1
|
Nolte D, Bertoglio C. Inverse problems in blood flow modeling: A review. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3613. [PMID: 35526113 PMCID: PMC9541505 DOI: 10.1002/cnm.3613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/29/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Mathematical and computational modeling of the cardiovascular system is increasingly providing non-invasive alternatives to traditional invasive clinical procedures. Moreover, it has the potential for generating additional diagnostic markers. In blood flow computations, the personalization of spatially distributed (i.e., 3D) models is a key step which relies on the formulation and numerical solution of inverse problems using clinical data, typically medical images for measuring both anatomy and function of the vasculature. In the last years, the development and application of inverse methods has rapidly expanded most likely due to the increased availability of data in clinical centers and the growing interest of modelers and clinicians in collaborating. Therefore, this work aims to provide a wide and comparative overview of literature within the last decade. We review the current state of the art of inverse problems in blood flows, focusing on studies considering fully dimensional fluid and fluid-solid models. The relevant physical models and hemodynamic measurement techniques are introduced, followed by a survey of mathematical data assimilation approaches used to solve different kinds of inverse problems, namely state and parameter estimation. An exhaustive discussion of the literature of the last decade is presented, structured by types of problems, models and available data.
Collapse
Affiliation(s)
- David Nolte
- Bernoulli InstituteUniversity of GroningenGroningenThe Netherlands
- Center for Mathematical ModelingUniversidad de ChileSantiagoChile
- Department of Fluid DynamicsTechnische Universität BerlinBerlinGermany
| | | |
Collapse
|
2
|
Ma R, Hunter P, Cousins W, Ho H, Bartlett A, Safaei S. Modeling the hepatic arterial flow in living liver donor after left hepatectomy and postoperative boundary condition exploration. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3268. [PMID: 31692300 DOI: 10.1002/cnm.3268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Preoperative and postoperative hepatic perfusion is modeled with one-dimensional (1-D) Navier-Stokes equations. Flow rates obtained from ultrasound (US) data and impedance resulted from structured trees are the inflow and outflow boundary condition (BC), respectively. Structured trees terminate at the size of the arterioles, which can enlarge their size after hepatectomy. In clinical studies, the resistance to pulsatile arterial flow caused by the microvascular bed can be reflected by the resistive index (RI), a frequently used index in assessing arterial resistance. This study uses the RI in a novel manner to conveniently obtain the postoperative outflow impedance from the preoperative impedance. The major emphasis of this study is to devise a model to capture the postoperative hepatic hemodynamics after left hepatectomy. To study this, we build a hepatic network model and analyze its behavior under four different outflow impedance: (a) the same as preoperative impedance; (b) evaluated using the RI and preoperative impedance; (c) computed from structured tree BC with increased radius of terminal vessels; and (d) evaluated using structured tree with both increased radius of root vessel, ie, the outlets of the postoperative hepatic artery, and increased radius of terminal vessels. Our results show that both impedance from (b) and (d) give a physiologically reasonable postoperative hepatic pressure range, while the RI in (b) allows for a fast approximation of postoperative impedance. Since hemodynamics after hepatectomy are not fully understood, the methods used in this study to explore postoperative outflow BC are informative for future models exploring hemodynamic effects of partial hepatectomy.
Collapse
Affiliation(s)
- Renfei Ma
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Peter Hunter
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | | | - Harvey Ho
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Adam Bartlett
- Department of Surgery HPB, University of Auckland, Auckland, New Zealand
- Liver Research Unit, Auckland City Hospital, Auckland, New Zealand
| | - Soroush Safaei
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Ma R, Hunter P, Cousins W, Ho H, Bartlett A, Safaei S. Anatomically based simulation of hepatic perfusion in the human liver. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3229. [PMID: 31368204 DOI: 10.1002/cnm.3229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 06/10/2023]
Abstract
Liver structures of a healthy subject are digitised and segmented from computed tomography (CT) images, and hepatic perfusion is modelled in the hepatic artery and portal vein of the healthy subject with structured tree-based outflow boundary conditions. This self-similar structured tree is widely used in the literature, eg, blood flow simulation in larger systemic arteries and cerebral circulation, and is used in this study to model the effect of the smaller hepatic arteries and arterioles, as well as the smaller hepatic portal veins and portal venules. Physiologically reasonable results are obtained. Since the structured tree terminates at the size of the microvasculature system in liver lobules, the structured tree boundary condition will enable the proposed organ-level model of hepatic arterial flow to be easily connected to tissue-level models of liver lobules. Blood flow in the hepatic vein is also modelled in this subject with three-element Windkessel model as outflow boundary conditions. The benefit of integrating the perfusion in all hepatic vascular vessels is that it helps us analyse some complicated clinical phenomenon more efficiently, eg, one possible application is to obtain the portal pressure gradient (PPG) to help examine the reliability of hepatic venous pressure gradient (HVPG) as an indirect measure of portal pressure. Moreover, since four to six generations of hepatic vessels, which are sufficient for liver classification analysis, were employed in the model, this study is setting the computational foundation of a potentially handy surgical tool.
Collapse
Affiliation(s)
- Renfei Ma
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Peter Hunter
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | | | - Harvey Ho
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Adam Bartlett
- Department of Surgery, University of Auckland, Auckland, New Zealand
- Liver Research Unit, Auckland City Hospital, Auckland, New Zealand
| | - Soroush Safaei
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Coccarelli A, Prakash A, Nithiarasu P. A novel porous media-based approach to outflow boundary resistances of 1D arterial blood flow models. Biomech Model Mechanobiol 2019; 18:939-951. [PMID: 30900050 PMCID: PMC6647433 DOI: 10.1007/s10237-019-01122-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/29/2019] [Indexed: 12/19/2022]
Abstract
In this paper we introduce a novel method for prescribing terminal boundary conditions in one-dimensional arterial flow networks. This is carried out by coupling the terminal arterial vessel with a poro-elastic tube, representing the flow resistance offered by microcirculation. The performance of the proposed porous media-based model has been investigated through several different numerical examples. First, we investigate model parameters that have a profound influence on the flow and pressure distributions of the system. The simulation results have been compared against the waveforms generated by three elements (RCR) Windkessel model. The proposed model is also integrated into a realistic arterial tree, and the results obtained have been compared against experimental data at different locations of the network. The accuracy and simplicity of the proposed model demonstrates that it can be an excellent alternative for the existing models.
Collapse
Affiliation(s)
- Alberto Coccarelli
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea, UK.
| | - Arul Prakash
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India
| | - Perumal Nithiarasu
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea, UK
- VAJRA, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
5
|
Diem AK, MacGregor Sharp M, Gatherer M, Bressloff NW, Carare RO, Richardson G. Arterial Pulsations cannot Drive Intramural Periarterial Drainage: Significance for Aβ Drainage. Front Neurosci 2017; 11:475. [PMID: 28883786 PMCID: PMC5574214 DOI: 10.3389/fnins.2017.00475] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/10/2017] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's Disease (AD) is the most common form of dementia and to date there is no cure or efficient prophylaxis. The cognitive decline correlates with the accumulation of amyloid-β (Aβ) in the walls of capillaries and arteries. Our group has demonstrated that interstitial fluid and Aβ are eliminated from the brain along the basement membranes of capillaries and arteries, the intramural periarterial drainage (IPAD) pathway. With advancing age and arteriosclerosis, the stiffness of arterial walls, this pathway fails in its function and Aβ accumulates in the walls of arteries. In this study we tested the hypothesis that arterial pulsations drive IPAD and that a valve mechanism ensures the net drainage in a direction opposite to that of the blood flow. This hypothesis was tested using a mathematical model of the drainage mechanism. We demonstrate firstly that arterial pulsations are not strong enough to produce drainage velocities comparable to experimental observations. Secondly, we demonstrate that a valve mechanism such as directional permeability of the IPAD pathway is necessary to achieve a net reverse flow. The mathematical simulation results are confirmed by assessing the pattern of IPAD in mice using pulse modulators, showing no significant alteration of IPAD. Our results indicate that forces other than the cardiac pulsations are responsible for efficient IPAD.
Collapse
Affiliation(s)
- Alexandra K Diem
- Computational Engineering and Design, Faculty of Engineering & the Environment, University of SouthamptonSouthampton, United Kingdom
| | - Matthew MacGregor Sharp
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General HospitalSouthampton, United Kingdom
| | - Maureen Gatherer
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General HospitalSouthampton, United Kingdom
| | - Neil W Bressloff
- Computational Engineering and Design, Faculty of Engineering & the Environment, University of SouthamptonSouthampton, United Kingdom
| | - Roxana O Carare
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General HospitalSouthampton, United Kingdom
| | - Giles Richardson
- Mathematical Sciences, Faculty of Social, Human and Mathematical Sciences, University of SouthamptonSouthampton, United Kingdom
| |
Collapse
|
6
|
Itu L, Sharma P, Suciu C, Moldoveanu F, Comaniciu D. Personalized blood flow computations: A hierarchical parameter estimation framework for tuning boundary conditions. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2017; 33:e02803. [PMID: 27194580 DOI: 10.1002/cnm.2803] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 04/08/2016] [Accepted: 05/15/2016] [Indexed: 06/05/2023]
Abstract
We propose a hierarchical parameter estimation framework for performing patient-specific hemodynamic computations in arterial models, which use structured tree boundary conditions. A calibration problem is formulated at each stage of the hierarchical framework, which seeks the fixed point solution of a nonlinear system of equations. Common hemodynamic properties, like resistance and compliance, are estimated at the first stage in order to match the objectives given by clinical measurements of pressure and/or flow rate. The second stage estimates the parameters of the structured trees so as to match the values of the hemodynamic properties determined at the first stage. A key feature of the proposed method is that to ensure a large range of variation, two different structured tree parameters are personalized for each hemodynamic property. First, the second stage of the parameter estimation framework is evaluated based on the properties of the outlet boundary conditions in a full body arterial model: the calibration method converges for all structured trees in less than 10 iterations. Next, the proposed framework is successfully evaluated on a patient-specific aortic model with coarctation: only six iterations are required for the computational model to be in close agreement with the clinical measurements used as objectives, and overall, there is a good agreement between the measured and computed quantities. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lucian Itu
- Corporate Technology, Siemens SRL, B-dul Eroilor nr. 5, Brasov, 500007, Romania
- Transilvania University of Brasov, B-dul Eroilor nr. 29, 500036, Brasov, Romania
| | - Puneet Sharma
- Siemens Medical Solutions USA, Inc., 755 College Road East, Princeton, NJ 08540, USA
| | - Constantin Suciu
- Corporate Technology, Siemens SRL, B-dul Eroilor nr. 5, Brasov, 500007, Romania
- Transilvania University of Brasov, B-dul Eroilor nr. 29, 500036, Brasov, Romania
| | - Florin Moldoveanu
- Transilvania University of Brasov, B-dul Eroilor nr. 29, 500036, Brasov, Romania
| | - Dorin Comaniciu
- Siemens Medical Solutions USA, Inc., 755 College Road East, Princeton, NJ 08540, USA
| |
Collapse
|
7
|
Arnold A, Battista C, Bia D, German YZ, Armentano RL, Tran H, Olufsen MS. Uncertainty Quantification in a Patient-Specific One-Dimensional Arterial Network Model: EnKF-Based Inflow Estimator. JOURNAL OF VERIFICATION, VALIDATION, AND UNCERTAINTY QUANTIFICATION 2017; 2:0110021-1100214. [PMID: 35832352 PMCID: PMC8597574 DOI: 10.1115/1.4035918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 01/31/2017] [Indexed: 11/09/2023]
Abstract
Successful clinical use of patient-specific models for cardiovascular dynamics depends on the reliability of the model output in the presence of input uncertainties. For 1D fluid dynamics models of arterial networks, input uncertainties associated with the model output are related to the specification of vessel and network geometry, parameters within the fluid and wall equations, and parameters used to specify inlet and outlet boundary conditions. This study investigates how uncertainty in the flow profile applied at the inlet boundary of a 1D model affects area and pressure predictions at the center of a single vessel. More specifically, this study develops an iterative scheme based on the ensemble Kalman filter (EnKF) to estimate the temporal inflow profile from a prior distribution of curves. The EnKF-based inflow estimator provides a measure of uncertainty in the size and shape of the estimated inflow, which is propagated through the model to determine the corresponding uncertainty in model predictions of area and pressure. Model predictions are compared to ex vivo area and blood pressure measurements in the ascending aorta, the carotid artery, and the femoral artery of a healthy male Merino sheep. Results discuss dynamics obtained using a linear and a nonlinear viscoelastic wall model.
Collapse
Affiliation(s)
- Andrea Arnold
- Department of Mathematics, North Carolina State University, 2108 SAS Hall, 2311 Stinson Drive, Box 8205, Raleigh, NC 27695-8205 e-mail:
| | - Christina Battista
- DILIsym Services, Inc., Six Davis Drive, Research Triangle Park, NC 27709 e-mail:
| | - Daniel Bia
- Department of Physiology, Universidad de la República, Montevideo 11800, Uruguay e-mail:
| | - Yanina Zócalo German
- Department of Physiology, Universidad de la República, Montevideo 11800, Uruguay e-mail:
| | - Ricardo L Armentano
- Department of Biological Engineering, CENUR Litoral Norte-Paysandú, Universidad de la República, Montevideo 11800, Uruguay e-mail:
| | - Hien Tran
- Department of Mathematics, North Carolina State University, 2108 SAS Hall, 2311 Stinson Drive, Box 8205, Raleigh, NC 27695-8205 e-mail:
| | - Mette S Olufsen
- Department of Mathematics, North Carolina State University, 2108 SAS Hall, 2311 Stinson Drive, Box 8205, Raleigh, NC 27695-8205 e-mail:
| |
Collapse
|
8
|
Guan D, Liang F, Gremaud PA. Comparison of the Windkessel model and structured-tree model applied to prescribe outflow boundary conditions for a one-dimensional arterial tree model. J Biomech 2016; 49:1583-1592. [PMID: 27062594 DOI: 10.1016/j.jbiomech.2016.03.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/18/2016] [Accepted: 03/23/2016] [Indexed: 11/30/2022]
Abstract
One-dimensional (1D) modeling is a widely adopted approach for studying wave propagation phenomena in the arterial system. Despite the frequent use of the Windkessel (WK) model to prescribe outflow boundary conditions for 1D arterial tree models, it remains unclear to what extent the inherent limitation of the WK model in describing wave propagation in distal vasculatures affect hemodynamic variables simulated at the arterial level. In the present study, a 1D model of the arterial tree was coupled respectively with a WK boundary model and a structured-tree (ST) boundary model, yielding two types of arterial tree models. The effective resistances, compliances and inductances of the WK and ST boundary models were matched to facilitate quantitative comparisons. Obtained results showed that pressure/flow waves simulated by the two models were comparable in the aorta, whereas, their discrepancies increased towards the periphery. Wave analysis revealed that the differences in reflected waves generated by the boundary models were the major sources of pressure wave discrepancies observed in large arteries. Additional simulations performed under aging conditions demonstrated that arterial stiffening with age enlarged the discrepancies, but with the effects being partly counteracted by physiological aortic dilatation with age. These findings suggest that the method adopted for modeling the outflow boundary conditions has considerable influence on the performance of a 1D arterial tree model, with the extent of influence varying with the properties of the arterial system.
Collapse
Affiliation(s)
- Debao Guan
- SJTU-CU International Cooperative Research Center, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fuyou Liang
- SJTU-CU International Cooperative Research Center, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration(CISSE), Shanghai 200240, China
| | - Pierre A Gremaud
- Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
9
|
Boileau E, Nithiarasu P, Blanco PJ, Müller LO, Fossan FE, Hellevik LR, Donders WP, Huberts W, Willemet M, Alastruey J. A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2015; 31:e02732. [PMID: 26100764 DOI: 10.1002/cnm.2732] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/15/2015] [Accepted: 06/26/2015] [Indexed: 05/28/2023]
Abstract
Haemodynamical simulations using one-dimensional (1D) computational models exhibit many of the features of the systemic circulation under normal and diseased conditions. Recent interest in verifying 1D numerical schemes has led to the development of alternative experimental setups and the use of three-dimensional numerical models to acquire data not easily measured in vivo. In most studies to date, only one particular 1D scheme is tested. In this paper, we present a systematic comparison of six commonly used numerical schemes for 1D blood flow modelling: discontinuous Galerkin, locally conservative Galerkin, Galerkin least-squares finite element method, finite volume method, finite difference MacCormack method and a simplified trapezium rule method. Comparisons are made in a series of six benchmark test cases with an increasing degree of complexity. The accuracy of the numerical schemes is assessed by comparison with theoretical results, three-dimensional numerical data in compatible domains with distensible walls or experimental data in a network of silicone tubes. Results show a good agreement among all numerical schemes and their ability to capture the main features of pressure, flow and area waveforms in large arteries. All the information used in this study, including the input data for all benchmark cases, experimental data where available and numerical solutions for each scheme, is made publicly available online, providing a comprehensive reference data set to support the development of 1D models and numerical schemes.
Collapse
Affiliation(s)
- Etienne Boileau
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea, SA2 8PP, UK
| | - Perumal Nithiarasu
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea, SA2 8PP, UK
| | - Pablo J Blanco
- National Laboratory for Scientific Computing, LNCC/MCTI, Av. Getúlio Vargas 333, Petrópolis, Rio de Janeiro 25651-075, Brazil
- National Institute of Science and Technology in Medicine Assisted by Scientific Computing, INCT-MACC, Petrópolis, Rio de Janeiro, Brazil
| | - Lucas O Müller
- National Laboratory for Scientific Computing, LNCC/MCTI, Av. Getúlio Vargas 333, Petrópolis, Rio de Janeiro 25651-075, Brazil
- National Institute of Science and Technology in Medicine Assisted by Scientific Computing, INCT-MACC, Petrópolis, Rio de Janeiro, Brazil
| | - Fredrik Eikeland Fossan
- Department of Structural Engineering, Division of Biomechanics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Leif Rune Hellevik
- Department of Structural Engineering, Division of Biomechanics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Wouter P Donders
- Faculty of Health, Medicine and Life Sciences, Biomedical Engineering, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Wouter Huberts
- Faculty of Health, Medicine and Life Sciences, Biomedical Engineering, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marie Willemet
- Division of Imaging Sciences and Biomedical Engineering, St. Thomas' Hospital, King's College London, London, SE1 7EH, UK
| | - Jordi Alastruey
- Division of Imaging Sciences and Biomedical Engineering, St. Thomas' Hospital, King's College London, London, SE1 7EH, UK
| |
Collapse
|
10
|
Du T, Hu D, Cai D. Outflow boundary conditions for blood flow in arterial trees. PLoS One 2015; 10:e0128597. [PMID: 26000782 PMCID: PMC4441455 DOI: 10.1371/journal.pone.0128597] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 04/28/2015] [Indexed: 11/18/2022] Open
Abstract
In the modeling of the pulse wave in the systemic arterial tree, it is necessary to truncate small arterial crowns representing the networks of small arteries and arterioles. Appropriate boundary conditions at the truncation points are required to represent wave reflection effects of the truncated arterial crowns. In this work, we provide a systematic method to extract parameters of the three-element Windkessel model from the impedance of a truncated arterial tree or from experimental measurements of the blood pressure and flow rate at the inlet of the truncated arterial crown. In addition, we propose an improved three-element Windkessel model with a complex capacitance to accurately capture the fundamental-frequency time lag of the reflection wave with respect to the incident wave. Through our numerical simulations of blood flow in a single artery and in a large arterial tree, together with the analysis of the modeling error of the pulse wave in large arteries, we show that both a small truncation radius and the complex capacitance in the improved Windkessel model play an important role in reducing the modeling error, defined as the difference in dynamics induced by the structured tree model and the Windkessel models.
Collapse
Affiliation(s)
- Tao Du
- Department of Mathematics, Institute of Natural Sciences, and MOE-LSC, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Hu
- Department of Mathematics, Institute of Natural Sciences, and MOE-LSC, Shanghai Jiao Tong University, Shanghai, China
- * E-mail:
| | - David Cai
- Department of Mathematics, Institute of Natural Sciences, and MOE-LSC, Shanghai Jiao Tong University, Shanghai, China
- Courant Institute of Mathematical Sciences and Center for Neural Science, New York University, New York, U.S.A.
- NYUAD Institute, New York University Abu Dhabi, Abu Dhabi, UAE
| |
Collapse
|