1
|
Ponnaluri SV, Hariharan P, Herbertson LH, Manning KB, Malinauskas RA, Craven BA. Results of the Interlaboratory Computational Fluid Dynamics Study of the FDA Benchmark Blood Pump. Ann Biomed Eng 2023; 51:253-269. [PMID: 36401112 DOI: 10.1007/s10439-022-03105-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/21/2022] [Indexed: 11/19/2022]
Abstract
Computational fluid dynamics (CFD) is widely used to simulate blood-contacting medical devices. To be relied upon to inform high-risk decision making, however, model credibility should be demonstrated through validation. To provide robust data sets for validation, researchers at the FDA and collaborators developed two benchmark medical device flow models: a nozzle and a centrifugal blood pump. Experimental measurements of the flow fields and hemolysis were acquired using each model. Concurrently, separate open interlaboratory CFD studies were performed in which participants from around the world, who were blinded to the measurements, submitted CFD predictions of each benchmark model. In this study, we report the results of the interlaboratory CFD study of the FDA benchmark blood pump. We analyze the results of 24 CFD submissions using a wide range of different flow solvers, methods, and modeling parameters. To assess the accuracy of the CFD predictions, we compare the results with experimental measurements of three quantities of interest (pressure head, velocity field, and hemolysis) at different pump operating conditions. We also investigate the influence of different CFD methods and modeling choices used by the participants. Our analyses reveal that, while a number of CFD submissions accurately predicted the pump performance for individual cases, no single participant was able to accurately predict all quantities of interest across all conditions. Several participants accurately predicted the pressure head at all conditions and the velocity field in all but one or two cases. Only one of the eight participants who submitted hemolysis results accurately predicted absolute plasma free hemoglobin levels at a majority of the conditions, though most participants were successful at predicting relative hemolysis levels between conditions. Overall, this study highlights the need to validate CFD modeling of rotary blood pumps across the entire range of operating conditions and for all quantities of interest, as some operating conditions and regions (e.g., the pump diffuser) are more challenging to accurately predict than others. All quantities of interest should be validated because, as shown here, it is possible to accurately predict hemolysis despite having relatively inaccurate predictions of the flow field.
Collapse
Affiliation(s)
- Sailahari V Ponnaluri
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, USA.,Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Prasanna Hariharan
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Luke H Herbertson
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Keefe B Manning
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA.,Department of Surgery, Penn State Hershey Medical Center, Hershey, PA, USA
| | - Richard A Malinauskas
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Brent A Craven
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
2
|
Martinolli M, Cornat F, Vergara C. Computational Fluid-Structure Interaction Study of a New Wave Membrane Blood Pump. Cardiovasc Eng Technol 2021; 13:373-392. [PMID: 34773241 DOI: 10.1007/s13239-021-00584-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/13/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE Wave membrane blood pumps (WMBP) are novel pump designs in which blood is propelled by means of wave propagation by an undulating membrane. In this paper, we computationally studied the performance of a new WMBP design (J-shaped) for different working conditions, in view of potential applications in human patients. METHODS Fluid-structure interaction (FSI) simulations were conducted in 3D pump geometries and numerically discretized by means of the extended finite element method (XFEM). A contact model was introduced to capture membrane-wall collisions in the pump head. Mean flow rate and membrane envelope were determined to evaluate hydraulic performance. A preliminary hemocompatibility analysis was performed via calculation of fluid shear stress. RESULTS Numerical results, validated against in vitro experimental data, showed that the hydraulic output increases when either the frequency or the amplitude of membrane oscillations were higher, with limited increase in the fluid stresses, suggesting good hemocompatibility properties. Also, we showed better performance in terms of hydraulic power with respect to a previous design of the pump. We finally studied an operating point which achieves physiologic flow rate target at diastolic head pressure of 80 mmHg. CONCLUSION A new design of WMBP was computationally studied. The proposed FSI model with contact was employed to predict the new pump hydraulic performance and it could help to properly select an operating point for the upcoming first-in-human trials.
Collapse
Affiliation(s)
- Marco Martinolli
- MOX, Dipartimento di Matematica, Politecnico di Milano, Milan, Italy
| | | | - Christian Vergara
- LaBS, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Milan, Italy.
| |
Collapse
|
3
|
Martinolli M, Biasetti J, Zonca S, Polverelli L, Vergara C. Extended finite element method for fluid-structure interaction in wave membrane blood pump. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3467. [PMID: 33884770 DOI: 10.1002/cnm.3467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 03/06/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Numerical simulations of cardiac blood pump systems are integral to the optimization of device design, hydraulic performance and hemocompatibility. In wave membrane blood pumps, blood propulsion arises from the wave propagation along an oscillating immersed membrane, which generates small pockets of fluid that are pushed towards the outlet against an adverse pressure gradient. We studied the Fluid-Structure Interaction between the oscillating membrane and the blood flow via three-dimensional simulations using the Extended Finite Element Method (XFEM), an unfitted numerical technique that avoids remeshing by using a fluid fixed mesh. Our three-dimensional numerical simulations in a realistic pump geometry highlighted, for the first time in this field of application, that XFEM is a reliable strategy to handle complex industrial problems. Moreover, they showed the role of the membrane deformation in promoting a blood flow towards the outlet despite an adverse pressure gradient. We also simulated the pump system at different pressure conditions and we validated the numerical results against in-vitro experimental data.
Collapse
Affiliation(s)
- Marco Martinolli
- MOX, Dipartimento di Matematica, Politecnico di Milano, Milan, Italy
| | | | - Stefano Zonca
- MOX, Dipartimento di Matematica, Politecnico di Milano, Milan, Italy
| | | | - Christian Vergara
- LaBS, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Milan, Italy
| |
Collapse
|
4
|
Hemolysis estimation in turbulent flow for the FDA critical path initiative centrifugal blood pump. Biomech Model Mechanobiol 2021; 20:1709-1722. [PMID: 34106362 DOI: 10.1007/s10237-021-01471-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 05/28/2021] [Indexed: 02/08/2023]
Abstract
Hemolysis in medical devices and implants has been a primary concern over the past fifty years. Turbulent flow in particular can cause cell trauma and hemolysis in such devices. In this work, the effects of turbulence on red blood cell (RBC) damage are examined by simulating the flow field through a centrifugal blood pump that has been identified as a case study through the critical path initiative of the US Food and Drug Administration (FDA). In this study, a new model was employed to predict hemolysis in the turbulent flow environment in the pump selected for the FDA critical path initiative. The operating conditions for a centrifugal blood pump were specified by the FDA for rotational speeds of 2500 and 3500 rpm. The model is based on the analysis of the smaller eddies within the turbulent flow field, since it is assumed that turbulent flow eddies with sizes comparable to the dimensions of the RBCs lead to cell trauma. The Kolmogorov length scale of the velocity field is used to identify such small eddies. Using model parameters obtained in prior work through comparisons to capillary and jet flow, it is found that hemolysis for the 2500-rpm pump was predicted well, while hemolysis for the 3500-rpm pump was overpredicted. Results indicate refinement of the model and empirical constants with better experimental data is needed.
Collapse
|
5
|
Torner B, Konnigk L, Abroug N, Wurm H. Turbulence and turbulent flow structures in a ventricular assist device-A numerical study using the large-eddy simulation. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3431. [PMID: 33336869 DOI: 10.1002/cnm.3431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Numerical flow simulations that analyze the turbulent flow characteristics within a turbopump are important for optimizing the efficiency of such machines. In the case of ventricular assist devices (VADs), turbulent flow characteristics must be also examined in order to improve hemocompatibility. Turbulence increases the shear stresses in the VAD flow, which can lead to an increased damage to the transported blood components. Therefore, an understanding of the turbulent flow patterns and their significance for the numerical blood damage prediction is particularly important for flow optimizations in VADs in order to identify and thus minimize flow regions where blood could be damaged due to high turbulent stresses. Nevertheless, the turbulence occurring in VADs and the local turbulent structures that lead to increased turbulent stresses have not yet been analyzed in detail in these machines. Therefore, this study aims to investigate the turbulence in an axial VAD in a comprehensive and double tracked way. First, the flow in an axial VAD was computed using the large-eddy simulation method, and it was verified that the majority of the turbulence was directly resolved by the simulation. Then, the turbulent flow state of the VAD was quantified globally. For this purpose, a self-designed evaluation method, the power loss analysis, was used. Subsequently, local flow regions and flow structures were identified where significant turbulent stresses prevail. It will be shown that the identified regions are universal and will also occur in other axial blood pumps as well, for example, in the HeartMate II.
Collapse
Affiliation(s)
- Benjamin Torner
- Faculty of Mechanical Engineering and Marine Technology, Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | - Lucas Konnigk
- Faculty of Mechanical Engineering and Marine Technology, Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | - Nada Abroug
- Faculty of Mechanical Engineering and Marine Technology, Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | - Hendrik Wurm
- Faculty of Mechanical Engineering and Marine Technology, Institute of Turbomachinery, University of Rostock, Rostock, Germany
| |
Collapse
|
6
|
Research on Human Erythrocyte's Threshold Free Energy for Hemolysis and Damage from Coupling Effect of Shear and Impact Based on Immersed Boundary-Lattice Boltzmann Method. Appl Bionics Biomech 2020; 2020:8874247. [PMID: 33204305 PMCID: PMC7652634 DOI: 10.1155/2020/8874247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 12/02/2022] Open
Abstract
Researches on the principle of human red blood cell's (RBC) injuring and judgment basis play an important role in decreasing the hemolysis in a blood pump. In the current study, the judgment of hemolysis in a blood pump study was through some experiment data and empirical formula. The paper forms a criterion of RBC's mechanical injury in the aspect of RBC's free energy. First, the paper introduces the nonlinear spring network model of RBC in the frame of immersed boundary-lattice Boltzmann method (IB-LBM). Then, the shape, free energy, and time needed for erythrocyte to be shorn in different shear flow and impacted in different impact flow are simulated. Combining existing research on RBC's threshold limit for hemolysis in shear and impact flow with this paper's, the RBC's free energy of the threshold limit for hemolysis is found to be 3.46 × 10−15 J. The threshold impact velocity of RBC for hemolysis is 8.68 m/s. The threshold value of RBC can be used for judgment of RBC's damage when the RBC is having a complicated flow of blood pumps such as coupling effect of shear and impact flow. According to the change law of RBC's free energy in the process of being shorn and impacted, this paper proposed a judging criterion for hemolysis when the RBC is under the coupling effect of shear and impact based on the increased free energy of RBC.
Collapse
|
7
|
Guglietta F, Behr M, Biferale L, Falcucci G, Sbragaglia M. On the effects of membrane viscosity on transient red blood cell dynamics. SOFT MATTER 2020; 16:6191-6205. [PMID: 32567630 DOI: 10.1039/d0sm00587h] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Computational Fluid Dynamics (CFD) is currently used to design and improve the hydraulic properties of biomedical devices, wherein the large scale blood circulation needs to be simulated by accounting for the mechanical response of red blood cells (RBCs) at the mesoscale. In many practical instances, biomedical devices work on time-scales comparable to the intrinsic relaxation time of RBCs: thus, a systematic understanding of the time-dependent response of erythrocyte membranes is crucial for the effective design of such devices. So far, this information has been deduced from experimental data, which do not necessarily adapt to the broad variety of fluid dynamic conditions that can be encountered in practice. This work explores the novel possibility of studying the time-dependent response of an erythrocyte membrane to external mechanical loads via mesoscale numerical simulations, with a primary focus on the detailed characterisation of the RBC relaxation time tc following the arrest of the external mechanical load. The adopted mesoscale model exploits a hybrid Immersed Boundary-Lattice Boltzmann Method (IB-LBM), coupled with the Standard Linear Solid (SLS) model to account for the RBC membrane viscosity. We underscore the key importance of the 2D membrane viscosity μm to correctly reproduce the relaxation time of the RBC membrane. A detailed assessment of the dependencies on the typology and strength of the applied mechanical loads is also provided. Overall, our findings open interesting future perspectives for the study of the non-linear response of RBCs immersed in time-dependent strain fields.
Collapse
Affiliation(s)
- Fabio Guglietta
- Department of Physics & INFN, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy. and Chair for Computational Analysis of Technical Systems (CATS), RWTH Aachen University, 52056 Aachen, Germany and Computation-Based Science and Technology Research Center, The Cyprus Institute, 20 Konstantinou Kavafi Str., 2121 Nicosia, Cyprus
| | - Marek Behr
- Chair for Computational Analysis of Technical Systems (CATS), RWTH Aachen University, 52056 Aachen, Germany
| | - Luca Biferale
- Department of Physics & INFN, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy.
| | - Giacomo Falcucci
- Department of Enterprise Engineering "Mario Lucertini", University of Rome "Tor Vergata", Via del Politecnico 1, 00133 Rome, Italy and John A. Paulson School of Engineering and Applied Physics, Harvard University, 33 Oxford Street, 02138 Cambridge, Massachusetts, USA
| | - Mauro Sbragaglia
- Department of Physics & INFN, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy.
| |
Collapse
|
8
|
Nikfar M, Razizadeh M, Paul R, Liu Y. Multiscale modeling of hemolysis during microfiltration. MICROFLUIDICS AND NANOFLUIDICS 2020; 24:33. [PMID: 33235552 PMCID: PMC7682248 DOI: 10.1007/s10404-020-02337-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/28/2020] [Indexed: 05/22/2023]
Abstract
In this paper, we propose a multiscale numerical algorithm to simulate the hemolytic release of hemoglobin (Hb) from red blood cells (RBCs) flowing through sieves containing micropores with mean diameters smaller than RBCs. Analyzing the RBC damage in microfiltration is important in the sense that it can quantify the sensitivity of human erythrocytes to mechanical hemolysis while they undergo high shear rate and high deformation. Here, the numerical simulations are carried out via lattice Boltzmann method and spring connected network (SN) coupled by an immersed boundary method. To predict the RBC sublytic damage, a sub-cellular damage model derived from molecular dynamic simulations is incorporated in the cellular solver. In the proposed algorithm, the local RBC strain distribution calculated by the cellular solver is used to obtain the pore radius on the RBC membrane. Index of hemolysis (IH) is calculated by resorting to the resulting pore radius and solving a diffusion equation considering the effects of steric hinderance and increased hydrodynamic drag due to the size of the hemoglobin molecule. It should be mentioned that current computational hemolysis models usually utilize empirical fitting of the released free hemoglobin (Hb) in plasma from damaged RBCs. These empirical correlations contain ad hoc parameters that depend on specific device and operating conditions, thus cannot be used to predict hemolysis under different conditions. In contrast to the available hemolysis model, the proposed algorithm does not have any empirical parameters. Therefore, it can predict the IH in microfilter with different sieve pore sizes and filtration pressures. Also, in contrast to empirical correlations in which the Hb release is related to shear stress and exposure time without considering the physical processes, the proposed model links flow-induced deformation of the RBC membrane to membrane permeabilization and hemoglobin release. In this paper, the cellular solver is validated by simulating optical tweezers experiment, shear flow experiment as well as an experiment to measure RBC deformability in a very narrow microchannel. Moreover, the shape of a single RBC at the rupture moment is compared with corresponding experimental data. Finally, to validate the damage model, the results obtained from our parametric study on the role of filtration pressure and sieve pore size in Hb release are compared with experimental data. Numerical results are in good agreement with experimental data. Similar to the corresponding experiment, the numerical results confirm that hemolysis increases with increasing the filtration pressure and reduction in pore size on the sieve. While in experiment, the RBC pore size cannot be measured, the numerical results can quantify the RBC pore size. The numerical results show that at the sieve pore size of 2.2 μm above 25 cm Hg, RBC pore size is above 75 nm and RBCs experience rupture. More importantly, the results demonstrate that the proposed approach is independent from the operating conditions and it can estimate the hemolysis in a wide range of filtration pressure and sieve pore size with reasonable accuracy.
Collapse
Affiliation(s)
- Mehdi Nikfar
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015, USA
| | - Meghdad Razizadeh
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015, USA
| | - Ratul Paul
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015, USA
| | - Yaling Liu
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015, USA
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
9
|
Nikfar M, Razizadeh M, Zhang J, Paul R, Wu ZJ, Liu Y. Prediction of mechanical hemolysis in medical devices via a Lagrangian strain-based multiscale model. Artif Organs 2020; 44:E348-E368. [PMID: 32017130 DOI: 10.1111/aor.13663] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/22/2019] [Accepted: 01/31/2020] [Indexed: 01/25/2023]
Abstract
This work introduces a new Lagrangian strain-based model to predict the shear-induced hemolysis in biomedical devices. Current computational models for device-induced hemolysis usually utilize empirical fitting of the released free hemoglobin (Hb) in plasma from damaged red blood cells (RBCs). These empirical correlations contain parameters that depend on specific device and operating conditions, thus cannot be used to predict hemolysis in a general device. The proposed algorithm does not have any empirical parameters, thus can presumably be used for hemolysis prediction in various blood-wetting medical devices. In contrast to empirical correlations in which the Hb release is related to the shear stress and exposure time without considering the physical processes, the proposed model links flow-induced deformation of the RBC membrane to membrane permeabilization and Hb release. In this approach, once the steady-state numerical solution of blood flow in the device is obtained under a prescribed operating condition, sample path lines are traced from the inlet of the device to the outlet to calculate the history of the shear stress tensor. In solving the fluid flow, it is assumed that RBCs do not have any influence on the flow pattern. Along each path line, shear stress tensor will be input into a coarse-grained (CG) RBC model to calculate the RBC deformation. Then the correlations obtained from molecular dynamics (MD) simulations are applied to relate the local areal RBC deformation to the perforated area on the RBC membrane. Finally, Hb released out of transient pores is calculated over each path line via a diffusion equation considering the effects of the steric hindrance and increased hydrodynamic drag due to the size of the Hb molecule. The total index of hemolysis (IH) is calculated by integration of released Hb over all the path lines in the computational domain. Hemolysis generated in the Food and Drug Administration (FDA) nozzle and two blood pumps, that is, a CentriMag blood pump (a centrifugal pump) and HeartMate II (an axial pump), for different flow regimes including the laminar and turbulent flows are calculated via the proposed algorithm. In all the simulations, the numerical predicted IH is close to the range of experimental data. The results promisingly indicate that this multiscale approach can be used as a tool for predicting hemolysis and optimizing the hematologic design of other types of blood-wetting devices.
Collapse
Affiliation(s)
- Mehdi Nikfar
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, USA
| | - Meghdad Razizadeh
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, USA
| | - Jiafeng Zhang
- Department of Surgery, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Ratul Paul
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, USA
| | - Zhongjun J Wu
- Department of Surgery, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Yaling Liu
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, USA.,Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
10
|
YU ZHEQIN, TAN JIANPIN, WANG SHUAI. MODIFICATION OF THE SPALART–ALLMARAS MODEL FOR HEMOLYTIC SHEAR FLOW SIMULATION WITH PIV EXPERIMENT. J MECH MED BIOL 2020. [DOI: 10.1142/s0219519420500025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hemolysis in blood-contacting devices severely affects the health of users, and computation fluid dynamics (CFD) simulation is a crucial method for hemolysis analysis. Medical equipment has high requirements for simulation accuracy. Modification of the turbulence model is one of the most effective ways to improve efficiency. In this study, we designed nozzle models to simulate hemolytic shear flow, varying the degree of shear flow through different nozzle orifice sizes. The study acquires microscopic flow results through Particle Image Velocimetry (PIV) experiments, and the Sparlart–Allmaras (S–A) model was modified based on the experimental results. In the study, we obtained the influence characteristics of the model coefficients on the simulation results and completed the accuracy correction. The results showed that the model coefficient [Formula: see text] has the most significant effect on the simulation results. Correcting [Formula: see text] to about 200% of the standard value can significantly improve the simulation accuracy, and the high shear flow intensity corresponds to a slightly lower correction value. The model modification eliminates the simulation error in the high-speed area, and the comparison results show that it is superior to the standard turbulence model.
Collapse
Affiliation(s)
- ZHEQIN YU
- School of Mechanical and Electrical Engineering, Central South University, Hunan 410083, P. R. China
| | - JIANPIN TAN
- School of Mechanical and Electrical Engineering, Central South University, Hunan 410083, P. R. China
| | - SHUAI WANG
- School of Mechanical and Electrical Engineering, Central South University, Hunan 410083, P. R. China
| |
Collapse
|
11
|
Good BC, Manning KB. Computational modeling of the Food and Drug Administration's benchmark centrifugal blood pump. Artif Organs 2020; 44:E263-E276. [PMID: 31971269 DOI: 10.1111/aor.13643] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
In order to simulate hemodynamics within centrifugal blood pumps and to predict pump hemolysis, CFD simulations must be thoroughly validated against experimental data. They must also account for and accurately model the specific working fluid in the pump, whether that is a blood-analog solution to match an experimental PIV study or animal blood in a hemolysis experiment. Therefore, the Food and Drug Administration (FDA) benchmark centrifugal blood pump and its database of experimental PIV and hemolysis data were used to thoroughly validate CFD simulations of the same blood pump. A Newtonian blood model was first used to compare to the PIV data with a blood analog fluid while hemolysis data were compared using a power-law hemolysis model fit to porcine blood data. A viscoelastic blood model was then incorporated into the CFD solver to investigate the importance of modeling blood's viscoelasticity in centrifugal pumps. The established computational framework, including a dynamic rotating mesh, animal blood-specific fluid properties and hemolysis modeling, and a k-ω SST turbulence model, was shown to more accurately predict pump pressure heads, velocity fields, and hemolysis compared to previously published CFD studies of the FDA centrifugal pump. The CFD simulations were able to match the FDA pressure and hemolysis data for multiple pump operating conditions, with the CFD results being within the standard deviations of the experimental results. While CFD radial velocity profiles between the impeller blades also compared well to the PIV velocity results, more work is still needed to address the large variability among both experimental and computational predictions of velocity in the diffuser outlet jet. Small differences were observed between the Newtonian and viscoelastic blood models in pressure head and hemolysis at the higher flow rate cases (FDA Conditions 4 and 5) but were more significant at lower flow rate and pump impeller speeds (FDA Condition 1). These results suggest that the importance of accounting for blood's viscoelasticity may be dependent on the specific blood pump operating conditions. This detailed computational framework with improved modeling techniques and an extensive validation procedure will be used in future CFD studies of centrifugal blood pumps to aid in device design and predictions of their biological responses.
Collapse
Affiliation(s)
- Bryan C Good
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Keefe B Manning
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA.,Department of Surgery, Penn State Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
12
|
Haßler S, Pauli L, Behr M. The variational multiscale formulation for the fully-implicit log-morphology equation as a tensor-based blood damage model. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3262. [PMID: 31493337 DOI: 10.1002/cnm.3262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/20/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
We derive a variational multiscale (VMS) finite element formulation for a viscoelastic, tensor-based blood damage model. The tensor equation is numerically stabilized by a logarithmic shape tensor description that prevents unphysical, negative eigenvalues. The resulting VMS stabilization terms for this so-called log-morph equation are presented together with their special numerical treatment. Results for a 2D rotating stirrer test case obtained from log-morph simulations with both SUPG and VMS stabilization show significantly improved numerical behavior if compared with Galerkin/least squares (GLS) stabilized untransformed morphology simulation results. The newly proposed method is also successfully applied to a state-of-the-art centrifugal ventricular assist device (VAD), and clear advantages of the VMS stabilization compared with the SUPG-stabilized formulation are presented.
Collapse
Affiliation(s)
- Stefan Haßler
- Chair for Computational Analysis of Technical Systems (CATS), Center for Simulation and Data Science (JARA-CSD), RWTH Aachen University, Aachen, 52056, Germany
| | - Lutz Pauli
- Chair for Computational Analysis of Technical Systems (CATS), Center for Simulation and Data Science (JARA-CSD), RWTH Aachen University, Aachen, 52056, Germany
| | - Marek Behr
- Chair for Computational Analysis of Technical Systems (CATS), Center for Simulation and Data Science (JARA-CSD), RWTH Aachen University, Aachen, 52056, Germany
| |
Collapse
|
13
|
Faghih MM, Sharp MK. Modeling and prediction of flow-induced hemolysis: a review. Biomech Model Mechanobiol 2019; 18:845-881. [DOI: 10.1007/s10237-019-01137-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 02/26/2019] [Indexed: 01/30/2023]
|
14
|
Gross-Hardt SH, Boehning F, Steinseifer U, Schmitz-Rode T, Kaufmann T. Mesh sensitivity analysis for quantitative shear stress assessment in blood pumps using computational fluid dynamics. J Biomech Eng 2018; 141:2716675. [PMID: 30458464 DOI: 10.1115/1.4042043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Indexed: 11/08/2022]
Abstract
The reduction of excessive, nonphysiologic shear stresses leading to blood trauma can be the key to overcome many of the associated complications in blood recirculating devices. In that regard, Computational Fluid Dynamics (CFD) are gaining in importance for the hydraulic and hemocompatibility assessment. Still, direct hemolysis assessments with CFD remain inaccurate and limited to qualitative comparisons rather than quantitative predictions. An underestimated quantity for improved blood damage prediction accuracy is the influence of near-wall mesh resolution on shear stress quantification in regions of complex flows. This study investigated the necessary mesh refinement to quantify shear stress for two selected, meshing sensitive hotspots within a rotary centrifugal blood pump. The non-dimensional mesh characteristic number y+, which is known in the context of turbulence modelling, underestimated the maximum wall shear stress by 60% on average with the recommended value of 1, but was found to be exact below 0.1. To evaluate the meshing related error on the numerical hemolysis prediction, three-dimensional simulations of a generic centrifugal pump were performed with mesh sizes from 3 to 30 million elements. The respective hemolysis was calculated using an Eulerian scalar transport model. Mesh insensitivity was found below a maximum y+ of 0.2 necessitating 18 million mesh elements. A meshing related error of up to 25% was found for the coarser meshes. Further investigations need to address: 1) the transferability to other geometries and 2) potential adaptions on blood damage estimation models to allow better quantitative predictions.
Collapse
Affiliation(s)
- Sascha Heinrich Gross-Hardt
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany; Enmodes GmbH, 52074 Aachen, Germany
| | - Fiete Boehning
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany; Enmodes GmbH, 52074 Aachen, Germany
| | - Ulrich Steinseifer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany; Monash Institute of Medical Engineering and Department of Mechanical and Aerospace, Engineering, Monash University, Melbourne, Australia
| | - Thomas Schmitz-Rode
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Tim Kaufmann
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany; Enmodes GmbH, 52074 Aachen, Germany
| |
Collapse
|
15
|
Khoo DPY, Cookson AN, Gill HS, Fraser KH. Normal fluid stresses are prevalent in rotary ventricular assist devices: A computational fluid dynamics analysis. Int J Artif Organs 2018; 41:738-751. [DOI: 10.1177/0391398818792757] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Despite the evolution of ventricular assist devices, ventricular assist device patients still suffer from complications due to the damage to blood by fluid dynamic stress. Since rotary ventricular assist devices are assumed to exert mainly shear stress, studies of blood damage are based on shear flow experiments. However, measurements and simulations of cell and protein deformation show normal and shear stresses deform, and potentially damage, cells and proteins differently. The aim was to use computational fluid dynamics to assess the prevalence of normal stress, in comparison with shear stress, in rotary ventricular assist devices. Our calculations showed normal stresses do occur in rotary ventricular assist devices: the fluid volumes experiencing normal stress above 10 Pa were 0.011 mL (0.092%) and 0.027 mL (0.39%) for the HeartWare HVAD and HeartMate II (HMII), and normal stresses over 100 Pa were present. However, the shear stress volumes were up to two orders of magnitude larger than the normal stress volumes. Considering thresholds for red blood cell and von Willebrand factor deformation by normal and shear stresses, the fluid volumes causing deformation by normal stress were between 2.5 and 5 times the size of those causing deformation by shear stress. The exposure times to the individual normal stress deformation regions were around 1 ms. The results clearly show, for the first time, that while blood within rotary ventricular assist devices experiences more shear stress at much higher magnitudes as compared with normal stress, there is sufficient normal stress exposure present to cause deformation of, and potentially damage to, the blood components. This study is the first to quantify the fluid stress components in real blood contacting devices.
Collapse
Affiliation(s)
- Dominica PY Khoo
- Department of Mechanical Engineering, University of Bath, Bath, UK
| | - Andrew N Cookson
- Department of Mechanical Engineering, University of Bath, Bath, UK
| | | | | |
Collapse
|
16
|
Torner B, Konnigk L, Hallier S, Kumar J, Witte M, Wurm FH. Large eddy simulation in a rotary blood pump: Viscous shear stress computation and comparison with unsteady Reynolds-averaged Navier-Stokes simulation. Int J Artif Organs 2018; 41:752-763. [PMID: 29898615 DOI: 10.1177/0391398818777697] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE: Numerical flow analysis (computational fluid dynamics) in combination with the prediction of blood damage is an important procedure to investigate the hemocompatibility of a blood pump, since blood trauma due to shear stresses remains a problem in these devices. Today, the numerical damage prediction is conducted using unsteady Reynolds-averaged Navier-Stokes simulations. Investigations with large eddy simulations are rarely being performed for blood pumps. Hence, the aim of the study is to examine the viscous shear stresses of a large eddy simulation in a blood pump and compare the results with an unsteady Reynolds-averaged Navier-Stokes simulation. METHODS: The simulations were carried out at two operation points of a blood pump. The flow was simulated on a 100M element mesh for the large eddy simulation and a 20M element mesh for the unsteady Reynolds-averaged Navier-Stokes simulation. As a first step, the large eddy simulation was verified by analyzing internal dissipative losses within the pump. Then, the pump characteristics and mean and turbulent viscous shear stresses were compared between the two simulation methods. RESULTS: The verification showed that the large eddy simulation is able to reproduce the significant portion of dissipative losses, which is a global indication that the equivalent viscous shear stresses are adequately resolved. The comparison with the unsteady Reynolds-averaged Navier-Stokes simulation revealed that the hydraulic parameters were in agreement, but differences for the shear stresses were found. CONCLUSION: The results show the potential of the large eddy simulation as a high-quality comparative case to check the suitability of a chosen Reynolds-averaged Navier-Stokes setup and turbulence model. Furthermore, the results lead to suggest that large eddy simulations are superior to unsteady Reynolds-averaged Navier-Stokes simulations when instantaneous stresses are applied for the blood damage prediction.
Collapse
Affiliation(s)
- Benjamin Torner
- Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | - Lucas Konnigk
- Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | - Sebastian Hallier
- Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | - Jitendra Kumar
- Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | - Matthias Witte
- Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | | |
Collapse
|
17
|
Gusenbauer M, Tóthová R, Mazza G, Brandl M, Schrefl T, Jančigová I, Cimrák I. Cell Damage Index as Computational Indicator for Blood Cell Activation and Damage. Artif Organs 2018; 42:746-755. [PMID: 29608016 PMCID: PMC6099442 DOI: 10.1111/aor.13111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/24/2017] [Accepted: 12/22/2017] [Indexed: 12/12/2022]
Abstract
Shear‐induced hemolysis is a major concern in the design and optimization of blood‐contacting devices. Even with a small amount of mechanical stress, inflammatory reactions can be triggered in the cells. Blood damage is typically estimated using continuum fluid dynamics simulations. In this study, we report a novel cell damage index (CDI) obtained by simulations on the single‐cell level in a lattice Boltzmann fluid flow. The change of the cell surface area gives important information on mechanical stress of individual cells as well as for whole blood. We are using predefined basic channel designs to analyze and compare the newly developed CDI to the conventional blood damage calculations in very weak shear stress scenarios. The CDI can incorporate both volume fraction and channel geometry information into a single quantitative value for the characterization of flow in artificial chambers.
Collapse
Affiliation(s)
- Markus Gusenbauer
- Department for Integrated Sensor Systems, Danube University Krems, Krems an der Donau, Austria
| | - Renáta Tóthová
- Department of Software Technologies, University of Žilina, Žilina, Slovakia
| | - Giulia Mazza
- Department for Integrated Sensor Systems, Danube University Krems, Krems an der Donau, Austria
| | - Martin Brandl
- Department for Integrated Sensor Systems, Danube University Krems, Krems an der Donau, Austria
| | - Thomas Schrefl
- Department for Integrated Sensor Systems, Danube University Krems, Krems an der Donau, Austria
| | - Iveta Jančigová
- Department of Software Technologies, University of Žilina, Žilina, Slovakia
| | - Ivan Cimrák
- Department of Software Technologies, University of Žilina, Žilina, Slovakia
| |
Collapse
|
18
|
Development of a novel shrouded impeller pediatric blood pump. J Artif Organs 2018; 21:142-149. [PMID: 29478196 DOI: 10.1007/s10047-018-1028-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/28/2017] [Indexed: 10/18/2022]
Abstract
The aim of this work was to analyze a shrouded impeller pediatric ventricular assist device (SIP-VAD). This device has distinctive design characteristics and parameter optimizations for minimization of recirculation flow and reduction in high-stress regions that cause blood damage. Computational Fluid Dynamics (CFD) simulations were performed to analyze the optimized design. The bench-top prototype of SIP-VAD was manufactured with biocompatible stainless steel. A study on the hydrodynamic and hemodynamic performance of the SIP-VAD was conducted with predictions from CFD and actual experimentation values, and these results were compared. The CFD analysis yielded a pressure range of 29-90 mmHg corresponding to flow rates of 0.5-3 L/min over 9000-11000 rpm. The predicted value of the normalized index of hemolysis (NIH) was 0.0048 g/100 L. The experimental results with the bench-top prototype showed a pressure rise of 30-105 mmHg for the flow speed of 8000-12000 rpm and flow rate of 0.5-3.5 L/min. The maximum difference between CFD and experimental results was 4 mmHg pressure. In addition, the blood test showed the average NIH level of 0.00674 g/100 L. The results show the feasibility of shrouded impeller design of axial-flow pump for manufacturing the prototype for further animal trials.
Collapse
|
19
|
Yu H, Engel S, Janiga G, Thévenin D. A Review of Hemolysis Prediction Models for Computational Fluid Dynamics. Artif Organs 2017. [PMID: 28643335 DOI: 10.1111/aor.12871] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Flow-induced hemolysis is a crucial issue for many biomedical applications; in particular, it is an essential issue for the development of blood-transporting devices such as left ventricular assist devices, and other types of blood pumps. In order to estimate red blood cell (RBC) damage in blood flows, many models have been proposed in the past. Most models have been validated by their respective authors. However, the accuracy and the validity range of these models remains unclear. In this work, the most established hemolysis models compatible with computational fluid dynamics of full-scale devices are described and assessed by comparing two selected reference experiments: a simple rheometric flow and a more complex hemodialytic flow through a needle. The quantitative comparisons show very large deviations concerning hemolysis predictions, depending on the model and model parameter. In light of the current results, two simple power-law models deliver the best compromise between computational efficiency and obtained accuracy. Finally, hemolysis has been computed in an axial blood pump. The reconstructed geometry of a HeartMate II shows that hemolysis occurs mainly at the tip and leading edge of the rotor blades, as well as at the leading edge of the diffusor vanes.
Collapse
Affiliation(s)
- Hai Yu
- Laboratory of Fluid Dynamics & Technical Flows, Institute of Fluid Dynamics and Thermodynamics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Sebastian Engel
- Laboratory of Fluid Dynamics & Technical Flows, Institute of Fluid Dynamics and Thermodynamics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Gábor Janiga
- Laboratory of Fluid Dynamics & Technical Flows, Institute of Fluid Dynamics and Thermodynamics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dominique Thévenin
- Laboratory of Fluid Dynamics & Technical Flows, Institute of Fluid Dynamics and Thermodynamics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
20
|
Strain-based Blood Damage Estimation for Computational Design of Ventricular Assist Devices. Int J Artif Organs 2016; 39:166-70. [DOI: 10.5301/ijao.5000484] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2016] [Indexed: 11/20/2022]
Abstract
Aims Computational fluid dynamics (CFD) is used to predict damage of red blood cells (RBCs) in ventricular assist devices (VADs). The damage is measured by the hemoglobin ratio in the blood plasma. Methods A power law is used to relate the hemoglobin ratio to shear stress and exposure time. For the shear stress measure, the common stress-based model is compared to a strain-based model, which predicts the deformation of RBCs in the VAD. For both models an Eulerian approach is used. In this study, new parameters are determined for the power law of the strain-based model. Hereby, the power law is fitted to data of experiments performed at the University of Maryland, Baltimore. Results As an example, blood damage in a benchmark blood pump of the U.S. Food and Drug Administration (FDA) is computed with a stress-based and a strain-based model using the new parameter set as well as parameter sets that were obtained in previous studies. Conclusions Critical locations in the pump, as identified with the stress-based and the strain-based model, differ significantly between the two models.
Collapse
|
21
|
A New Approach for Semiempirical Modeling of Mechanical Blood Trauma. Int J Artif Organs 2016; 39:171-7. [DOI: 10.5301/ijao.5000474] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2016] [Indexed: 11/20/2022]
Abstract
Purpose Two semi-empirical models were recently published, both making use of existing literature data, but each taking into account different physical phenomena that trigger hemolysis. In the first model, hemoglobin (Hb) release is described as a permeation procedure across the membrane, assuming a shear stress-dependent process (sublethal model). The second model only accounts for hemoglobin release that is caused by cell membrane breakdown, which occurs when red blood cells (RBC) undergo mechanically induced shearing for a period longer than the threshold time (nonuniform threshold model). In this paper, we introduce a model that considers the hemolysis generated by both these possible phenomena. Methods Since hemolysis can possibly be caused by permeation of hemoglobin through the RBC functional membrane as well as by release of hemoglobin from RBC membrane breakdown, our proposed model combines both these models. An experimental setup consisting of a Couette device was utilized for validation of our proposed model. Results A comparison is presented between the damage index (DI) predicted by the proposed model vs. the sublethal model vs. the nonthreshold model and experimental datasets. This comparison covers a wide range of shear stress for both human and porcine blood. An appropriate agreement between the measured DI and the DI predicted by the present model was obtained. Conclusions The semiempirical hemolysis model introduced in this paper aims for significantly enhanced conformity with experimental data. Two phenomenological outcomes become possible with the proposed approach: an estimation of the average time after which cell membrane breakdown occurs under the applied conditions, and a prediction of the ratio between the phenomena involved in hemolysis.
Collapse
|
22
|
Marsden AL, Bazilevs Y, Long CC, Behr M. Recent advances in computational methodology for simulation of mechanical circulatory assist devices. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2014; 6:169-88. [PMID: 24449607 PMCID: PMC3947342 DOI: 10.1002/wsbm.1260] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/06/2013] [Accepted: 12/16/2013] [Indexed: 11/07/2022]
Abstract
Ventricular assist devices (VADs) provide mechanical circulatory support to offload the work of one or both ventricles during heart failure. They are used in the clinical setting as destination therapy, as bridge to transplant, or more recently as bridge to recovery to allow for myocardial remodeling. Recent developments in computational simulation allow for detailed assessment of VAD hemodynamics for device design and optimization for both children and adults. Here, we provide a focused review of the recent literature on finite element methods and optimization for VAD simulations. As VAD designs typically fall into two categories, pulsatile and continuous flow devices, we separately address computational challenges of both types of designs, and the interaction with the circulatory system with three representative case studies. In particular, we focus on recent advancements in finite element methodology that have increased the fidelity of VAD simulations. We outline key challenges, which extend to the incorporation of biological response such as thrombosis and hemolysis, as well as shape optimization methods and challenges in computational methodology.
Collapse
Affiliation(s)
- Alison L Marsden
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA
| | | | | | | |
Collapse
|
23
|
Vitale F, Nam J, Turchetti L, Behr M, Raphael R, Annesini MC, Pasquali M. A multiscale, biophysical model of flow-induced red blood cell damage. AIChE J 2014. [DOI: 10.1002/aic.14318] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Flavia Vitale
- Dept. of Chemical and Biomolecular Engineering; Rice University; Houston TX 77005
- Dept. of Chemical Engineering, Materials and Environment; University of Rome “La Sapienza”; Via Eudossiana 18 00184 Rome Italy
| | - Jaewook Nam
- Dept. of Chemical and Biomolecular Engineering; Rice University; Houston TX 77005
- School of Chemical Engineering; Sungkyunkwan University; Suwon Korea 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 Korea
| | - Luca Turchetti
- Faculty of Engineering; Università Campus Bio-Medico di Roma; Via Àlvaro del Portillo 21 00128 Rome Italy
| | - Marek Behr
- Chair for Computational Analysis of Technical Systems (CATS), Center for Computational Engineering Science (CCES); RWTH Aachen University; 52056 Aachen Germany
| | - Robert Raphael
- Dept. of Bioengineering; Rice University; Houston TX 77005
- Ken Kennedy Institute for Information Technology; Rice University; Houston TX 77005
- The Smalley Institute for Nanoscale Science and Technology; Rice University; Houston TX 77005
| | - Maria Cristina Annesini
- Dept. of Chemical Engineering, Materials and Environment; University of Rome “La Sapienza”; Via Eudossiana 18 00184 Rome Italy
| | - Matteo Pasquali
- Dept. of Chemical and Biomolecular Engineering; Rice University; Houston TX 77005
- Dept. of Chemistry, Dept. of Materials Science and NanoEngineering; Rice University; Houston TX 77005
- Ken Kennedy Institute for Information Technology; Rice University; Houston TX 77005
- The Smalley Institute for Nanoscale Science and Technology; Rice University; Houston TX 77005
| |
Collapse
|