1
|
Watanabe H, Tateishi K. Parallel olfactory processing in a hemimetabolous insect. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101097. [PMID: 37541388 DOI: 10.1016/j.cois.2023.101097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
To represent specific olfactory cues from the highly complex and dynamic odor world in the brain, insects employ multiple parallel olfactory pathways that process odors with different coding strategies. Here, we summarize the anatomical and physiological features of parallel olfactory pathways in the hemimetabolous insect, the cockroach Periplaneta americana. The cockroach processes different aspects of odor stimuli, such as odor qualities, temporal information, and dynamics, through parallel olfactory pathways. These parallel pathways are anatomically segregated from the peripheral to higher brain centers, forming functional maps within the brain. In addition, the cockroach may possess parallel pathways that correspond to distinct types of olfactory receptors expressed in sensory neurons. Through comparisons with olfactory pathways in holometabolous insects, we aim to provide valuable insights into the organization, functionality, and evolution of insect olfaction.
Collapse
Affiliation(s)
- Hidehiro Watanabe
- Department of Earth System Science, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Fukuoka, Japan.
| | - Kosuke Tateishi
- Department of Earth System Science, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Fukuoka, Japan; School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda 669-1330, Hyogo, Japan
| |
Collapse
|
2
|
Fuscà D, Kloppenburg P. Odor processing in the cockroach antennal lobe-the network components. Cell Tissue Res 2021; 383:59-73. [PMID: 33486607 PMCID: PMC7872951 DOI: 10.1007/s00441-020-03387-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Highly interconnected neural networks perform olfactory signal processing in the central nervous system. In insects, the first synaptic processing of the olfactory input from the antennae occurs in the antennal lobe, the functional equivalent of the olfactory bulb in vertebrates. Key components of the olfactory network in the antennal lobe are two main types of neurons: the local interneurons and the projection (output) neurons. Both neuron types have different physiological tasks during olfactory processing, which accordingly require specialized functional phenotypes. This review gives an overview of important cell type-specific functional properties of the different types of projection neurons and local interneurons in the antennal lobe of the cockroach Periplaneta americana, which is an experimental system that has elucidated many important biophysical and cellular bases of intrinsic physiological properties of these neurons.
Collapse
Affiliation(s)
- Debora Fuscà
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Peter Kloppenburg
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany.
| |
Collapse
|
3
|
Marin EC, Büld L, Theiss M, Sarkissian T, Roberts RJV, Turnbull R, Tamimi IFM, Pleijzier MW, Laursen WJ, Drummond N, Schlegel P, Bates AS, Li F, Landgraf M, Costa M, Bock DD, Garrity PA, Jefferis GSXE. Connectomics Analysis Reveals First-, Second-, and Third-Order Thermosensory and Hygrosensory Neurons in the Adult Drosophila Brain. Curr Biol 2020; 30:3167-3182.e4. [PMID: 32619476 PMCID: PMC7443704 DOI: 10.1016/j.cub.2020.06.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/08/2020] [Accepted: 06/08/2020] [Indexed: 01/08/2023]
Abstract
Animals exhibit innate and learned preferences for temperature and humidity-conditions critical for their survival and reproduction. Leveraging a whole-brain electron microscopy volume, we studied the adult Drosophila melanogaster circuitry associated with antennal thermo- and hygrosensory neurons. We have identified two new target glomeruli in the antennal lobe, in addition to the five known ones, and the ventroposterior projection neurons (VP PNs) that relay thermo- and hygrosensory information to higher brain centers, including the mushroom body and lateral horn, seats of learned and innate behavior. We present the first connectome of a thermo- and hygrosensory neuropil, the lateral accessory calyx (lACA), by reconstructing neurons downstream of heating- and cooling-responsive VP PNs. A few mushroom body-intrinsic neurons solely receive thermosensory input from the lACA, while most receive additional olfactory and thermo- and/or hygrosensory PN inputs. Furthermore, several classes of lACA-associated neurons form a local network with outputs to other brain neuropils, suggesting that the lACA serves as a hub for thermo- and hygrosensory circuitry. For example, DN1a neurons link thermosensory PNs in the lACA to the circadian clock via the accessory medulla. Finally, we survey strongly connected downstream partners of VP PNs across the protocerebrum; these include a descending neuron targeted by dry-responsive VP PNs, meaning that just two synapses might separate hygrosensory inputs from motor circuits. These data provide a comprehensive first- and second-order layer analysis of Drosophila thermo- and hygrosensory systems and an initial survey of third-order neurons that could directly modulate behavior.
Collapse
Affiliation(s)
- Elizabeth C Marin
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Laurin Büld
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Maria Theiss
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | | | | | - Robert Turnbull
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Imaan F M Tamimi
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Markus W Pleijzier
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH, UK
| | - Willem J Laursen
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Nik Drummond
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Philipp Schlegel
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK; Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH, UK
| | - Alexander S Bates
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH, UK
| | - Feng Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Matthias Landgraf
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Marta Costa
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Davi D Bock
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Paul A Garrity
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Gregory S X E Jefferis
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK; Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH, UK.
| |
Collapse
|
4
|
Ma BW, Zhao XC, Berg BG, Xie GY, Tang QB, Wang GR. Central Projections of Antennal and Labial Palp Sensory Neurons in the Migratory Armyworm Mythimna separata. Front Cell Neurosci 2017; 11:370. [PMID: 29209176 PMCID: PMC5702295 DOI: 10.3389/fncel.2017.00370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/08/2017] [Indexed: 11/13/2022] Open
Abstract
The oriental armyworm, Mythimna separata (Walker), is a polyphagous, migratory pest relying on olfactory cues to find mates, locate nectar, and guide long-distance flight behavior. In the present study, a combination of neuroanatomical techniques were utilized on this species, including backfills, confocal microscopy, and three-dimensional reconstructions, to trace the central projections of sensory neurons from the antenna and the labial pit organ, respectively. As previously shown, the axons of the labial sensory neurons project via the ipsilateral labial nerve and terminate in three main areas of the central nervous system: (1) the labial-palp pit organ glomerulus of each antennal lobe, (2) the gnathal ganglion, and (3) the prothoracic ganglion of the ventral nerve cord. Similarly, the antennal sensory axons project to multiple areas of the central nervous system. The ipsilateral antennal nerve targets mainly the antennal lobe, the antennal mechanosensory and motor center, and the prothoracic and mesothoracic ganglia. Specific staining experiments including dye application to each of the three antennal segments indicate that the antennal lobe receives input from flagellar olfactory neurons exclusively, while the antennal mechanosensory and motor center is innervated by mechanosensory neurons from the whole antenna, comprising the flagellum, pedicle, and scape. The terminals in the mechanosensory and motor center are organized in segregated zones relating to the origin of neurons. The flagellar mechanosensory axons target anterior zones, while the pedicular and scapal axons terminate in posterior zones. In the ventral nerve cord, the processes from the antennal sensory neurons terminate in the motor area of the thoracic ganglia, suggesting a close connection with motor neurons. Taken together, the numerous neuropils innervated by axons both from the antenna and labial palp indicate the multiple roles these sensory organs serve in insect behavior.
Collapse
Affiliation(s)
- Bai-Wei Ma
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xin-Cheng Zhao
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Bente G Berg
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gui-Ying Xie
- Department of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Qing-Bo Tang
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Carle T, Watanabe H, Yamawaki Y, Yokohari F. Organization of the antennal lobes in the praying mantis (Tenodera aridifolia). J Comp Neurol 2017; 525:1685-1706. [PMID: 28001299 DOI: 10.1002/cne.24159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/09/2016] [Accepted: 11/17/2016] [Indexed: 11/08/2022]
Abstract
Olfaction in insects plays pivotal roles in searching for food and/or for sexual partners. Although many studies have focused on the olfactory processes of nonpredatory insect species, little is known about those in predatory insects. Here, we investigated the anatomical features of the primary olfactory center (antennal lobes) in an insect predator whose visual system is well developed, the praying mantis Tenodera aridifolia. Both sexes of T. aridifolia were found to possess 54 glomeruli, and each glomerulus was identified based on its location and size. Moreover, we found a sexual dimorphism in three glomeruli (macroglomeruli) located at the entrance of the antennal nerves, which are 15 times bigger in males than their homologs in females. We additionally deduced the target glomeruli of olfactory sensory neurons housed in cognate types of sensilla by degenerating the sensory afferents. The macroglomeruli received sensory inputs from grooved peg sensilla, which are present in a large number at the proximal part of the males' antennae. Furthermore, our findings suggest that glomeruli at the posteriodorsal part of the antennal lobes receive sensory information from putative hygro- and thermosensitive sensilla. The origins of projections connected to the protocerebrum are also discussed. J. Comp. Neurol. 525:1685-1706, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Thomas Carle
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Hidehiro Watanabe
- Division of Biology, Department of Earth System Science, Faculty of Science, Fukuoka University, Fukuoka, Japan
| | - Yoshifumi Yamawaki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Fumio Yokohari
- Division of Biology, Department of Earth System Science, Faculty of Science, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
6
|
Kollmann M, Schmidt R, Heuer CM, Schachtner J. Variations on a Theme: Antennal Lobe Architecture across Coleoptera. PLoS One 2016; 11:e0166253. [PMID: 27973569 PMCID: PMC5156346 DOI: 10.1371/journal.pone.0166253] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/25/2016] [Indexed: 12/02/2022] Open
Abstract
Beetles comprise about 400,000 described species, nearly one third of all known animal species. The enormous success of the order Coleoptera is reflected by a rich diversity of lifestyles, behaviors, morphological, and physiological adaptions. All these evolutionary adaptions that have been driven by a variety of parameters over the last about 300 million years, make the Coleoptera an ideal field to study the evolution of the brain on the interface between the basic bauplan of the insect brain and the adaptions that occurred. In the current study we concentrated on the paired antennal lobes (AL), the part of the brain that is typically responsible for the first processing of olfactory information collected from olfactory sensilla on antenna and mouthparts. We analyzed 63 beetle species from 22 different families and thus provide an extensive comparison of principal neuroarchitecture of the AL. On the examined anatomical level, we found a broad diversity including AL containing a wide range of glomeruli numbers reaching from 50 to 150 glomeruli and several species with numerous small glomeruli, resembling the microglomerular design described in acridid grasshoppers and diving beetles, and substructures within the glomeruli that have to date only been described for the small hive beetle, Aethina tumida. A first comparison of the various anatomical features of the AL with available descriptions of lifestyle and behaviors did so far not reveal useful correlations. In summary, the current study provides a solid basis for further studies to unravel mechanisms that are basic to evolutionary adaptions of the insect olfactory system.
Collapse
Affiliation(s)
- Martin Kollmann
- Department of Biology—Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Rovenna Schmidt
- Department of Biology—Animal Physiology, Philipps-University Marburg, Marburg, Germany
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig University Gießen, Gießen, Germany
| | - Carsten M. Heuer
- Department of Biology—Animal Physiology, Philipps-University Marburg, Marburg, Germany
- Fraunhofer-Institut für Naturwissenschaftlich-Technische Trendanalysen INT, Euskirchen, Germany
| | - Joachim Schachtner
- Department of Biology—Animal Physiology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
7
|
Mizunami M, Nishino H, Yokohari F. Status of and Future Research on Thermosensory Processing. Front Physiol 2016; 7:150. [PMID: 27199765 PMCID: PMC4843090 DOI: 10.3389/fphys.2016.00150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/07/2016] [Indexed: 01/07/2023] Open
Abstract
Thermosensation is critically important for survival of all animals. In the cockroach Periplaneta americana, thermoreceptor neurons on antennae and thermosensory interneurons in the antennal lobe have been characterized electrophysiologically, and recent studies using advanced transgenic technologies in the fruit fly Drosophila melanogaster have added much to the knowledge of these neurons, enabling us to discuss common principles of thermosensory processing systems in insects. Cockroaches and many other insects possess only one type of thermoreceptor neurons on antennae that are excited by cooling and inhibited by warming. In contrast, the antennae of fruit flies and other dipterans possess oppositely responding warm and cold receptor neurons. Despite differences in their thermoreceptive equipment, central processing of temperature information is much the same in flies and cockroaches. Axons of thermoreceptor neurons project to the margin of the antennal lobe and form glomeruli, from which cold, warm and cold-warm projection neurons originate, the last neurons being excited by both cooling and warming. Axons of antennal lobe thermosensory projection neurons of the antennal lobe terminate in three distinct areas of the protocerebrum, the mushroom body, lateral horn and posterior lateral protocerebrum, the last area also receiving termination of hygrosensory projection neurons. Such multiple thermosensory pathways may serve to control multiple forms of thermosensory behavior. Electrophysiological studies on cockroaches and transgenic approaches in flies are encouraged to complement each other for further elucidating general principles of thermosensory processing in the insect brain.
Collapse
Affiliation(s)
| | - Hiroshi Nishino
- Research Institute for Electronic Science, Hokkaido University Sapporo, Japan
| | - Fumio Yokohari
- Department of Earth System Science, Fukuoka University Fukuoka, Japan
| |
Collapse
|
8
|
Carle T, Toh Y, Yamawaki Y, Watanabe H, Yokohari F. The antennal sensilla of the praying mantis Tenodera aridifolia: a new flagellar partition based on the antennal macro-, micro- and ultrastructures. ARTHROPOD STRUCTURE & DEVELOPMENT 2014; 43:103-16. [PMID: 24231672 DOI: 10.1016/j.asd.2013.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 10/14/2013] [Accepted: 10/28/2013] [Indexed: 05/26/2023]
Abstract
In insects, the antenna consists of a scapus, a pedicellus, and a flagellum comprising many segments (flagellomeres). These segments possess many morphological types of sensory organs (sensilla) to process multimodal sensory information. We observed the sensilla on flagellomeres in praying mantis (Tenodera aridifolia) with both scanning and transmission electron microscopes. We classified the sensilla into six types: chaetic, campaniform, coelocapitular, basiconic, trichoid and grooved peg sensilla, and inferred their presumptive functions on the basis of their external and internal structures. In addition, based on their distribution, we newly divided the flagellum into 6 distinct parts. This new division leads to a better understanding about the sexual dimorphism and the antennal development in the mantises. The sexual difference in distribution of the grooved peg sensilla suggests that this type of sensilla may play a role in sex-pheromone detection in mantis, which is a rare case of double-walled sensilla mediating this function.
Collapse
Affiliation(s)
- Thomas Carle
- Division of Biology, Department of Earth System Science, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Japan.
| | - Yoshihiro Toh
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 812-8581, Japan
| | - Yoshifumi Yamawaki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 812-8581, Japan
| | - Hidehiro Watanabe
- Division of Biology, Department of Earth System Science, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Japan
| | - Fumio Yokohari
- Division of Biology, Department of Earth System Science, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Japan
| |
Collapse
|
9
|
Rossi Stacconi MV, Hansson BS, Rybak J, Romani R. Comparative neuroanatomy of the antennal lobes of 2 homopteran species. Chem Senses 2014; 39:283-94. [PMID: 24443423 DOI: 10.1093/chemse/bjt114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We compared the morphology of the primary olfactory center, the antennal lobe (AL), in 2 homopteran insects, Hyalesthes obsoletus Signoret (Homoptera: Cixiidae) and Scaphoideus titanus Ball (Homoptera: Cicadomorpha). The comparison between the ALs of the 2 species is particularly interesting considering that, although both use volatile cues to locate their host plants, their feeding behavior differs considerably: specifically, H. obsoletus is a highly polyphagous species, whereas S. titanus is strictly monophagous (on grapevine). Our investigation of the AL structure using immunocytochemical staining and antennal backfills did not reveal any sexual dimorphism in either the size of the ALs or in the size of individual glomeruli for either species. Instead, the AL of H. obsoletus displayed numerous and well-delineated glomeruli (about 130 in both sexes) arranged in a multilayered structure, whereas the smaller AL of S. titanus contained fewer than 15 glomerular-like structures. This difference is likely to reflect the comparatively reduced olfactory abilities in S. titanus, probably as a consequence of the reduced number of volatiles coming from the single host plant. Instead, in H. obsoletus, the ability to distinguish among several host plants may require a more complex olfactory neuronal network.
Collapse
|
10
|
Watanabe H, Shimohigashi M, Yokohari F. Serotonin-immunoreactive sensory neurons in the antenna of the cockroachPeriplaneta americana. J Comp Neurol 2013; 522:414-34. [DOI: 10.1002/cne.23419] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/24/2013] [Accepted: 07/03/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Hidehiro Watanabe
- Division of Biology, Department of Earth System Science; Fukuoka University; Fukuoka Japan
| | - Miki Shimohigashi
- Division of Biology, Department of Earth System Science; Fukuoka University; Fukuoka Japan
| | - Fumio Yokohari
- Division of Biology, Department of Earth System Science; Fukuoka University; Fukuoka Japan
| |
Collapse
|
11
|
Rebora M, Dell’Otto A, Rybak J, Piersanti S, Gaino E, Hansson BS. The antennal lobe of Libellula depressa (Odonata, Libellulidae). ZOOLOGY 2013; 116:205-14. [DOI: 10.1016/j.zool.2013.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 04/09/2013] [Accepted: 04/21/2013] [Indexed: 11/16/2022]
|
12
|
Watanabe H, Haupt SS, Nishino H, Nishikawa M, Yokohari F. Sensillum-specific, topographic projection patterns of olfactory receptor neurons in the antennal lobe of the cockroach Periplaneta americana. J Comp Neurol 2012; 520:1687-701. [PMID: 22121009 DOI: 10.1002/cne.23007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In vertebrates and many invertebrates, olfactory signals detected by peripheral olfactory receptor neurons (ORNs) are conveyed to a primary olfactory center with glomerular organization in which odor-specific activity patterns are generated. In the cockroach, Periplaneta americana, ORNs in antennal olfactory sensilla project to 205 unambiguously identifiable antennal lobe (AL) glomeruli that are classified into 10 glomerular clusters (T1-T10 glomeruli) innervated by distinct sensory tracts. In this study we employed single sensillum staining techniques and investigated the topographic projection patterns of individual ORNs to elucidate the relationship between sensillum types and glomerular organization in the AL. Axons of almost all ORNs projected to individual glomeruli. Axons of ORNs in perforated basiconic sensilla selectively innervated the anterodorsal T1-T4 glomeruli, whereas those in trichoid and grooved basiconic sensilla innervated the posteroventral T5-T9 glomeruli. About 90% of stained ORNs in trichoid sensilla sent axons to the T5 glomeruli and more than 90% of ORNs in grooved basiconic sensilla innervated the T6, T8, and T9 glomeruli. The T5 and T9 glomeruli exclusively receive sensory inputs from the trichoid and grooved basiconic sensilla, respectively. All investigated glomeruli received convergent input from a single type of sensillum except F11 glomerulus in the T6 glomeruli, which was innervated from both trichoid and grooved basiconic sensilla. These results suggest that ORNs in distinct sensillum types project to glomeruli in distinct glomerular clusters. Since ORNs in distinct sensillum types are each tuned to distinct subsets of odorant molecules, the AL is functionally compartmentalized into groups of glomeruli.
Collapse
Affiliation(s)
- Hidehiro Watanabe
- Division of Biology, Department of Earth System Science, Fukuoka University, Fukuoka 814-0180, Japan.
| | | | | | | | | |
Collapse
|
13
|
Schulze J, Neupert S, Schmidt L, Predel R, Lamkemeyer T, Homberg U, Stengl M. Myoinhibitory peptides in the brain of the cockroach Leucophaea maderae and colocalization with pigment-dispersing factor in circadian pacemaker cells. J Comp Neurol 2012; 520:1078-97. [DOI: 10.1002/cne.22785] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
14
|
Stieb SM, Kelber C, Wehner R, Rössler W. Antennal-Lobe Organization in Desert Ants of the Genus Cataglyphis. BRAIN, BEHAVIOR AND EVOLUTION 2011; 77:136-46. [DOI: 10.1159/000326211] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 02/17/2011] [Indexed: 11/19/2022]
|
15
|
Watanabe H, Nishino H, Nishikawa M, Mizunami M, Yokohari F. Complete mapping of glomeruli based on sensory nerve branching pattern in the primary olfactory center of the cockroach Periplaneta americana. J Comp Neurol 2010; 518:3907-30. [PMID: 20737592 DOI: 10.1002/cne.22452] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Glomeruli are structural and functional units in the primary olfactory center in vertebrates and insects. In the cockroach Periplaneta americana, axons of different types of sensory neurons housed in sensilla on antennae form dorsal and ventral antennal nerves and then project to a number of glomeruli. In this study, we identified all antennal lobe (AL) glomeruli based on detailed innervation patterns of sensory tracts in addition to the shape, size, and locations in the cockroach. The number of glomeruli is approximately 205, and no sex-specific difference is observed. Anterograde dye injections into the antennal nerves revealed that axons supplying the AL are divided into 10 sensory tracts (T1-T10). Each of T1-T3 innervates small, oval glomeruli in the anteroventral region of the AL, with sensory afferents invading each glomerulus from multiple directions, whereas each of T4-T10 innervates large glomeruli with various shapes in the posterodorsal region, with a bundle of sensory afferents invading each glomerulus from one direction. The topographic branching patterns of all these tracts are conserved among individuals. Sensory afferents in a sub-tract of T10 had axon terminals in the dorsal margin of the AL and the protocerebrum, where they form numerous small glomerular structures. Sensory nerve branching pattern should reflect developmental processes to determine spatial arrangement of glomeruli, and thus the complete map of glomeruli based on sensory nerve branching pattern should provide a basis for studying the functional significance of spatial arrangement of glomeruli and its developmental basis.
Collapse
|
16
|
Nakanishi A, Nishino H, Watanabe H, Yokohari F, Nishikawa M. Sex-specific antennal sensory system in the ant Camponotus japonicus: Glomerular organizations of antennal lobes. J Comp Neurol 2010; 518:2186-201. [DOI: 10.1002/cne.22326] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Nishino H, Nishikawa M, Mizunami M, Yokohari F. Functional and topographic segregation of glomeruli revealed by local staining of antennal sensory neurons in the honeybee Apis mellifera. J Comp Neurol 2009; 515:161-80. [PMID: 19412930 DOI: 10.1002/cne.22064] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the primary olfactory center of animals, glomeruli are the relay stations where sensory neurons expressing cognate odorant receptors converge onto interneurons. In cockroaches, moths, and honeybees, sensory afferents from sensilla on the anterodorsal surface and the posteroventral surface of the flagellum form two nerves of almost equal thicknesses. In this study, double labeling of the two nerves, or proximal/distal regions of the nerves, with fluorescent dyes was used to investigate topographic organization of sensory afferents in the honeybee. The sensory neurons of ampullaceal sensilla responsive to CO2, coelocapitular sensilla responsive to hygrosensory, and thermosensory stimuli and coeloconic sensilla of unknown function were characterized with large somata and supplied thick axons exclusively to the ventral nerve. Correspondingly, all glomeruli innervated by sensory tract (T) 4 received thick axonal processes exclusively from the ventral nerve. Almost all T1-3 glomeruli received a similar number of sensory afferents from the two nerves. In the macroglomerular complexes of the drone, termination fields of afferents from the two nerves almost completely overlapped; this differs from moths and cockroaches, which show heterogeneous terminations in the glomerular complex. In T1-3 glomeruli, sensory neurons originating from more distal flagellar segments tended to terminate within the inner regions of the cortical layer. These results suggest that some degree of somatotopic organization of sensory afferents exist in T1-3 glomeruli, and part of T4 glomeruli serve for processing of hygro- and thermosensory signals.
Collapse
Affiliation(s)
- Hiroshi Nishino
- Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0812, Japan.
| | | | | | | |
Collapse
|
18
|
Barrozo RB, Couton L, Lazzari CR, Insausti TC, Minoli SA, Fresquet N, Rospars JP, Anton S. Antennal pathways in the central nervous system of a blood-sucking bug, Rhodnius prolixus. ARTHROPOD STRUCTURE & DEVELOPMENT 2009; 38:101-110. [PMID: 18809510 DOI: 10.1016/j.asd.2008.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 06/30/2008] [Accepted: 08/18/2008] [Indexed: 05/26/2023]
Abstract
The haematophagous bug Rhodnius prolixus has been a model system in insect physiology for a long time. Recently, several studies have been devoted to its sensory systems, including olfaction. However, few data are available on the basic organisation of the nervous system in this species. By means of neuronal backfills, histology, confocal microscopy and three-dimensional reconstruction methods, we have characterized the projection patterns of antennal sensory neurons within the central nervous system of this disease-vector insect. We established the first partial three-dimensional map of the antennal lobe (AL) of a hemipteran insect. The ALs of this species are relatively diffuse structures, which nevertheless show a glomerular organisation. Based on computer reconstruction of the AL, 22 glomeruli with a radius of 8-25 microm could be identified. No obvious sexual dimorphism of the glomerular architecture was observed. Antennal afferents project not only into the deutocerebrum, but also some fibres descend through the ventral nerve cord to ganglia belonging to the abdominal segments.
Collapse
Affiliation(s)
- Romina B Barrozo
- Institut de Recherche sur la Biologie de l'Insecte, Faculté des Sciences et Techniques, Université François Rabelais, Avenue Monge, Parc Grandmont, 37200 Tours, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Tsuji E, Aonuma H, Yokohari F, Nishikawa M. Serotonin-immunoreactive neurons in the antennal sensory system of the brain in the carpenter ant, Camponotus japonicus. Zoolog Sci 2008; 24:836-49. [PMID: 18217492 DOI: 10.2108/zsj.24.836] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Social Hymenoptera such as ants or honeybees are known for their extensive behavioral repertories and plasticity. Neurons containing biogenic amines appear to play a major role in controlling behavioral plasticity in these insects. Here we describe the morphology of prominent serotonin-immunoreactive neurons of the antennal sensory system in the brain of an ant, Camponotus japonicus. Immunoreactive fibers were distributed throughout the brain and the subesophageal ganglion (SOG). The complete profile of a calycal input neuron was identified. The soma and dendritic elements are contralaterally located in the lateral protocerebrum. The neuron supplies varicose axon terminals in the lip regions of the calyces of the mushroom body, axon collaterals in the basal ring but not in the collar region, and other axon terminals ipsilaterally in the lateral protocerebrum. A giant neuron innervating the antennal lobe has varicose axon terminals in most of 300 glomeruli in the ventral region of the antennal lobe (AL) and a thick neurite that spans the entire SOG and continues towards the thoracic ganglia. However, neither a soma nor a dendritic element of this neuron was found in the brain or the SOG. A deutocerebral projection neuron has a soma in the lateral cell-body group of the AL, neuronal branches at most of the 12 glomeruli in the dorsocentral region of the ipsilateral AL, and varicose terminal arborizations in both hemispheres of the protocerebrum. Based on the present results, tentative subdivisions in neuropils related to the antennal sensory system of the ant brain are discussed.
Collapse
Affiliation(s)
- Eriko Tsuji
- Department of Earth System Science, Fukuoka University, Fukuoka 814-0180, Japan
| | | | | | | |
Collapse
|
20
|
Nishikawa M, Nishino H, Misaka Y, Kubota M, Tsuji E, Satoji Y, Ozaki M, Yokohari F. Sexual Dimorphism in the Antennal Lobe of the Ant Camponotus japonicus. Zoolog Sci 2008; 25:195-204. [DOI: 10.2108/zsj.25.195] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 10/12/2007] [Indexed: 11/17/2022]
|
21
|
Antennal motor system of the cockroach, Periplaneta americana. Cell Tissue Res 2008; 331:751-62. [DOI: 10.1007/s00441-007-0545-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 10/25/2007] [Indexed: 10/22/2022]
|
22
|
Liu L, Li Y, Wang R, Yin C, Dong Q, Hing H, Kim C, Welsh MJ. Drosophila hygrosensation requires the TRP channels water witch and nanchung. Nature 2007; 450:294-8. [DOI: 10.1038/nature06223] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 09/03/2007] [Indexed: 11/09/2022]
|
23
|
Kirschner S, Kleineidam CJ, Zube C, Rybak J, Grünewald B, Rössler W. Dual olfactory pathway in the honeybee, Apis mellifera. J Comp Neurol 2007; 499:933-52. [PMID: 17072827 DOI: 10.1002/cne.21158] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The antennal lobes (ALs) are the primary olfactory centers in the insect brain. In the AL of the honeybee, olfactory glomeruli receive input via four antennal sensory tracts (T1-4). Axons of projection neurons (PNs) leave the AL via several antenno-cerebral tracts (ACTs). To assign the input-output connectivity of all glomeruli, we investigated the spatial relationship of the antennal tracts and two prominent AL output tracts (medial and lateral ACT) mainly formed by uniglomerular (u) PNs using fluorescent tracing, confocal microscopy, and 3D analyses. Furthermore, we investigated the projections of all ACTs in higher olfactory centers, the mushroom-bodies (MB) and lateral horn (LH). The results revealed a clear segregation of glomeruli into two AL hemispheres specifically supplied by PNs of the medial and lateral ACT. PNs of the lateral ACT innervate glomeruli in the ventral-rostral AL and primarily receive input from T1 (plus a few glomeruli from T2 and T3). PNs of the medial ACT innervate glomeruli in the dorsal-caudal hemisphere, and mainly receive input from T3 (plus a few glomeruli from T2 and T4). The PNs of the m- and l-ACT terminate in different areas of the MB calyx and LH and remain largely segregated. Tracing of three mediolateral (ml) ACTs mainly formed by multiglomerular PNs revealed terminals in distinct compartments of the LH and in three olfactory foci within the lateral protocerebrum. The results indicate that olfactory input in the honeybee is processed via two separate, mainly uPN pathways to the MB calyx and LH and several pathways to the lateral protocerebrum.
Collapse
Affiliation(s)
- Sebastian Kirschner
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Schröter U, Malun D, Menzel R. Innervation pattern of suboesophageal ventral unpaired median neurones in the honeybee brain. Cell Tissue Res 2006; 327:647-67. [PMID: 17093927 DOI: 10.1007/s00441-006-0197-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 02/08/2006] [Indexed: 10/23/2022]
Abstract
In honeybees (Apis mellifera), the biogenic amine octopamine has been shown to play a role in associative and non-associative learning and in the division of labour in the hive. Immunohistochemical studies indicate that the ventral unpaired median (VUM) neurones in the suboesophageal ganglion (SOG) are putatively octopaminergic and therefore might be involved in the octopaminergic modulation of behaviour. In contrast to our knowledge about the behavioural effects of octopamine, only one neurone (VUMmx1) has been related to a behavioural effect (the reward function during olfactory learning). In this study, we have investigated suboesophageal VUM neurones with fluorescent dye-tracing techniques and intracellular recordings combined with intracellular staining. Ten different VUM neurones have been found including six VUM neurones innervating neuropile regions of the brain and the SOG exclusively (central VUM neurones) and four VUM neurones with axons in peripheral nerves (peripheral VUM neurones). The central VUM neurones innervate the antennal lobes, the protocerebral lobes (including the lateral horn) and the mushroom body calyces. Of these, a novel mandibular VUM neurone, VUMmd1, exhibits the same branching pattern in the brain as VUMmx1 and responds to sucrose and odours in a similar way. The peripheral VUM neurones innervate the antennal and the mandibular nerves. In addition, we describe one labial unpaired median neurone with a dorsal cell body, DUMlb1. The possible homology between the honeybee VUM neurones and the unpaired median neurones in other insects is discussed.
Collapse
Affiliation(s)
- Ulrike Schröter
- FB Biologie/Chemie/Pharmazie, Institut für Biologie Neurobiologie, Freie Universität Berlin, Königin-Luise-Strasse 28/30, 14195 Berlin, Germany
| | | | | |
Collapse
|
25
|
Nishino H, Mizunami M. Termination profiles of insect chemosensory afferents in the antennal lobe are dependent on their origin on the flagellum. Neuroreport 2006; 17:1303-7. [PMID: 16951574 DOI: 10.1097/01.wnr.0000233086.08087.43] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In cockroach antennae, sensory afferents from sensilla on the anterodorsal surface of the flagellum form the anterior antennal nerve, while afferents from the posteroventral surface form the posterior nerve. Anterograde staining was used to investigate afferent termination profiles in the glomeruli of the antennal lobe. The densities of terminal arborizations from the two nerves differed between glomeruli, with groupings of similar glomeruli evident. Individual glomeruli showed heterogeneous distribution of afferent terminals, with posterior nerve afferent terminals occurring near the nerve/glomeruli interface, and anterior nerve afferent terminals occurring on the opposite side. This study demonstrates, for the first time, a correlation between the distribution of primary afferent terminals in the individual glomeruli, and their origin on the surface of the flagellum.
Collapse
Affiliation(s)
- Hiroshi Nishino
- aResearch Institute for Electronic Science, Hokkaido University, Sapporo, Japan.
| | | |
Collapse
|
26
|
Nishino H, Nishikawa M, Yokohari F, Mizunami M. Dual, multilayered somatosensory maps formed by antennal tactile and contact chemosensory afferents in an insect brain. J Comp Neurol 2005; 493:291-308. [PMID: 16255033 DOI: 10.1002/cne.20757] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The antennae of most insects move actively and detect the physical and chemical composition of objects encountered by using their associated tactile sensors. Positional information is required for these sensory modalities to interpret the physical environment. Although we have a good understanding of antennal olfactory pathways, little is known about the destinations of antennal mechanosensory and contact chemosensory (gustatory) receptor neurons in the central nervous system. The cockroach Periplaneta is equipped with a pair of long, thin antennae, which are covered in bristles. The distal portions of each antenna possess about 6,500 bimodal bristles that house one tactile sensory and one to four contact chemosensory neurons. In this study, we investigated the morphologies of bimodal bristle receptor afferents by staining individual or populations of bristles. Unlike olfactory afferents, which project exclusively into the glomeruli in the ventral region of the deutocerebrum, both the presumptive mechanosensory and the contact chemosensory afferents projected into the posterior dorsal region of the deutocerebrum and the anterior region of the subesophageal ganglion. Each afferent showed multilayered segmentation and spatial occupation reflecting its three-dimensional position in the periphery. Presumptive contact chemosensory afferents, characterized by their thin axons and unique branching pattern, occupied more medioventral positions compared with the presumptive tactile afferents. Furthermore, projection fields of presumptive contact chemosensory afferents from single sensilla tended to be segregated from each other. These observations suggest that touch and taste positional information from the antenna is precisely represented in primary centers in a modality-specific manner.
Collapse
Affiliation(s)
- Hiroshi Nishino
- Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0812, Japan.
| | | | | | | |
Collapse
|
27
|
Nishino H, Yamashita S, Yamazaki Y, Nishikawa M, Yokohari F, Mizunami M. Projection neurons originating from thermo- and hygrosensory glomeruli in the antennal lobe of the cockroach. J Comp Neurol 2003; 455:40-55. [PMID: 12454995 DOI: 10.1002/cne.10450] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Most insects are equipped with specialized thermo- and hygroreceptors to locate a permissible range of ambient temperature and distant water sources, respectively. In the cockroach, Periplaneta americana, cold, moist, and dry receptor cells in the antennae send axons to particular sets of two or three glomeruli in the dorsocentral part of the antennal lobe (primary olfactory center), designated DC1-3 glomeruli. However, it is not known how thermo- and hygrosensory signals from these glomeruli are represented in higher-order centers, the protocerebrum, in any insect species. With the use of intracellular recording and staining techniques, we identified a new class of interneurons with dendrites almost exclusively in the DC1, DC2, or DC3 glomeruli and axons projecting to the protocerebrum in the cockroach. Remarkably, terminals of all these projection neurons (PNs) covered almost identical areas in the lateral protocerebrum (LP), although their termination areas outside the LP differed from neuron to neuron. The termination areas within the LP were distinct from, but close to, those of uniglomerular and macroglomerular PNs that transmitted signals concerning general odors and female sex pheromones, respectively. PNs originating from DC1, DC2, and DC3 glomeruli exhibited excitatory responses to cold, moist, and dry stimuli, respectively, probably due to excitatory synaptic input from cold, moist, and dry receptor cells, respectively, whereas their responses were often modulated by olfactory stimuli. These findings suggested that dorsocentral PNs participate in neural pathways that lead to behavioral responses to temperature or humidity changes.
Collapse
Affiliation(s)
- Hiroshi Nishino
- Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0812, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Okada J, Toh Y. Peripheral representation of antennal orientation by the scapal hair plate of the cockroach Periplaneta americana. J Exp Biol 2001; 204:4301-9. [PMID: 11815654 DOI: 10.1242/jeb.204.24.4301] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Arthropods have hair plates that are clusters of mechanosensitive hairs, usually positioned close to joints, which function as proprioceptors for joint movement. We investigated how angular movements of the antenna of the cockroach (Periplaneta americana) are coded by antennal hair plates. A particular hair plate on the basal segment of the antenna, the scapal hair plate, can be divided into three subgroups: dorsal, lateral and medial. The dorsal group is adapted to encode the vertical component of antennal direction, while the lateral and medial groups are specialized for encoding the horizontal component. Of the three subgroups of hair sensilla, those of the lateral scapal hair plate may provide the most reliable information about the horizontal position of the antenna, irrespective of its vertical position. Extracellular recordings from representative sensilla of each scapal hair plate subgroup revealed the form of the single-unit impulses in response to hair deflection. The mechanoreceptors were characterized as typically phasic-tonic. The tonic discharge was sustained indefinitely (>20 min) as long as the hair was kept deflected. The spike frequency in the transient (dynamic) phase was both velocity- and displacement-dependent, while that in the sustained (steady) phase was displacement-dependent.
Collapse
Affiliation(s)
- J Okada
- Department of Biology, Graduate School of Sciences, Kyushu University, Fukuoka 812-8581, Japan.
| | | |
Collapse
|
29
|
Nishikawa M, Nishino H, Mizunami M, Yokohari F. Function-specific distribution patterns of axon terminals of input neurons in the calyces of the mushroom body of the cockroach, Periplaneta americana. Neurosci Lett 1998; 245:33-6. [PMID: 9596349 DOI: 10.1016/s0304-3940(98)00162-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Input neurons (INs) in the calyces of the mushroom bodies (MBs) of the cockroach brain were examined by single- or multiple-staining with cobalt lysine and by Golgi impregnation. Olfactory INs had axon terminals with tuft-like, button-like or spiny-blebbed arbors in specific concentric zones in calycal neuropil. INs which responded to light stimulation had thick brush-like arbors along with axonal branches extending radially along the inner layer of calycal neuropil. Some of multiglomerular INs and two types of protocerebral INs extended blebbed axonal branches to the outer surface layer of calycal neuropil or thick bush-like axonal branches with many varicosities to entire calycal neuropil. The distribution patterns of dendrites and axon terminals of INs in the calyces suggest the existence of functional subdivisions in calycal neuropil.
Collapse
Affiliation(s)
- M Nishikawa
- Department of Biology, Faculty of Science, Fukuoka University, Japan.
| | | | | | | |
Collapse
|