sites for mylohyoid and hypoglossal nerve responses likely corresponds to the distribution of excitatory premotor neurons targeting mylohyoid and hypoglossal motoneurons.
Collapse
Affiliation(s)
- Takuo Ofuji
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Department of Periodontology, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan
| | - Kiyomi Nakayama
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | - Shiro Nakamura
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Ayako Mochizuki
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Masanori Dantsuji
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Mitsunori Ishiguro
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Department of Oral Rehabilitation, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan
| | - Matsuo Yamamoto
- Department of Periodontology, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan
| | - Tomio Inoue
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
4
|
Slaoui Hasnaoui M, Arsenault I, Verdier D, Obeid S, Kolta A. Functional Connectivity Between the Trigeminal Main Sensory Nucleus and the Trigeminal Motor Nucleus. Front Cell Neurosci 2020; 14:167. [PMID: 32655373 PMCID: PMC7324845 DOI: 10.3389/fncel.2020.00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/19/2020] [Indexed: 11/24/2022] Open
Abstract
The present study shows new evidence of functional connectivity between the trigeminal main sensory (NVsnpr) and motor (NVmt) nuclei in rats and mice. NVsnpr neurons projecting to NVmt are most highly concentrated in its dorsal half. Their electrical stimulation induced multiphasic excitatory synaptic responses in trigeminal MNs and evoked calcium responses mainly in the jaw-closing region of NVmt. Induction of rhythmic bursting in NVsnpr neurons by local applications of BAPTA also elicited rhythmic firing or clustering of postsynaptic potentials in trigeminal motoneurons, further emphasizing the functional relationship between these two nuclei in terms of rhythm transmission. Biocytin injections in both nuclei and calcium-imaging in one of the two nuclei during electrical stimulation of the other revealed a specific pattern of connectivity between the two nuclei, which organization seemed to critically depend on the dorsoventral location of the stimulation site within NVsnpr with the most dorsal areas of NVsnpr projecting to the dorsolateral region of NVmt and intermediate areas projecting to ventromedial NVmt. This study confirms and develops earlier experiments by exploring the physiological nature and functional topography of the connectivity between NVsnpr and NVmt that was demonstrated in the past with neuroanatomical techniques.
Collapse
Affiliation(s)
- Mohammed Slaoui Hasnaoui
- Groupe de Recherche sur le Systéme Nerveux Central, Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréeal, QC, Canada
| | - Isabel Arsenault
- Groupe de Recherche sur le Systéme Nerveux Central, Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréeal, QC, Canada
| | - Dorly Verdier
- Groupe de Recherche sur le Systéme Nerveux Central, Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréeal, QC, Canada
| | - Sami Obeid
- Groupe de Recherche sur le Systéme Nerveux Central, Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréeal, QC, Canada
| | - Arlette Kolta
- Groupe de Recherche sur le Systéme Nerveux Central, Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréeal, QC, Canada.,Département de Stomatologie, Faculté de Médecine Dentaire, Université de Montreal, Montreal, QC, Canada
| |
Collapse
|
5
|
Amey-Özel M, Anders S, Grant K, von der Emde G. Central connections of the trigeminal motor command system in the weakly electric Elephantnose fish (Gnathonemus petersii). J Comp Neurol 2019; 527:2703-2729. [PMID: 30980526 DOI: 10.1002/cne.24701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 11/08/2022]
Abstract
The highly mobile chin appendage of Gnathonemus petersii, the Schnauzenorgan, is used to actively probe the environment and is known to be a fovea of the electrosensory system. It receives an important innervation from both the trigeminal sensory and motor systems. However, little is known about the premotor control pathways that coordinate the movements of the Schnauzenorgan, or about central pathways originating from the trigeminal motor nucleus. The present study focuses on the central connections of the trigeminal motor system to elucidate premotor centers controlling Schnauzenorgan movements, with particular interest in the possible connections between the electrosensory and trigeminal systems. Neurotracer injections into the trigeminal motor nucleus revealed bilateral, reciprocal connections between the two trigeminal motor nuclei and between the trigeminal sensory and motor nuclei by bilateral labeling of cells and terminals. Prominent afferent input to the trigeminal motor nucleus originates from the nucleus lateralis valvulae, the nucleus dorsalis mesencephali, the cerebellar corpus C1, the reticular formation, and the Raphe nuclei. Retrogradely labeled cells were also observed in the central pretectal nucleus, the dorsal anterior pretectal nucleus, the tectum, the ventroposterior nucleus of the torus semicircularis, the gustatory sensory and motor nuclei, and in the hypothalamus. Labeled terminals, but not cell bodies, were observed in the nucleus lateralis valvulae and the reticular formation. No direct connections were found between the electrosensory system and the V motor nucleus but the central connections identified would provide several multisynaptic pathways linking these two systems, including possible efference copy and corollary discharge mechanisms.
Collapse
Affiliation(s)
- Monique Amey-Özel
- Department of Neuroethology/Sensory Ecology, Institute for Zoology, University of Bonn, Bonn, Germany
| | - Stefanie Anders
- Centre National de la Recherche Scientifique (CNRS-UNIC), Gif sur Yvette, France
| | - Kirsty Grant
- Centre National de la Recherche Scientifique (CNRS-UNIC), Gif sur Yvette, France
| | - Gerhard von der Emde
- Department of Neuroethology/Sensory Ecology, Institute for Zoology, University of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Mercer Lindsay N, Knutsen PM, Lozada AF, Gibbs D, Karten HJ, Kleinfeld D. Orofacial Movements Involve Parallel Corticobulbar Projections from Motor Cortex to Trigeminal Premotor Nuclei. Neuron 2019; 104:765-780.e3. [PMID: 31587918 DOI: 10.1016/j.neuron.2019.08.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/07/2019] [Accepted: 08/19/2019] [Indexed: 01/21/2023]
Abstract
How do neurons in orofacial motor cortex (MCtx) orchestrate behaviors? We show that focal activation of MCtx corticobulbar neurons evokes behaviorally relevant concurrent movements of the forelimb, jaw, nose, and vibrissae. The projections from different locations in MCtx form gradients of boutons across premotor nuclei spinal trigeminal pars oralis (SpVO) and interpolaris rostralis (SpVIr). Furthermore, retrograde viral tracing from muscles that control orofacial actions shows that these premotor nuclei segregate their outputs. In the most dramatic case, both SpVO and SpVIr are premotor to forelimb and vibrissa muscles, while only SpVO is premotor to jaw muscles. Functional confirmation of the superimposed control by MCtx was obtained through selective optogenetic activation of corticobulbar neurons on the basis of their preferential projections to SpVO versus SpVIr. We conclude that neighboring projection neurons in orofacial MCtx form parallel pathways to distinct pools of trigeminal premotor neurons that coordinate motor actions into a behavior.
Collapse
Affiliation(s)
- Nicole Mercer Lindsay
- Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Per M Knutsen
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adrian F Lozada
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel Gibbs
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Harvey J Karten
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - David Kleinfeld
- Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
7
|
An active texture-based digital atlas enables automated mapping of structures and markers across brains. Nat Methods 2019; 16:341-350. [PMID: 30858600 DOI: 10.1038/s41592-019-0328-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/27/2018] [Accepted: 01/25/2019] [Indexed: 11/08/2022]
Abstract
Brain atlases enable the mapping of labeled cells and projections from different brains onto a standard coordinate system. We address two issues in the construction and use of atlases. First, expert neuroanatomists ascertain the fine-scale pattern of brain tissue, the 'texture' formed by cellular organization, to define cytoarchitectural borders. We automate the processes of localizing landmark structures and alignment of brains to a reference atlas using machine learning and training data derived from expert annotations. Second, we construct an atlas that is active; that is, augmented with each use. We show that the alignment of new brains to a reference atlas can continuously refine the coordinate system and associated variance. We apply this approach to the adult murine brainstem and achieve a precise alignment of projections in cytoarchitecturally ill-defined regions across brains from different animals.
Collapse
|
8
|
Ikenoue E, Akhter F, Tsutsumi Y, Sato F, Ohara H, Uchino K, Furuta T, Tachibana Y, Yoshida A. Transcortical descending pathways through granular insular cortex conveying orofacial proprioception. Brain Res 2018; 1687:11-19. [PMID: 29481796 DOI: 10.1016/j.brainres.2018.02.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/28/2018] [Accepted: 02/21/2018] [Indexed: 12/30/2022]
Abstract
Our motor behavior can be affected by proprioceptive information. However, little is known about which brain circuits contribute to this process. We have recently revealed that the proprioceptive information arising from jaw-closing muscle spindles (JCMSs) is conveyed to the supratrigeminal nucleus (Su5) by neurons in the trigeminal mesencephalic nucleus (Me5), then to the caudo-ventromedial edge of ventral posteromedial thalamic nucleus (VPMcvm), and finally to the dorsal part of granular insular cortex rostroventrally adjacent to the rostralmost part of secondary somatosensory cortex (dGIrvs2). Our next question is which brain areas receive the information from the dGIrvs2 for the jaw-movements. To test this issue, we injected an anterograde tracer, biotinylated dextranamine, into the dGIrvs2, and analyzed the resultant distribution profiles of the labeled axon terminals. Anterogradely labeled axons were distributed in the pontomedullary areas (including the Su5) which are known to receive JCMS proprioceptive inputs conveyed directly by the Me5 neurons and to contain premotoneurons projecting to the jaw-closing motoneurons in the trigeminal motor nucleus (Mo5). They were also found in and around the VPMcvm. In contrast, no labeled axonal terminals were detected on the cell bodies of Me5 neurons and motoneurons in the Mo5. These data suggest that jaw-movements, which are evoked by the classically defined jaw-reflex arc originating from the peripheral JCMS proprioceptive information, could also be modulated by the transcortical feedback connections from the dGIrvs2 to the VPMcvm and Su5.
Collapse
Affiliation(s)
- Etsuko Ikenoue
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Fatema Akhter
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yumi Tsutsumi
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Fumihiko Sato
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Haruka Ohara
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Katsuro Uchino
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan; Department of Acupuncture, Takarazuka University of Medical and Health Care, Takarazuka, Hyogo 666-0162, Japan
| | - Takahiro Furuta
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshihisa Tachibana
- Division of System Neuroscience, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Atsushi Yoshida
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
9
|
Birinyi A, Rácz N, Kecskes S, Matesz C, Kovalecz G. Neural circuits underlying jaw movements for the prey-catching behavior in frog: distribution of vestibular afferent terminals on motoneurons supplying the jaw. Brain Struct Funct 2017; 223:1683-1696. [PMID: 29189907 DOI: 10.1007/s00429-017-1581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 11/25/2017] [Indexed: 10/18/2022]
Abstract
Coordinated movement of the jaw is essential for catching and swallowing the prey. The majority of the jaw muscles in frogs are supplied by the trigeminal motoneurons. We have previously described that the primary vestibular afferent fibers, conveying information about the movements of the head, established close appositions on the motoneurons of trigeminal nerve providing one of the morphological substrates of monosynaptic sensory modulation of prey-catching behavior in the frog. The aim of our study was to reveal the spatial distribution of vestibular close appositions on the somatodendritic compartments of the functionally different trigeminal motoneurons. In common water frogs, the vestibular and trigeminal nerves were simultaneously labeled with different fluorescent dyes and the possible direct contacts between vestibular afferents and trigeminal motoneurons were identified with the help of DSD2 attached to an Andor Zyla camera. In the rhombencephalon, an overlapping area was detected between the incoming vestibular afferents and trigeminal motoneurons along the whole extent of the trigeminal motor nucleus. The vestibular axon collaterals formed large numbers of close appositions with dorsomedial and ventrolateral dendrites of trigeminal motoneurons. The majority of direct contacts were located on proximal dendritic segments closer than 300 µm to the somata. The identified contacts were evenly distributed on rostral motoneurons innervating jaw-closing muscles and motoneurons supplying jaw-opening muscles and located in the caudal part of trigeminal nucleus. We suggest that the identified contacts between vestibular axon terminals and trigeminal motoneurons may constitute one of the morphological substrates of a very quick response detected in trigeminal motoneurons during head movements.
Collapse
Affiliation(s)
- András Birinyi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary.
| | - Nóra Rácz
- Department of Pediatric Dentistry and Orthodontics, Faculty of Dentistry, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Szilvia Kecskes
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Clara Matesz
- Department of Pediatric Dentistry and Orthodontics, Faculty of Dentistry, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary.,MTA-DE Neuroscience Research Group, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary.,Department of Oral Anatomy, Faculty of Dentistry, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Gabriella Kovalecz
- Department of Pediatric Dentistry and Orthodontics, Faculty of Dentistry, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| |
Collapse
|
10
|
Yoneda M, Saitoh K. Modification of Masticatory Rhythmicity Leading to the Initiation of the Swallowing Reflex in Humans. Dysphagia 2017; 33:358-368. [PMID: 29098397 DOI: 10.1007/s00455-017-9860-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/23/2017] [Indexed: 11/28/2022]
Abstract
Modification of movements by proprioceptive feedback during mastication has an important role in shifting from the oral to the pharyngeal phase of swallowing. The aim of this study was to investigate the kinetics of masticatory muscles throughout a sequence of oropharyngeal swallowing and to present a hypothetical model of the involvement of the nervous system in the transition from mastication to the swallowing reflex. Surface electromyographic signals were recorded from the jaw-closing masseter muscles and the jaw-opening suprahyoid muscle group when a piece of bread (3-5 g) was ingested. Participants were not provided any additional instruction regarding how to chew and swallow. In the final stage of mastication, compared with other stages of mastication, the duration between sequential peak times of rhythmic activity of the masseter muscles was prolonged. Electromyography revealed no significant change in the suprahyoid muscle group. Accordingly, contraction of the jaw-closing muscles and the jaw-opening muscles altered from out-of-phase to in-phase. We have presented a hypothetical model based on the results of the present study, in which mastication shifts to the swallowing reflex when feed-forward inputs from rhythm generators for the jaw-closing and the jaw-opening muscles converge onto an assumed "convertor" neuron group concurrently. This model should contribute to understanding the pathophysiology of dysphagia.
Collapse
Affiliation(s)
- Masaki Yoneda
- Arts and Sports Education, Graduate School of Education, Kumamoto University, 2-40-1, Kurokami, Chuo-ku, Kumamoto-shi, Kumamoto, Japan
| | - Kazuya Saitoh
- Lifelong Sports and Welfare Course, Faculty of Education, Kumamoto University, 2-40-1 Kurokami, Chuo-ku, Kumamoto-shi, Kumamoto, 860-8555, Japan.
| |
Collapse
|
11
|
Condamine S, Lavoie R, Verdier D, Kolta A. Functional rhythmogenic domains defined by astrocytic networks in the trigeminal main sensory nucleus. Glia 2017; 66:311-326. [DOI: 10.1002/glia.23244] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/07/2017] [Accepted: 09/25/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Steven Condamine
- Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, C.P. 6128, succursale Centre-ville; Montréal Québec H3C 3J7 Canada
- Département de Neurosciences; Université de Montréal, Pavillon Paul-G.Desmarais, C.P. 6128, succursale Centre-ville; Montréal Québec H3C 3J7 Canada
| | - Raphaël Lavoie
- Douglas Mental Health University Institute, 6875 boulevard LaSalle; Montreal Québec H4H 1R3 Canada
| | - Dorly Verdier
- Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, C.P. 6128, succursale Centre-ville; Montréal Québec H3C 3J7 Canada
- Département de Neurosciences; Université de Montréal, Pavillon Paul-G.Desmarais, C.P. 6128, succursale Centre-ville; Montréal Québec H3C 3J7 Canada
| | - Arlette Kolta
- Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, C.P. 6128, succursale Centre-ville; Montréal Québec H3C 3J7 Canada
- Département de Neurosciences; Université de Montréal, Pavillon Paul-G.Desmarais, C.P. 6128, succursale Centre-ville; Montréal Québec H3C 3J7 Canada
- Faculté de Médecine Dentaire, Université de Montréal, C.P. 6128, succursale Centre-ville; Montréal Québec H3C 3J7 Canada
| |
Collapse
|
12
|
Hossain MI, Horie M, Yoshioka N, Kurose M, Yamamura K, Takebayashi H. Motoneuron degeneration in the trigeminal motor nucleus innervating the masseter muscle in Dystonia musculorum mice. Neurochem Int 2017; 119:159-170. [PMID: 29061384 DOI: 10.1016/j.neuint.2017.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/26/2017] [Accepted: 10/17/2017] [Indexed: 12/11/2022]
Abstract
Dystonia musculorum (dt) mice, which have a mutation in the Dystonin (Dst) gene, are used as animal models to investigate the human disease known as hereditary sensory and autonomic neuropathy type VI. Massive neuronal cell death is observed, mainly in the peripheral nervous system (PNS) of dt mice. We and others have recently reported a histopathological feature of these mice that neurofilament (NF) accumulates in various areas of the central nervous system (CNS), including motor pathways. Although dt mice show motor disorder and growth retardation, the causes for these are still unknown. Here we performed histopathological analyses on motor units of the trigeminal motor nucleus (Mo5 nucleus), because they are a good system to understand neuronal responses in the mutant CNS, and abnormalities in this system may lead to problems in mastication, with subsequent growth retardation. We report that motoneurons with NF accumulation in the Mo5 nuclei of DstGt homozygous mice express the stress-induced genes CHOP, ATF3, and lipocalin 2 (Lcn2). We also show a reduced number of Mo5 motoneurons and a reduced size of Mo5 nuclei in DstGt homozygous mice, possibly due to apoptosis, given the presence of cleaved caspase 3-positive Mo5 motoneurons. In the mandibular (V3) branches of the trigeminal nerve, which contains axons of Mo5 motoneurons and trigeminal sensory neurons, there was infiltration of Iba1-positive macrophages. Finally, we report atrophy of the masseter muscles in DstGt homozygous mice, which showed abnormal nuclear localization of myofibrils and increased expression of atrogin-1 mRNA, a muscle atrophy-related gene and weaker masseter muscle strength with uncontrolled muscle activity by electromyography (EMG). Taken together, our findings strongly suggest that mastication in dt mice is affected due to abnormalities of Mo5 motoneurons and masseter muscles, leading to growth retardation at the post-weaning stages.
Collapse
Affiliation(s)
- M Ibrahim Hossain
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Masao Horie
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Nozomu Yoshioka
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; Transdisciplinary Research Program, Niigata University, Niigata 951-8510, Japan
| | - Masayuki Kurose
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Kensuke Yamamura
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan.
| |
Collapse
|
13
|
Nagoya K, Nakamura S, Ikeda K, Onimaru H, Yoshida A, Nakayama K, Mochizuki A, Kiyomoto M, Sato F, Kawakami K, Takahashi K, Inoue T. Distinctive features of Phox2b-expressing neurons in the rat reticular formation dorsal to the trigeminal motor nucleus. Neuroscience 2017; 358:211-226. [PMID: 28673717 DOI: 10.1016/j.neuroscience.2017.06.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/03/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
Abstract
Phox2b encodes a paired-like homeodomain-containing transcription factor essential for development of the autonomic nervous system. Phox2b-expressing (Phox2b+) neurons are present in the reticular formation dorsal to the trigeminal motor nucleus (RdV) as well as the nucleus of the solitary tract and parafacial respiratory group. However, the nature of Phox2b+ RdV neurons is still unclear. We investigated the physiological and morphological properties of Phox2b+ RdV neurons using postnatal day 2-7 transgenic rats expressing yellow fluorescent protein under the control of Phox2b. Almost all of Phox2b+ RdV neurons were glutamatergic, whereas Phox2b-negative (Phox2b-) RdV neurons consisted of a few glutamatergic, many GABAergic, and many glycinergic neurons. The majority (48/56) of Phox2b+ neurons showed low-frequency firing (LF), while most of Phox2b- neurons (35/42) exhibited high-frequency firing (HF) in response to intracellularly injected currents. All, but one, Phox2b+ neurons (55/56) did not fire spontaneously, whereas three-fourths of the Phox2b- neurons (31/42) were spontaneously active. K+ channel and persistent Na+ current blockers affected the firing of LF and HF neurons. The majority of Phox2b+ (35/46) and half of the Phox2b- neurons (19/40) did not respond to stimulations of the mesencephalic trigeminal nucleus, the trigeminal tract, and the principal sensory trigeminal nucleus. Biocytin labeling revealed that about half of the Phox2b+ (5/12) and Phox2b- RdV neurons (5/10) send their axons to the trigeminal motor nucleus. These results suggest that Phox2b+ RdV neurons have distinct neurotransmitter phenotypes and firing properties from Phox2b- RdV neurons and might play important roles in feeding-related functions including suckling and possibly mastication.
Collapse
Affiliation(s)
- Kouta Nagoya
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Division of Oral Rehabilitation Medicine, Department of Special Needs Dentistry, Showa University School of Dentistry, 2-2-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan
| | - Shiro Nakamura
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | - Keiko Ikeda
- Division of Biology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Atsushi Yoshida
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, 1-8, Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Kiyomi Nakayama
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Ayako Mochizuki
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Masaaki Kiyomoto
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Fumihiko Sato
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, 1-8, Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Kiyoshi Kawakami
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Koji Takahashi
- Division of Oral Rehabilitation Medicine, Department of Special Needs Dentistry, Showa University School of Dentistry, 2-2-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan
| | - Tomio Inoue
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
14
|
Matsuda K, Nakamura S, Nonaka M, Mochizuki A, Nakayama K, Iijima T, Yokoyama A, Funahashi M, Inoue T. Premotoneuronal inputs to early developing trigeminal motoneurons. J Oral Biosci 2017. [DOI: 10.1016/j.job.2017.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Satoh Y, Ishizuka K, Takahashi M, Iwasaki SI. Role of the vestibular nuclear complex in facilitating the jaw-opening reflex following stimulation of the red nucleus. Neurosci Res 2016; 110:29-36. [PMID: 26945617 DOI: 10.1016/j.neures.2016.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/08/2016] [Accepted: 02/23/2016] [Indexed: 01/21/2023]
Abstract
According to our previous studies, stimulation of the red nucleus (RN) facilitates the low-threshold afferent-evoked jaw-opening reflex (L-JOR). It has been reported that the RN projects to the superior (SVN), lateral (LVN) and inferior vestibular (IVN) nuclei. The SVN and the LVN have reciprocal intrinsic connections with the medial vestibular nucleus (MVN). Our previous study demonstrated that stimulation of the vestibular nuclear complex (VN) modulates the L-JOR. These facts suggest that RN-induced facilitation of the L-JOR is mediated via the VN. In the present work we investigated whether electrically induced lesions of the VN, or microinjection of muscimol into the VN, affects RN-induced facilitation of the L-JOR. The L-JOR was evoked by electrical stimulation of the inferior alveolar nerve. The stimulus intensity was 1.2 times the evocation threshold. Lesions of the MVN or the LVN or the SVN, and the muscimol injection into the MVN or the LVN or the SVN, reduced the RN-induced facilitation of the L-JOR. Conversely, lesions of the IVN, and the muscimol injection into the IVN, increased the RN-induced facilitation of the L-JOR. These results suggest that the RN-induced facilitation of the L-JOR is mediated by a relay in the VN.
Collapse
Affiliation(s)
- Yoshihide Satoh
- Department of Physiology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuou-ku, Niigata 951-8580, Japan.
| | - Ken'Ichi Ishizuka
- Department of Physiology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuou-ku, Niigata 951-8580, Japan
| | - Mutsumi Takahashi
- Department of Physiology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuou-ku, Niigata 951-8580, Japan; Department of Removable Prosthodontics, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuou-ku, Niigata 951-8580, Japan
| | - Shin-Ichi Iwasaki
- Department of Physiology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuou-ku, Niigata 951-8580, Japan
| |
Collapse
|
16
|
Faunes M, Oñate-Ponce A, Fernández-Collemann S, Henny P. Excitatory and inhibitory innervation of the mouse orofacial motor nuclei: A stereological study. J Comp Neurol 2015. [DOI: 10.1002/cne.23862] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Macarena Faunes
- Laboratorio de Neuroanatomía, Departamento de Anatomía Normal, Escuela de Medicina; Pontificia Universidad Católica de Chile; Santiago Chile
- Centro Interdisciplinario de Neurociencias; Pontificia Universidad Católica de Chile; Santiago Chile
- Sensory and Motor Systems Group, Department of Anatomy with Radiology, Faculty of Medical and Health Sciences; University of Auckland; Private Bag 92019, Grafton 1023 Auckland New Zealand
| | - Alejandro Oñate-Ponce
- Laboratorio de Neuroanatomía, Departamento de Anatomía Normal, Escuela de Medicina; Pontificia Universidad Católica de Chile; Santiago Chile
- Centro Interdisciplinario de Neurociencias; Pontificia Universidad Católica de Chile; Santiago Chile
| | - Sara Fernández-Collemann
- Laboratorio de Neuroanatomía, Departamento de Anatomía Normal, Escuela de Medicina; Pontificia Universidad Católica de Chile; Santiago Chile
- Centro Interdisciplinario de Neurociencias; Pontificia Universidad Católica de Chile; Santiago Chile
| | - Pablo Henny
- Laboratorio de Neuroanatomía, Departamento de Anatomía Normal, Escuela de Medicina; Pontificia Universidad Católica de Chile; Santiago Chile
- Centro Interdisciplinario de Neurociencias; Pontificia Universidad Católica de Chile; Santiago Chile
| |
Collapse
|
17
|
Kato T, Seki S, Higashiyama M, Masuda Y, Kitamura S, Yoshida A. Anatomical organization of descending cortical projections orchestrating the patterns of cortically induced rhythmical jaw muscle activity in guinea pigs. Neurosci Res 2015; 99:34-45. [PMID: 26031605 DOI: 10.1016/j.neures.2015.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/24/2015] [Accepted: 05/21/2015] [Indexed: 10/23/2022]
Abstract
Repetitive electrical microstimulation to the cortical masticatory area (CMA) evokes distinct patterns of rhythmical jaw muscle activities (RJMAs) in animals. This study aimed to investigate the characteristics of the descending projections from the CMA, associated with distinct patterns of RJMAs, to the thalamus, midbrain, pons and medulla in guinea pigs. RJMAs with continuous masseter and digastric bursts (CB-RJMAs) and stimulus-locked digastric sub-bursts (SLB-RJMAs) were induced from the anterior and posterior areas of the rostral region of the lateral agranular cortex, and chewing-like RJMAs from the rostral region of the granular cortex. Anterograde tracer, biotinylated dextran amine, was injected into the three cortical areas. The cortical area inducing CB-RJMAs had strong ipsilateral projections to the motor thalamus, red nucleus, midbrain reticular formation, superior colliculus, parabrachial nucleus, and supratrigeminal region, and contralateral projections mainly to the lateral reticular formation around the trigeminal motor nucleus (Vmo). The cortical area inducing SLB-RJMAs had moderate projections to the motor thalamus and lateral reticular formation around the Vmo, but few projections to the midbrain nuclei. The cortical area inducing chewing-like RJMAs had strong projections to the ipsilateral sensory thalamus and contralateral trigeminal sensory nuclei, and moderate projections to the lateral reticular formation. The three cortical areas consistently had few projections to the ventromedial reticular formation. The present study demonstrates that multiple direct and indirect descending projections from the CMA onto the premotor systems connecting the trigeminal motoneurons represent the neuroanatomical repertoires for generating RJMAs during the distinct phases of natural ingestive behavior.
Collapse
Affiliation(s)
- Takafumi Kato
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Shinichiro Seki
- Department of Oral and Maxillofacial Anatomy, Institute of Health Biosciences, University of Tokushima, Tokushima, Japan
| | - Makoto Higashiyama
- Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Yuji Masuda
- Department of Oral and Maxillofacial Biology, Graduate School of Oral, Medicine, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Seiichiro Kitamura
- Department of Oral and Maxillofacial Anatomy, Institute of Health Biosciences, University of Tokushima, Tokushima, Japan
| | - Atsushi Yoshida
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
18
|
Gemba C, Nakayama K, Nakamura S, Mochizuki A, Inoue M, Inoue T. Involvement of histaminergic inputs in the jaw-closing reflex arc. J Neurophysiol 2015; 113:3720-35. [PMID: 25904711 DOI: 10.1152/jn.00515.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 04/20/2015] [Indexed: 11/22/2022] Open
Abstract
Histamine receptors are densely expressed in the mesencephalic trigeminal nucleus (MesV) and trigeminal motor nucleus. However, little is known about the functional roles of neuronal histamine in controlling oral-motor activity. Thus, using the whole-cell recording technique in brainstem slice preparations from Wistar rats aged between postnatal days 7 and 13, we investigated the effects of histamine on the MesV neurons innervating the masseter muscle spindles and masseter motoneurons (MMNs) that form a reflex arc for the jaw-closing reflex. Bath application of histamine (100 μM) induced membrane depolarization in both MesV neurons and MMNs in the presence of tetrodotoxin, whereas histamine decreased and increased the input resistance in MesV neurons and MMNs, respectively. The effects of histamine on MesV neurons and MMNs were mimicked by an H1 receptor agonist, 2-pyridylethylamine (100 μM). The effects of an H2 receptor agonist, dimaprit (100 μM), on MesV neurons were inconsistent, whereas MMNs were depolarized without changes in the input resistance. An H3 receptor agonist, immethridine (100 μM), also depolarized both MesV neurons and MMNs without changing the input resistance. Histamine reduced the peak amplitude of postsynaptic currents (PSCs) in MMNs evoked by stimulation of the trigeminal motor nerve (5N), which was mimicked by 2-pyridylethylamine but not by dimaprit or immethridine. Moreover, 2-pyridylethylamine increased the failure rate of PSCs evoked by minimal stimulation and the paired-pulse ratio. These results suggest that histaminergic inputs to MesV neurons through H1 receptors are involved in the suppression of the jaw-closing reflex although histamine depolarizes MesV neurons and/or MMNs.
Collapse
Affiliation(s)
- Chikako Gemba
- Department of Oral Physiology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, Japan; Department of Pediatric Dentistry, Showa University School of Dentistry, Oota-ku, Tokyo, Japan
| | - Kiyomi Nakayama
- Department of Oral Physiology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, Japan
| | - Shiro Nakamura
- Department of Oral Physiology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, Japan
| | - Ayako Mochizuki
- Department of Oral Physiology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, Japan
| | - Mitsuko Inoue
- Department of Pediatric Dentistry, Showa University School of Dentistry, Oota-ku, Tokyo, Japan
| | - Tomio Inoue
- Department of Oral Physiology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, Japan
| |
Collapse
|
19
|
Uchino K, Higashiyama K, Kato T, Haque T, Sato F, Tomita A, Tsutsumi K, Moritani M, Yamamura K, Yoshida A. Jaw movement-related primary somatosensory cortical area in the rat. Neuroscience 2015; 284:55-64. [DOI: 10.1016/j.neuroscience.2014.09.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 11/30/2022]
|
20
|
Role of the red nucleus in suppressing the jaw-opening reflex following stimulation of the raphe magnus nucleus. Neurosci Res 2014; 85:12-9. [PMID: 24929104 DOI: 10.1016/j.neures.2014.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 05/15/2014] [Accepted: 05/17/2014] [Indexed: 11/22/2022]
Abstract
In a previous study, we found that electrical and chemical stimulation of the red nucleus (RN) suppressed the high-threshold afferent-evoked jaw-opening reflex (JOR). It has been reported that the RN receives bilaterally projection fibers from the raphe magnus nucleus (RMg), and that stimulation of the RMg inhibits the tooth pulp-evoked nociceptive JOR. These facts imply that RMg-induced inhibition of the JOR could be mediated via the RN. The present study first examines whether stimulation of the RMg suppresses the high-threshold afferent-evoked JOR. The JOR was evoked by electrical stimulation of the inferior alveolar nerve (IAN), and was recorded as the electromyographic response of the anterior belly of the digastric muscle. The stimulus intensity was 4.0 (high-threshold) times the threshold. Conditioning electrical stimulation of the RMg significantly suppressed the JOR. A further study then examined whether electrically induced lesions of the RN or microinjection of muscimol into the RN affects RMg-induced suppression of the JOR. Electrically induced lesions of the bilateral RN and microinjection of muscimol into the bilateral RN both reduced the RMg-induced suppression of the JOR. These results suggest that RMg-induced suppression of the high-threshold afferent-evoked JOR is mediated by a relay in the RN.
Collapse
|
21
|
Chen T, Koga K, Descalzi G, Qiu S, Wang J, Zhang LS, Zhang ZJ, He XB, Qin X, Xu FQ, Hu J, Wei F, Huganir RL, Li YQ, Zhuo M. Postsynaptic potentiation of corticospinal projecting neurons in the anterior cingulate cortex after nerve injury. Mol Pain 2014; 10:33. [PMID: 24890933 PMCID: PMC4060852 DOI: 10.1186/1744-8069-10-33] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 05/13/2014] [Indexed: 12/25/2022] Open
Abstract
Long-term potentiation (LTP) is the key cellular mechanism for physiological learning and pathological chronic pain. In the anterior cingulate cortex (ACC), postsynaptic recruitment or modification of AMPA receptor (AMPAR) GluA1 contribute to the expression of LTP. Here we report that pyramidal cells in the deep layers of the ACC send direct descending projecting terminals to the dorsal horn of the spinal cord (lamina I-III). After peripheral nerve injury, these projection cells are activated, and postsynaptic excitatory responses of these descending projecting neurons were significantly enhanced. Newly recruited AMPARs contribute to the potentiated synaptic transmission of cingulate neurons. PKA-dependent phosphorylation of GluA1 is important, since enhanced synaptic transmission was abolished in GluA1 phosphorylation site serine-845 mutant mice. Our findings provide strong evidence that peripheral nerve injury induce long-term enhancement of cortical-spinal projecting cells in the ACC. Direct top-down projection system provides rapid and profound modulation of spinal sensory transmission, including painful information. Inhibiting cortical top-down descending facilitation may serve as a novel target for treating neuropathic pain.
Collapse
Affiliation(s)
- Tao Chen
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi'an, China
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Center, the Fourth Military Medical University, Xi’an 710032, China
- Department of Physiology, Faculty of Medicine, Center for the Study of Pain, University of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Kohei Koga
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi'an, China
- Department of Physiology, Faculty of Medicine, Center for the Study of Pain, University of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Giannina Descalzi
- Department of Physiology, Faculty of Medicine, Center for the Study of Pain, University of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Shuang Qiu
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi'an, China
- Department of Physiology, Faculty of Medicine, Center for the Study of Pain, University of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Jian Wang
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Center, the Fourth Military Medical University, Xi’an 710032, China
| | - Le-Shi Zhang
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Center, the Fourth Military Medical University, Xi’an 710032, China
| | - Zhi-Jian Zhang
- Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, China
- Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiao-Bin He
- Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Qin
- College of Life Science, Wuhan University, Wuhan 430071, China
| | - Fu-Qiang Xu
- Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, China
- Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Hu
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi'an, China
| | - Feng Wei
- Department of Biomedical Sciences, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Richard L Huganir
- Department of Neuroscience and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Center, the Fourth Military Medical University, Xi’an 710032, China
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi'an, China
- Department of Physiology, Faculty of Medicine, Center for the Study of Pain, University of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
22
|
Funaki Y, Hiranuma M, Shibata M, Kokai S, Ono T. Effects of nasal obstruction on maturation of the jaw-opening reflex in growing rats. Arch Oral Biol 2014; 59:530-8. [DOI: 10.1016/j.archoralbio.2014.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 01/20/2014] [Accepted: 02/24/2014] [Indexed: 10/25/2022]
|
23
|
Nakamura S, Nakayama K, Mochizuki A, Sato F, Haque T, Yoshida A, Inoue T. Electrophysiological and morphological properties of rat supratrigeminal premotor neurons targeting the trigeminal motor nucleus. J Neurophysiol 2014; 111:1770-82. [PMID: 24501266 DOI: 10.1152/jn.00276.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The electrophysiological and morphological characteristics of premotor neurons in the supratrigeminal region (SupV) targeting the trigeminal motor nucleus (MoV) were examined in neonatal rat brain stem slice preparations with Ca(2+) imaging, whole cell recordings, and intracellular biocytin labeling. First, we screened SupV neurons that showed a rapid rise in intracellular free Ca(2+) concentration ([Ca(2+)]i) after single-pulse electrical stimulation of the ipsilateral MoV. Subsequent whole cell recordings were generated from the screened SupV neurons, and their antidromic responses to MoV stimulation were confirmed. We divided the antidromically activated premotor neurons into two groups according to their discharge patterns during the steady state in response to 1-s depolarizing current pulses: those firing at a frequency higher (HF neurons, n = 19) or lower (LF neurons, n = 17) than 33 Hz. In addition, HF neurons had a narrower action potential and a larger afterhyperpolarization than LF neurons. Intracellular labeling revealed that the axons of all HF neurons (6/6) and half of the LF neurons (4/9) entered the MoV from its dorsomedial aspect, whereas the axons of the remaining LF neurons (5/9) entered the MoV from its dorsolateral aspect. Furthermore, the dendrites of three HF neurons penetrated into the principal sensory trigeminal nucleus (Vp), whereas the dendrites of all LF neurons were confined within the SupV. These results suggest that the types of SupV premotor neurons targeting the MoV with different firing properties have different dendritic and axonal morphologies, and these SupV neuron classes may play unique roles in diverse oral motor behaviors, such as suckling and mastication.
Collapse
Affiliation(s)
- Shiro Nakamura
- Department of Oral Physiology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, Japan; and
| | | | | | | | | | | | | |
Collapse
|
24
|
Akhter F, Haque T, Sato F, Kato T, Ohara H, Fujio T, Tsutsumi K, Uchino K, Sessle BJ, Yoshida A. Projections from the dorsal peduncular cortex to the trigeminal subnucleus caudalis (medullary dorsal horn) and other lower brainstem areas in rats. Neuroscience 2014; 266:23-37. [PMID: 24502921 DOI: 10.1016/j.neuroscience.2014.01.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 01/10/2014] [Accepted: 01/23/2014] [Indexed: 01/27/2023]
Abstract
This study has revealed direct projections from the dorsal peduncular cortex (DP) in the medial prefrontal cortex (mPfC) to the trigeminal brainstem sensory nuclear complex and other lower brainstem areas in rats. We first examined the distribution of mPfC neurons projecting directly to the medullary dorsal horn (trigeminal subnucleus caudalis [Vc]) and trigeminal subnucleus oralis (Vo) which are known to receive direct projections from the lateral prefrontal cortex (insular cortex). After injections of the retrograde tracer Fluorogold (FG) into the rostro-dorsomedial part of laminae I/II of Vc (rdm-I/II-Vc), many neurons were labeled bilaterally (with an ipsilateral predominance) in the rostrocaudal middle level of DP (mid-DP) and not in other mPfC areas. After FG injections into the lateral and caudal parts of laminae I/II of Vc, or the Vo, no neurons were labeled in the mPfC. We then examined projections from the mid-DP by using the anterograde tracer biotinylated dextranamine (BDA). After BDA injections into the mid-DP, many axons and terminals were labeled bilaterally (with an ipsilateral predominance) in the rdm-I/II-Vc, periaqueductal gray and solitary tract nucleus, and ipsilaterally in the parabrachial nucleus and trigeminal mesencephalic nucleus. In addition, the connections of the mid-DP with the insular cortex were examined. Many BDA-labeled axons and terminals from the mid-DP were also found ipsilaterally in the caudalmost level of the granular and dysgranular insular cortex (GI/DI). After BDA injections into the caudalmost GI/DI, many axons and terminals were labeled ipsilaterally in the mid-DP. The projections from the mid-DP to the rdm-I/II-Vc and other brainstem nuclei suggest that mid-DP neurons may regulate intraoral and perioral sensory processing (including nociceptive processing) of rdm-I/II-Vc neurons directly or indirectly through the brainstem nuclei. The reciprocal connections between the mid-DP and caudalmost GI/DI suggest that this regulation may involve mid-DP interactions with the caudalmost GI/DI neurons.
Collapse
Affiliation(s)
- F Akhter
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - T Haque
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - F Sato
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - T Kato
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - H Ohara
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - T Fujio
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - K Tsutsumi
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - K Uchino
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - B J Sessle
- Department of Oral Physiology, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | - A Yoshida
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
25
|
Satoh Y, Yajima E, Ishizuka K, Iwasaki SI. Role of the lateral reticular nucleus in suppressing the jaw-opening reflex following stimulation of the red nucleus. Neurosci Res 2013; 80:10-6. [PMID: 24370814 DOI: 10.1016/j.neures.2013.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 11/26/2022]
Abstract
We found in a previous study that stimulation of the red nucleus (RN) facilitated the low-threshold afferent-evoked jaw-opening reflex (JOR) and suppressed the high-threshold afferent-evoked JOR. It has been reported that the RN projections to the contralateral lateral reticular nucleus (LRt), and stimulation of the LRt inhibits the nociceptive JOR. These facts suggest that RN-induced modulation of the JOR is mediated via the LRt. We investigated whether electrically induced lesions of the LRt, or microinjection of muscimol into the LRt, affects RN-induced modulation of the JOR. The JOR was evoked by electrical stimulation of the inferior alveolar nerve (IAN), and was recorded as the electromyographic response of the anterior belly of the digastric muscle. The stimulus intensity was either 1.2 (low-threshold) or 4.0 (high-threshold) times the threshold. Electrically induced lesion of the LRt and microinjection of muscimol into the LRt reduced the RN-induced suppression of the high-threshold afferent-evoked JOR, but did not affect the RN-induced facilitation of the low-threshold afferent-evoked JOR. These results suggest that the RN-induced suppression of the high-threshold afferent-evoked JOR is mediated by a relay in the contralateral LRt.
Collapse
Affiliation(s)
- Yoshihide Satoh
- Department of Physiology, School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuou-ku, Niigata 951-8580, Japan.
| | - Eriko Yajima
- Department of Orthodontics, School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuou-ku, Niigata 951-8580, Japan
| | - Ken'Ichi Ishizuka
- Department of Physiology, School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuou-ku, Niigata 951-8580, Japan
| | - Shin-ichi Iwasaki
- Department of Physiology, School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuou-ku, Niigata 951-8580, Japan
| |
Collapse
|
26
|
Oka A, Yamamoto M, Takeda R, Ohara H, Sato F, Akhter F, Haque T, Kato T, Sessle BJ, Takada K, Yoshida A. Jaw-opening and -closing premotoneurons in the nucleus of the solitary tract making contacts with laryngeal and pharyngeal afferent terminals in rats. Brain Res 2013; 1540:48-63. [DOI: 10.1016/j.brainres.2013.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/26/2013] [Accepted: 10/04/2013] [Indexed: 01/01/2023]
|
27
|
Satoh Y, Yajima E, Ishizuka K, Nagamine Y, Iwasaki SI. Modulation of two types of jaw-opening reflex by stimulation of the red nucleus. Brain Res Bull 2013; 97:24-31. [DOI: 10.1016/j.brainresbull.2013.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/10/2013] [Accepted: 05/13/2013] [Indexed: 01/03/2023]
|
28
|
Benson TE, Lee DJ, Brown MC. Tensor tympani motoneurons receive mostly excitatory synaptic inputs. Anat Rec (Hoboken) 2012; 296:133-45. [PMID: 23165747 DOI: 10.1002/ar.22620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 09/21/2012] [Indexed: 12/18/2022]
Abstract
The tensor tympani is a middle ear muscle that contracts in two different situations: in response to sound or during voluntary movements. To gain insight into the inputs and neural regulation of the tensor tympani, we examined the ultrastructure of synaptic terminals on labeled tensor tympani motoneurons (TTMNs) using transmission electron microscopy. Our sample of six TTMNs received 79 synaptic terminals that formed 126 synpases. Two types of synapses are associated with round vesicles and form asymmetric junctions (excitatory morphology). One of these types has vesicles that are large and round (Lg Rnd) and the other has vesicles that are smaller and round (Sm Rnd) and also contains at least one dense core vesicle. A third synapse type has inhibitory morphology because it forms symmetric synapses with pleomorphic vesicles (Pleo). These synaptic terminals can be associated with TTMN spines. Two other types of synapse are found on TTMNs but they are uncommon. Synaptic terminals of all types form multiple synapses but those from a single terminal are always the same type. Terminals with Lg Rnd vesicles formed the most synpases per terminal (avg. 2.73). Together, the synaptic terminals with Lg Rnd and Sm Rnd vesicles account for 62% of the terminals on TTMNs, and they likely represent the pathways driving the contractions in response to sound or during voluntary movements. Having a high proportion of excitatory inputs, the TTMN innervation is like that of stapedius motoneurons but proportionately different from other types of motoneurons.
Collapse
Affiliation(s)
- Thane E Benson
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
29
|
Satoh Y, Ishizuka K, Yajima E, Nagamine Y, Iwasaki SI. Neuronal activities of the vestibular nuclear complex during mechanically induced rhythmic jaw movements in rats. Brain Res Bull 2012; 89:86-91. [PMID: 22828572 DOI: 10.1016/j.brainresbull.2012.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 07/05/2012] [Accepted: 07/07/2012] [Indexed: 01/16/2023]
Abstract
We studied the neuronal activities of the vestibular nuclear complex (VN) neurons during rhythmic jaw movements in rats anesthetized with urethane. Rhythmic jaw movements were induced by mechanical stimulation of the palate mucosa. The firing rate of approximately 25% of VN neurons increased significantly, and that of 10% of VN neurons decreased significantly, during these rhythmic jaw movements. There was no correlation between the change in the firing rate and the phase of the rhythmic jaw movements (jaw-opening and jaw-closing phases). The neurons that were affected were intermingled in the VN. These results suggest that the VN neurons are involved in controlling jaw movements.
Collapse
Affiliation(s)
- Yoshihide Satoh
- Department of Physiology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuou-ku, Niigata 951-8580, Japan.
| | | | | | | | | |
Collapse
|
30
|
Suppression of the nociceptive jaw-opening reflex by stimulation of the red nucleus. Brain Res 2012; 1473:124-30. [DOI: 10.1016/j.brainres.2012.07.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 07/25/2012] [Accepted: 07/25/2012] [Indexed: 01/06/2023]
|
31
|
Wild JM, Krützfeldt NEO. Trigeminal and telencephalic projections to jaw and other upper vocal tract premotor neurons in songbirds: sensorimotor circuitry for beak movements during singing. J Comp Neurol 2012; 520:590-605. [PMID: 21858818 DOI: 10.1002/cne.22752] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During singing in songbirds, the extent of beak opening, like the extent of mouth opening in human singers, is partially correlated with the fundamental frequency of the sounds emitted. Since song in songbirds is under the control of "the song system" (a collection of interconnected forebrain nuclei dedicated to the learning and production of song), it might be expected that beak movements during singing would also be controlled by this system. However, direct neural connections between the telencephalic output of the song system and beak muscle motor neurons in the brainstem are conspicuous by their absence, leaving unresolved the question of how beak movements are affected during singing. By using standard tract tracing methods, we sought to answer this question by defining beak premotor neurons and examining their afferent projections. In the caudal medulla, jaw premotor cell bodies were located adjacent to the terminal field of the output of the song system, into which many premotor neurons extended their dendrites. The premotor neurons also received a novel input from the trigeminal ganglion and an overlapping input from a lateral arcopallial component of a trigeminal sensorimotor circuit that traverses the forebrain. The ganglionic input in songbirds, which is not present in doves and pigeons that vocalize with a closed beak, may modulate the activity of beak premotor neurons in concert with the output of the song system. These inputs to jaw premotor neurons could, together, affect beak movements as a means of modulating filter properties of the upper vocal tract during singing.
Collapse
Affiliation(s)
- J M Wild
- Department of Anatomy, Faculty of Medical and Health Science, University of Auckland, Auckland 1142, New Zealand.
| | | |
Collapse
|
32
|
Response properties of temporomandibular joint mechanosensitive neurons in the trigeminal sensory complex of the rabbit. Exp Brain Res 2012; 222:113-23. [PMID: 22855309 DOI: 10.1007/s00221-012-3200-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
Abstract
The neurophysiological properties of neurons sensitive to TMJ movement (TMJ neurons) in the trigeminal sensory complex (Vcomp) during passive movement of the isolated condyle were examined in 46 rabbits. Discharges of TMJ neurons from the rostral part of the Vcomp were recorded with a microelectrode when the isolated condyle was moved manually and with a computer-regulated mechanostimulator. A total of 443 neurons responding to mechanical stimulation of the face and oral cavity were recorded from the brainstem. Twenty-one TMJ neurons were detected rostrocaudally from the dorsal part of the trigeminal principal sensory nucleus (NVsnpr), subnucleus oralis of the trigeminal spinal nucleus, and reticular formation surrounding the trigeminal motor nucleus. Most of the TMJ neurons were located in the dorso-rostral part of the NVsnpr. Of the TMJ units recorded, 90 % were slowly adapting and 26 % had an accompanying resting discharge. The majority (86 %) of the TMJ units responded to the movement of the isolated condyle in the anterior and/or ventral directions, and half were sensitive to the condyle movement in a single direction. The discharge frequencies of TMJ units increased as the condyle displacement and constant velocity (5 mm/s) increased within a 5-mm anterior displacement of the isolated condyle. Based on these results, we conclude that sensory information is processed by TMJ neurons encoding at least joint position and displacement in the physiological range of mandibular displacement.
Collapse
|
33
|
Nonaka M, Nishimura A, Nakamura S, Nakayama K, Mochizuki A, Iijima T, Inoue T. Convergent Pre-motoneuronal Inputs to Single Trigeminal Motoneurons. J Dent Res 2012; 91:888-93. [DOI: 10.1177/0022034512453724] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Because pre-motor neurons targeting trigeminal motoneurons are located in various regions, including the supratrigeminal (SupV) and intertrigeminal (IntV) regions, the principal sensory trigeminal nucleus (PrV), and the region dorsal to the PrV (dRt), a single trigeminal motoneuron may receive differential convergent inputs from these regions. We thus examined the properties of synaptic inputs from these regions to masseter motoneurons (MMNs) and digastric motoneurons (DMNs) in brainstem slice preparations obtained from P1-5 neonatal rats, using whole-cell recordings and laser photolysis of caged glutamate. Photostimulation of multiple regions within the SupV, IntV, PrV, and dRt induced post-synaptic currents (PSCs) in 14 of 19 MMNs and 18 of 26 DMNs. Furthermore, the stimulation of the lateral SupV significantly induced burst PSCs in MMNs more often than low-frequency PSCs in MMNs or burst PSCs in DMNs. Similar results were obtained in the presence of the GABAA receptor antagonist SR95531 and the glycine receptor antagonist strychnine. These results suggest that both neonatal MMNs and DMNs receive convergent glutamatergic inputs from the SupV, IntV, PrV, and dRt, and that the lateral SupV sends burst inputs predominantly to the MMNs. Such convergent pre-motoneuronal inputs to trigeminal motoneurons may contribute to the proper execution of neonatal oro-motor functions.
Collapse
Affiliation(s)
- M. Nonaka
- Department of Oral Anesthesia, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - A. Nishimura
- Department of Oral Anesthesia, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - S. Nakamura
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - K. Nakayama
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - A. Mochizuki
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - T. Iijima
- Department of Oral Anesthesia, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - T. Inoue
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
34
|
Comoli E, Das Neves Favaro P, Vautrelle N, Leriche M, Overton PG, Redgrave P. Segregated anatomical input to sub-regions of the rodent superior colliculus associated with approach and defense. Front Neuroanat 2012; 6:9. [PMID: 22514521 PMCID: PMC3324116 DOI: 10.3389/fnana.2012.00009] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 03/12/2012] [Indexed: 11/26/2022] Open
Abstract
The superior colliculus (SC) is responsible for sensorimotor transformations required to direct gaze toward or away from unexpected, biologically salient events. Significant changes in the external world are signaled to SC through primary multisensory afferents, spatially organized according to a retinotopic topography. For animals, where an unexpected event could indicate the presence of either predator or prey, early decisions to approach or avoid are particularly important. Rodents’ ecology dictates predators are most often detected initially as movements in upper visual field (mapped in medial SC), while appetitive stimuli are normally found in lower visual field (mapped in lateral SC). Our purpose was to exploit this functional segregation to reveal neural sites that can bias or modulate initial approach or avoidance responses. Small injections of Fluoro-Gold were made into medial or lateral sub-regions of intermediate and deep layers of SC (SCm/SCl). A remarkable segregation of input to these two functionally defined areas was found. (i) There were structures that projected only to SCm (e.g., specific cortical areas, lateral geniculate and suprageniculate thalamic nuclei, ventromedial and premammillary hypothalamic nuclei, and several brainstem areas) or SCl (e.g., primary somatosensory cortex representing upper body parts and vibrissae and parvicellular reticular nucleus in the brainstem). (ii) Other structures projected to both SCm and SCl but from topographically segregated populations of neurons (e.g., zona incerta and substantia nigra pars reticulata). (iii) There were a few brainstem areas in which retrogradely labeled neurons were spatially overlapping (e.g., pedunculopontine nucleus and locus coeruleus). These results indicate significantly more structures across the rat neuraxis are in a position to modulate defense responses evoked from SCm, and that neural mechanisms modulating SC-mediated defense or appetitive behavior are almost entirely segregated.
Collapse
Affiliation(s)
- Eliane Comoli
- Laboratory of Functional Neuroanatomy, Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo Ribeirão Preto, Brazil
| | | | | | | | | | | |
Collapse
|
35
|
Barceló AC, Filippini B, Pazo JH. The striatum and pain modulation. Cell Mol Neurobiol 2012; 32:1-12. [PMID: 21789630 DOI: 10.1007/s10571-011-9737-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 07/02/2011] [Indexed: 10/18/2022]
Abstract
The aim of this review was to give a general aspect of the sensorial function of the striatum related to pain modulation, which was intensively studied in our laboratory. We analyse the effect of electrical and chemical stimulation of the striatum on the orofacial pain, especially that produced by tooth pulp stimulation of the lower incisors. We demonstrated specific sites within the nucleus which electrical or chemical stimulation produced inhibition of the nociceptive jaw opening reflex. This analgesic action of the striatum was mediated by activation of its dopamine D(2) receptors and transmitted through the indirect pathways of the basal ganglia and the medullary dorsal reticular nucleus (RVM) to the sensorial nuclei of the trigeminal nerve. Its mechanism of action was by inhibition of the nociceptive response of the second order neurons of the nucleus caudalis of the V par.
Collapse
Affiliation(s)
- Ana C Barceló
- Facultad de Odontología, Universidad de Buenos Aires, Cátedra de Fisiología, Buenos Aires, Argentina
| | | | | |
Collapse
|
36
|
Influence of aging on experimental gastrointestinal motility in extraction of rat molar teeth. PEDIATRIC DENTAL JOURNAL 2012. [DOI: 10.1016/s0917-2394(12)70246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Dong Y, Li J, Zhang F, Li Y. Nociceptive afferents to the premotor neurons that send axons simultaneously to the facial and hypoglossal motoneurons by means of axon collaterals. PLoS One 2011; 6:e25615. [PMID: 21980505 PMCID: PMC3183065 DOI: 10.1371/journal.pone.0025615] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/07/2011] [Indexed: 11/19/2022] Open
Abstract
It is well known that the brainstem premotor neurons of the facial nucleus and hypoglossal nucleus coordinate orofacial nociceptive reflex (ONR) responses. However, whether the brainstem PNs receive the nociceptive projection directly from the caudal spinal trigeminal nucleus is still kept unclear. Our present study focuses on the distribution of premotor neurons in the ONR pathways of rats and the collateral projection of the premotor neurons which are involved in the brainstem local pathways of the orofacial nociceptive reflexes of rat. Retrograde tracer Fluoro-gold (FG) or FG/tetramethylrhodamine-dextran amine (TMR-DA) were injected into the VII or/and XII, and anterograde tracer biotinylated dextran amine (BDA) was injected into the caudal spinal trigeminal nucleus (Vc). The tracing studies indicated that FG-labeled neurons receiving BDA-labeled fibers from the Vc were mainly distributed bilaterally in the parvicellular reticular formation (PCRt), dorsal and ventral medullary reticular formation (MdD, MdV), supratrigeminal nucleus (Vsup) and parabrachial nucleus (PBN) with an ipsilateral dominance. Some FG/TMR-DA double-labeled premotor neurons, which were observed bilaterally in the PCRt, MdD, dorsal part of the MdV, peri-motor nucleus regions, contacted with BDA-labeled axonal terminals and expressed c-fos protein-like immunoreactivity which induced by subcutaneous injection of formalin into the lip. After retrograde tracer wheat germ agglutinated horseradish peroxidase (WGA-HRP) was injected into VII or XII and BDA into Vc, electron microscopic study revealed that some BDA-labeled axonal terminals made mainly asymmetric synapses on the dendritic and somatic profiles of WGA-HRP-labeled premotor neurons. These data indicate that some premotor neurons could integrate the orofacial nociceptive input from the Vc and transfer these signals simultaneously to different brainstem motonuclei by axonal collaterals.
Collapse
Affiliation(s)
- Yulin Dong
- Department of Anatomy and Histology and Embryology, and K. K. Leung Brain Research Centre, the Fourth Military Medical University, Xi'an, China
| | - Jinlian Li
- Department of Anatomy and Histology and Embryology, and K. K. Leung Brain Research Centre, the Fourth Military Medical University, Xi'an, China
- * E-mail: (JL); (YL)
| | - Fuxing Zhang
- Department of Anatomy and Histology and Embryology, and K. K. Leung Brain Research Centre, the Fourth Military Medical University, Xi'an, China
| | - Yunqing Li
- Department of Anatomy and Histology and Embryology, and K. K. Leung Brain Research Centre, the Fourth Military Medical University, Xi'an, China
- * E-mail: (JL); (YL)
| |
Collapse
|
38
|
Satoh Y, Yajima E, Nagamine Y, Ishizuka K, Murakami T. Effects of neck muscle activities during rhythmic jaw movements by stimulation of the medial vestibular nucleus in rats. Brain Res Bull 2011; 86:447-53. [PMID: 21907266 DOI: 10.1016/j.brainresbull.2011.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/27/2011] [Accepted: 08/05/2011] [Indexed: 01/15/2023]
Abstract
This study first examines whether there is rhythmic activity of the neck muscles during cortically induced rhythmic jaw movements in rats anesthetized by urethane. Rhythmic jaw movements were induced by repetitive electrical stimulation of the orofacial motor cortex. An electromyogram in the splenius muscles (spEMG) showed rhythmic bursts during the jaw-opening phase, or during the transition from the jaw-opening phase to the jaw-closing phase. In the sternomastoid (stEMG), however, the electromyogram did not show any bursts during rhythmic jaw movements. A further study then examines whether stimulation of the medial vestibular nucleus (MVN) modulates the rhythmic activity of the neck muscles. Stimuli applied in the jaw-closing phase induced a transient burst in the stEMG, and the duration of activity in the spEMG was increased. Stimuli applied in the jaw-opening phase induced a transient burst in the stEMG and an inhibitory period in the spEMG. These results imply that the MVN is involved in the modulation of neck muscle activities during rhythmic jaw movements induced by stimulating the orofacial motor cortex.
Collapse
Affiliation(s)
- Yoshihide Satoh
- Department of Physiology, The Nippon Dental University, School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuou-ku, Niigata 951-8580, Japan.
| | | | | | | | | |
Collapse
|
39
|
Shirasu M, Takahashi T, Yamamoto T, Itoh K, Sato S, Nakamura H. Direct projections from the central amygdaloid nucleus to the mesencephalic trigeminal nucleus in rats. Brain Res 2011; 1400:19-30. [DOI: 10.1016/j.brainres.2011.05.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 05/10/2011] [Accepted: 05/12/2011] [Indexed: 12/30/2022]
|
40
|
Westberg KG, Kolta A. The trigeminal circuits responsible for chewing. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 97:77-98. [PMID: 21708308 DOI: 10.1016/b978-0-12-385198-7.00004-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mastication is a vital function that ensures that ingested food is broken down into pieces and prepared for digestion. This review outlines the masticatory behavior in terms of the muscle activation patterns and jaw movements and gives an overview of the organization and function of the trigeminal neuronal circuits that are known to take part in the generation and control of oro-facial motor functions. The basic pattern of rhythmic jaw movements produced during mastication is generated by a Central Pattern Generator (CPG) located in the pons and medulla. Neurons within the CPG have intrinsic properties that produce a rhythmic activity, but the output of these neurons is modified by inputs that descend from the higher centers of the brain, and by feedback from sensory receptors, in order to constantly adapt the movement to the food properties.
Collapse
Affiliation(s)
- Karl-Gunnar Westberg
- Department of Integrative Medical Biology, Section for Physiology, Umeå University, SE-90187 Umeå, Sweden
| | | |
Collapse
|
41
|
Satoh Y, Ishizuka K, Murakami T. Modulation of cortically induced rhythmic jaw movements in rats by stimulation of the vestibular nuclear complex. Neurosci Res 2010; 68:307-14. [PMID: 20800625 DOI: 10.1016/j.neures.2010.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 08/12/2010] [Accepted: 08/18/2010] [Indexed: 10/19/2022]
Abstract
We study whether stimulation of the vestibular nuclear (VN) complex can modulate rhythmic jaw movements in rats anesthetized by urethane. Rhythmic jaw movements were induced by repetitive electrical stimulation of the orofacial motor cortex. Stimulation of the medial vestibular nucleus (MVN) during the jaw-closing phase increased the amplitude of the jaw-closing movement. (This is not a movement that continues to closure.) Stimulation of the MVN during the jaw-opening phase disturbed the rhythm of jaw movements and induced a small jaw-closing movement. Stimulation of the superior VN (SVN) and the lateral VN (LVN) during the jaw-closing phase did not affect the amplitude of the jaw-closing movement. Stimulation of the SVN and the LVN during the jaw-opening phase increased the amplitude of the jaw-opening movement, however. Stimulation of the inferior VN during the jaw-closing and the jaw-opening phase, respectively decreased the amplitude of the jaw-closing and the jaw-opening movements. Stimulation applied outside the VN did not modulate the amplitude of the jaw movements. These results imply that the VN is involved in the modulation of rhythmic jaw movements induced by stimulation of the orofacial motor cortex.
Collapse
Affiliation(s)
- Yoshihide Satoh
- Department of Physiology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata, Japan.
| | | | | |
Collapse
|
42
|
Mascaro MB, Prosdócimi FC, Bittencourt JC, Elias CF. Forebrain projections to brainstem nuclei involved in the control of mandibular movements in rats. Eur J Oral Sci 2010; 117:676-84. [PMID: 20121930 DOI: 10.1111/j.1600-0722.2009.00686.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mandibular movements occur through the triggering of trigeminal motoneurons. Aberrant movements by orofacial muscles are characteristic of orofacial motor disorders, such as nocturnal bruxism (clenching or grinding of the dentition during sleep). Previous studies have suggested that autonomic changes occur during bruxism episodes. Although it is known that emotional responses increase jaw movement, the brain pathways linking forebrain limbic nuclei and the trigeminal motor nucleus remain unclear. Here we show that neurons in the lateral hypothalamic area, in the central nucleus of the amygdala, and in the parasubthalamic nucleus, project to the trigeminal motor nucleus or to reticular regions around the motor nucleus (Regio h) and in the mesencephalic trigeminal nucleus. We observed orexin co-expression in neurons projecting from the lateral hypothalamic area to the trigeminal motor nucleus. In the central nucleus of the amygdala, neurons projecting to the trigeminal motor nucleus are innervated by corticotrophin-releasing factor immunoreactive fibers. We also observed that the mesencephalic trigeminal nucleus receives dense innervation from orexin and corticotrophin-releasing factor immunoreactive fibers. Therefore, forebrain nuclei related to autonomic control and stress responses might influence the activity of trigeminal motor neurons and consequently play a role in the physiopathology of nocturnal bruxism.
Collapse
Affiliation(s)
- Marcelo B Mascaro
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | | | | | | |
Collapse
|
43
|
Properties of synaptic transmission from the reticular formation dorsal to the facial nucleus to trigeminal motoneurons during early postnatal development in rats. Neuroscience 2010; 166:1008-22. [PMID: 20060035 DOI: 10.1016/j.neuroscience.2009.12.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 11/30/2009] [Accepted: 12/26/2009] [Indexed: 11/20/2022]
Abstract
We previously reported that electrical stimulation of the reticular formation dorsal to the facial nucleus (RdVII) elicited excitatory masseter responses at short latencies and that RdVII neurons were antidromically activated by stimulation of the trigeminal motor nucleus (MoV), suggesting that excitatory premotor neurons targeting the MoV are likely located in the RdVII. We thus examined the properties of synaptic transmission from the RdVII to jaw-closing and jaw-opening motoneurons in horizontal brainstem preparations from developing rats using voltage-sensitive dye, patch-clamp recordings and laser photostimulation. Electrical stimulation of the RdVII evoked optical responses in the MoV. Combined bath application of the non-N-methyl-d-aspartate (non-NMDA) receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), and the NMDA receptor antagonist DL-2-amino-5-phosphonopentanoic acid (APV) reduced these optical responses, and addition of the glycine receptor antagonist strychnine and the GABA(A) receptor antagonist bicuculline further reduced the remaining responses. Electrical stimulation of the RdVII evoked postsynaptic currents (PSCs) in all 19 masseter motoneurons tested in postnatal day (P)1-4 rats, and application of CNQX and the NMDA receptor antagonist (+/-)-3(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) reduced the PSC amplitudes by more than 50%. In the presence of CNQX and CPP, the GABA(A) receptor antagonist SR95531 further reduced PSC amplitude, and addition of strychnine abolished the remaining PSCs. Photostimulation of the RdVII with caged glutamate also evoked PSCs in masseter motoneurons of P3-4 rats. In P8-11 rats, electrical stimulation of the RdVII also evoked PSCs in all 14 masseter motoneurons tested, and the effects of the antagonists on the PSCs were similar to those in P1-4 rats. On the other hand, RdVII stimulation evoked PSCs in only three of 16 digastric motoneurons tested. These results suggest that both neonatal and juvenile jaw-closing motoneurons receive strong synaptic inputs from the RdVII through activation of glutamate, glycine and GABA(A) receptors, whereas inputs from the RdVII to jaw-opening motoneurons seem to be weak.
Collapse
|
44
|
Study of the neural basis of striatal modulation of the jaw-opening reflex. J Neural Transm (Vienna) 2009; 117:171-81. [PMID: 20012111 DOI: 10.1007/s00702-009-0348-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 11/23/2009] [Indexed: 12/21/2022]
Abstract
Previous experimental data from this laboratory demonstrated the participation of the striatum and dopaminergic pathways in central nociceptive processing. The objective of this study was to examine the possible pathways and neural structures associated with the analgesic action of the striatum. The experiments were carried out in rats anesthetized with urethane. The jaw-opening reflex (JOR) was evoked by electrical stimulation of the tooth pulp of lower incisors and recorded in the anterior belly of the digastric muscles. Intrastriatal microinjection of apomorphine, a nonspecific dopamine agonist, reduced or abolished the JOR amplitude. Electrolytic or kainic acid lesions, unilateral to the apomorphine-injected striatum, of the globus pallidus, substantia nigra pars reticulata, subthalamic nucleus and bilateral lesion the rostroventromedial medulla (RVM), blocked the inhibition of the JOR by striatal stimulation. These findings suggest that the main output nuclei of the striatum and the RVM may be critical elements in the neural pathways mediating the inhibition of the reflex response, evoked in jaw muscles by noxious stimulation of dental pulp.
Collapse
|
45
|
Tsumori T, Qin Y, Yokota S, Niu JG, Yasui Y. Central amygdaloid axon terminals are in contact with retrorubral field neurons that project to the parvicellular reticular formation of the medulla oblongata in the rat. Brain Res 2009; 1306:18-28. [PMID: 19833110 DOI: 10.1016/j.brainres.2009.09.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 09/29/2009] [Accepted: 09/29/2009] [Indexed: 10/20/2022]
Abstract
The retrorubral field (RRF) contains numerous dopaminergic neurons and projects to the parvicellular reticular formation (RFp) of the medullary and pontomedullary brainstem, where many premotor neurons project to the orofacial motor nuclei. To know how the amygdala affects the RRF-RFp pathway in the rat, we first examined the synaptic organization between the central amygdaloid nucleus (CeA) fibers and the RFp-projecting RRF neurons by using combined anterograde and retrograde tracing techniques. After ipsilateral injections of biotinylated dextran amine (BDA) into the CeA and Fluoro-gold (FG) into the RFp, the prominent overlapping distribution of BDA-labeled axon terminals and FG-labeled neurons was found in the lateral part of the RRF ipsilateral to the injection sites, where the BDA-labeled axon terminals made symmetrical synapses with somata and dendrites of the FG-labeled neurons. Using a combination of retrograde tracing and immunohistochemistry for tyrosine hydroxylase (TH), we secondly demonstrated that the RFp-projecting RRF neurons were immunonegative for TH. Using a combination of anterograde tracing and immunohistochemistry for glutamic acid decarboxylase (GAD), we finally revealed that the CeA axon terminals in the RRF were immunoreactive for GAD. The present results suggest that GABAergic CeA neurons may exert inhibitory influences on non-dopaminergic RRF neurons that project to the RFp in the control of orofacial movements closely related to emotional behavior.
Collapse
Affiliation(s)
- Toshiko Tsumori
- Department of Anatomy and Morphological Neuroscience, Shimane University School of Medicine, Izumo 693-8501, Japan
| | | | | | | | | |
Collapse
|
46
|
Nakajima K, Yamaguchi T, Maki K. Surgical orthodontic treatment for a patient with advanced periodontal disease: evaluation with electromyography and 3-dimensional cone-beam computed tomography. Am J Orthod Dentofacial Orthop 2009; 136:450-9. [PMID: 19732680 DOI: 10.1016/j.ajodo.2007.03.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 03/01/2007] [Accepted: 03/01/2007] [Indexed: 11/30/2022]
Abstract
We report here the case of a woman with Class III malocclusion and advanced periodontal disease who was treated with surgical orthodontic correction. Functional recovery after orthodontic treatment is often monitored by serial electromyography of the masticatory muscles, whereas 3-dimensional cone-beam computed tomography can provide detailed structural information about, for example, periodontal bone defects. However, it is unclear whether the information obtained via these methods is sufficient to determine the treatment goal. It might be useful to address this issue for patients with advanced periodontal disease because of much variability between patients in the determination of treatment goals. We used detailed information obtained by 3-dimensional cone-beam computed tomography to identify periodontal bone defects and set appropriate treatment goals for inclination of the incisors and mandibular surgery. Results for this patient included stable occlusion and improved facial esthetics. This case report illustrates the benefits of establishing treatment goals acceptable to the patient, based on precise 3-dimensional assessment of dentoalveolar bone, and by using masticatory muscle activity to monitor the stability of occlusion.
Collapse
Affiliation(s)
- Kan Nakajima
- epartment of Orthodontics, School of Dentistry, Showa University, Tokyo, Japan.
| | | | | |
Collapse
|
47
|
Nakamura Y, Nakamura K, Morrison SF. Different populations of prostaglandin EP3 receptor-expressing preoptic neurons project to two fever-mediating sympathoexcitatory brain regions. Neuroscience 2009; 161:614-20. [PMID: 19327390 PMCID: PMC2857774 DOI: 10.1016/j.neuroscience.2009.03.041] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 03/01/2009] [Accepted: 03/13/2009] [Indexed: 11/15/2022]
Abstract
The central mechanism of fever induction is triggered by an action of prostaglandin E(2) (PGE(2)) on neurons in the preoptic area (POA) through the EP3 subtype of prostaglandin E receptor. EP3 receptor (EP3R)-expressing POA neurons project directly to the dorsomedial hypothalamus (DMH) and to the rostral raphe pallidus nucleus (rRPa), key sites for the control of thermoregulatory effectors. Based on physiological findings, we hypothesize that the febrile responses in brown adipose tissue (BAT) and those in cutaneous vasoconstrictors are controlled independently by separate neuronal pathways: PGE(2) pyrogenic signaling is transmitted from EP3R-expressing POA neurons via a projection to the DMH to activate BAT thermogenesis and via another projection to the rRPa to increase cutaneous vasoconstriction. In this case, DMH-projecting and rRPa-projecting neurons would constitute segregated populations within the EP3R-expressing neuronal group in the POA. Here, we sought direct anatomical evidence to test this hypothesis with a double-tracing experiment in which two types of the retrograde tracer, cholera toxin b-subunit (CTb), conjugated with different fluorophores were injected into the DMH and the rRPa of rats and the resulting retrogradely labeled populations of EP3R-immunoreactive neurons in the POA were identified with confocal microscopy. We found substantial numbers of EP3R-immunoreactive neurons in both the DMH-projecting and the rRPa-projecting populations. However, very few EP3R-immunoreactive POA neurons were labeled with both the CTb from the DMH and that from the rRPa, although a substantial number of neurons that were not immunoreactive for EP3R were double-labeled with both CTbs. The paucity of the EP3R-expressing neurons that send collaterals to both the DMH and the rRPa suggests that pyrogenic signals are sent independently to these caudal brain regions from the POA and that such pyrogenic outputs from the POA reflect different control mechanisms for BAT thermogenesis and for cutaneous vasoconstriction by distinct sets of POA neurons.
Collapse
Affiliation(s)
- Y. Nakamura
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, OR 97006, USA
| | - K. Nakamura
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, OR 97006, USA
| | - S. F. Morrison
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, OR 97006, USA
| |
Collapse
|
48
|
Mameli O, Stanzani S, Russo A, Pellitteri R, Spatuzza M, Caria MA, Mulliri G, De Riu PL. Hypoglossal nucleus projections to the rat masseter muscle. Brain Res 2009; 1283:34-40. [PMID: 19523459 DOI: 10.1016/j.brainres.2009.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 05/28/2009] [Accepted: 06/01/2009] [Indexed: 11/28/2022]
Abstract
We investigated in the rat whether hypoglossal innervation extended to facial muscles other than the extrinsic musculature of the mystacial pad. Results showed that hypoglossal neurons also innervate the masseter muscle. Dil injected into the XII nucleus showed hypoglossal axons in the ipsilateral main trunk of the trigeminal nerve. After Gasser's ganglion crossing, the axons entered into the infraorbital division of the trigeminal nerve and targeted the extrinsic muscles of the mystacial pad. They also spread into the masseter branch of the trigeminal nerve to target the polar portions of the masseter muscle spindles. Retrograde double labelling, performed by injecting Dil into the pad and True Blue into the ipsilateral masseter muscle, showed labelled hypoglossal neurons in the medio-dorsal portion of the XII nucleus. The majority of these neurons were small (15-20 microm diameter), showed fluorescence for Dil and projected to the mystacial pad. Other medium-size neurons (25 microm diameter) were instead labelled with True Blue and projected to the masseter muscle. Finally, in the same area, other small hypoglossal neurons showed double labelling and projected to both structures. Functional hypotheses on the role of these hypoglossal projections have been discussed.
Collapse
Affiliation(s)
- O Mameli
- Department of Biomedical Sciences, Human Physiology Division, University of Sassari, 07100 Sassari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Chang Z, Haque T, Iida C, Seki S, Sato F, Kato T, Uchino K, Ono T, Nakamura M, Bae YC, Yoshida A. Distribution of premotoneurons for jaw-closing and jaw-opening motor nucleus receiving contacts from axon terminals of primary somatosensory cortical neurons in rats. Brain Res 2009; 1275:43-53. [DOI: 10.1016/j.brainres.2009.04.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 04/09/2009] [Accepted: 04/09/2009] [Indexed: 10/20/2022]
|
50
|
Yoshida A, Taki I, Chang Z, Iida C, Haque T, Tomita A, Seki S, Yamamoto S, Masuda Y, Moritani M, Shigenaga Y. Corticofugal projections to trigeminal motoneurons innervating antagonistic jaw muscles in rats as demonstrated by anterograde and retrograde tract tracing. J Comp Neurol 2009; 514:368-86. [DOI: 10.1002/cne.22013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|