1
|
Bomberna T, Maleux G, Debbaut C. Simplification strategies for a patient-specific CFD model of particle transport during liver radioembolization. Comput Biol Med 2024; 178:108732. [PMID: 38875911 DOI: 10.1016/j.compbiomed.2024.108732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/31/2024] [Accepted: 06/08/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Patient-specific 3D computational fluid dynamics (CFD) simulations have been used previously to identify the impact of injection parameters (e.g. injection location, velocity, etc.) on the particle distribution and the tumor dose during transarterial injection of radioactive microspheres for treatment of hepatocellular carcinoma. However, these simulations are computationally costly, so we aim to evaluate whether these can be reliably simplified. METHODS We identified and applied five simplification strategies (i.e. truncation, steady flow modelling, moderate and severe grid coarsening, and reducing the number of cardiac cycles) to a patient-specific CFD setup. Subsequently, we evaluated whether these strategies can be used to (1) accurately predict the CFD output (i.e. particle distribution and tumor dose) and (2) quantify the sensitivity of the model output to a specific injection parameter (injection flow rate). RESULTS For both accuracy and sensitivity purposes, moderate grid coarsening is the most reliable simplification strategy, allowing to predict the tumor dose with only a maximal deviation of 1.4 %, and a similar sensitivity (deviation of 0.7 %). The steady strategy performs the worst, with a maximal deviation in the tumor dose of 20 % and a difference in sensitivity of 10 %. CONCLUSION The patient-specific 3D CFD simulations of this study can be reliably simplified by coarsening the grid, decreasing the computational time by roughly 45 %, which works especially well for sensitivity studies.
Collapse
Affiliation(s)
- Tim Bomberna
- IBiTech-BioMMedA, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium.
| | - Geert Maleux
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium; Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Charlotte Debbaut
- IBiTech-BioMMedA, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
2
|
Lambers L, Waschinsky N, Schleicher J, König M, Tautenhahn HM, Albadry M, Dahmen U, Ricken T. Quantifying fat zonation in liver lobules: an integrated multiscale in silico model combining disturbed microperfusion and fat metabolism via a continuum biomechanical bi-scale, tri-phasic approach. Biomech Model Mechanobiol 2024; 23:631-653. [PMID: 38402347 DOI: 10.1007/s10237-023-01797-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/22/2023] [Indexed: 02/26/2024]
Abstract
Metabolic zonation refers to the spatial separation of metabolic functions along the sinusoidal axes of the liver. This phenomenon forms the foundation for adjusting hepatic metabolism to physiological requirements in health and disease (e.g., metabolic dysfunction-associated steatotic liver disease/MASLD). Zonated metabolic functions are influenced by zonal morphological abnormalities in the liver, such as periportal fibrosis and pericentral steatosis. We aim to analyze the interplay between microperfusion, oxygen gradient, fat metabolism and resulting zonated fat accumulation in a liver lobule. Therefore we developed a continuum biomechanical, tri-phasic, bi-scale, and multicomponent in silico model, which allows to numerically simulate coupled perfusion-function-growth interactions two-dimensionally in liver lobules. The developed homogenized model has the following specifications: (i) thermodynamically consistent, (ii) tri-phase model (tissue, fat, blood), (iii) penta-substances (glycogen, glucose, lactate, FFA, and oxygen), and (iv) bi-scale approach (lobule, cell). Our presented in silico model accounts for the mutual coupling between spatial and time-dependent liver perfusion, metabolic pathways and fat accumulation. The model thus allows the prediction of fat development in the liver lobule, depending on perfusion, oxygen and plasma concentration of free fatty acids (FFA), oxidative processes, the synthesis and the secretion of triglycerides (TGs). The use of a bi-scale approach allows in addition to focus on scale bridging processes. Thus, we will investigate how changes at the cellular scale affect perfusion at the lobular scale and vice versa. This allows to predict the zonation of fat distribution (periportal or pericentral) depending on initial conditions, as well as external and internal boundary value conditions.
Collapse
Affiliation(s)
- Lena Lambers
- Institute of Structural Mechanics and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Pfaffenwaldring 27, Stuttgart, 70191, Germany
| | - Navina Waschinsky
- Institute of Structural Mechanics and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Pfaffenwaldring 27, Stuttgart, 70191, Germany
| | - Jana Schleicher
- Friedrich-Schiller-Universität Jena, Fürstengraben 27, Jena, 07743, Germany
| | - Matthias König
- Systems Medicine of Liver, Institute for Theoretical Biology, Institute for Biology, Humboldt-University Berlin, Philippstraße 13, 10115 Berlin, Germany
| | - Hans-Michael Tautenhahn
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstraße 20, Leipzig, 04103, Germany
| | - Mohamed Albadry
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, Drackendorfer Straße 1, Jena, 07747, Germany
- Department of Pathology, Faculty of Veterinary Medicine, Menoufia University, Shebin Elkom, Menoufia, Egypt
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, Drackendorfer Straße 1, Jena, 07747, Germany
| | - Tim Ricken
- Institute of Structural Mechanics and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Pfaffenwaldring 27, Stuttgart, 70191, Germany.
| |
Collapse
|
3
|
Ortega J, Antón R, Ramos JC, Rivas A, S. Larraona G, Sangro B, Bilbao JI, Aramburu J. Computational study of a novel catheter for liver radioembolization. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3577. [PMID: 35094497 PMCID: PMC9286848 DOI: 10.1002/cnm.3577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/16/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Radioembolization (RE) is a medical treatment for primary and secondary liver cancer that involves the transcatheter intraarterial delivery of micron-sized and radiation-emitting microspheres, with the goal of improving microsphere deposition in the tumoral bed while sparing healthy tissue. An increasing number of in vitro and in silico studies on RE in the literature suggest that the particle injection velocity, spatial location of the catheter tip and catheter type are important parameters in particle distribution. The present in silico study assesses the performance of a novel catheter design that promotes particle dispersion near the injection point, with the goal of generating a particle distribution that mimics the flow split to facilitate tumour targeting. The design is based on two factors: the direction and the velocity at which particles are released from the catheter. A series of simulations was performed with the catheter inserted at an idealised hepatic artery tree with physiologically realistic boundary conditions. Two longitudinal microcatheter positions in the first generation of the tree were studied by analysing the performance of the catheter in terms of the outlet-to-outlet particle distribution and split flow matching. The results show that the catheter with the best performance is one with side holes on the catheter wall and a closed frontal tip. This catheter promotes a flow-split-matching particle distribution, which improves as the injection crossflow increases.
Collapse
Affiliation(s)
- Julio Ortega
- Escuela de Ingeniería MecánicaPontificia Universidad Católica de ValparaísoQuilpuéChile
- Universidad de NavarraTecnun ‐ Escuela de IngenieríaDonostia‐San SebastiánSpain
| | - Raúl Antón
- Universidad de NavarraTecnun ‐ Escuela de IngenieríaDonostia‐San SebastiánSpain
- Instituto de Investigación Sanitaria de NavarraIdiSNAPamplonaSpain
| | - Juan Carlos Ramos
- Universidad de NavarraTecnun ‐ Escuela de IngenieríaDonostia‐San SebastiánSpain
| | - Alejandro Rivas
- Universidad de NavarraTecnun ‐ Escuela de IngenieríaDonostia‐San SebastiánSpain
| | - Gorka S. Larraona
- Universidad de NavarraTecnun ‐ Escuela de IngenieríaDonostia‐San SebastiánSpain
| | - Bruno Sangro
- Instituto de Investigación Sanitaria de NavarraIdiSNAPamplonaSpain
| | - José Ignacio Bilbao
- Instituto de Investigación Sanitaria de NavarraIdiSNAPamplonaSpain
- Department of RadiologyClínica Universidad de NavarraPamplonaSpain
| | - Jorge Aramburu
- Universidad de NavarraTecnun ‐ Escuela de IngenieríaDonostia‐San SebastiánSpain
| |
Collapse
|
4
|
d'Abadie P, Walrand S, Goffette P, Amini N, Maanen AV, Lhommel R, Jamar F. Antireflux catheter improves tumor targeting in liver radioembolization with resin microspheres. DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY (ANKARA, TURKEY) 2021; 27:768-773. [PMID: 34792032 DOI: 10.5152/dir.2021.20785] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE We aimed to determine whether antireflux (ARC) catheter may result in better tumor targeting in liver radioembolization using 90Y-resin microspheres. METHODS Patients treated with resin microspheres for hepatocellular carcinoma (HCC) and secondary liver malignancies were retrospectively analyzed. All patients underwent a 99mTc-macroaggregated albumin (99mTc-MAA) single photon emission computed tomography (SPECT) following the planning arteriography with a conventional end-hole catheter. For 90Y-microspheres injection, two groups were defined depending on the type of catheter used: an ARC group (n=38) and a control group treated with a conventional end-hole catheter (n=23). 90Y positron emission tomography computed tomography (PET/CT) was performed after the therapeutic arteriography. The choice of the catheter was not randomized, but left to the choice of the interventional radiologist. 99mTc-MAA SPECT and 90Y PET/CT were co-registered with the baseline imaging to determine a tumor to normal liver ratio (T/NL[MAA or 90Y]) and tumor dose (TD[MAA or 90Y]) for the planning and therapy. RESULTS Overall, 38 patients (115 lesions) and 23 patients (75 lesions) were analyzed in the ARC and control groups, respectively. In the ARC group, T/NL90Y and TD90Y were significantly higher than T/NLMAA and TDMAA. Median (IQR) T/NL90Y was 2.16 (2.15) versus 1.74 (1.43) for T/NLMAA (p < 0.001). Median (IQR) TD90Y was 90.96 Gy (98.31 Gy) versus 73.72 Gy (63.82 Gy) for TDMAA (p < 0.001). In this group, the differences were highly significant for neuroendocrine metastases (NEM) and HCC and less significant for colorectal metastases (CRM). In the control group, no significant differences were demonstrated. CONCLUSION The use of an ARC significantly improves tumor deposition in liver radioembolization with resin microspheres.
Collapse
Affiliation(s)
- Philippe d'Abadie
- Department of Nuclear Medicine, Saint Luc University Hospital and King Albert II Cancer Institute, Brussels, Belgium
| | - Stephan Walrand
- Department of Nuclear Medicine, Saint Luc University Hospital and King Albert II Cancer Institute, Brussels, Belgium
| | - Pierre Goffette
- Department of Interventional Radiology, Saint Luc University Hospital and King Albert II cancer Institute, Brussels, Belgium
| | - Nadia Amini
- Department of Interventional Radiology, Saint Luc University Hospital and King Albert II cancer Institute, Brussels, Belgium
| | - Aline van Maanen
- From the Department of Nuclear Medicine Saint Luc University Hospital and King Albert II Cancer Institute, Brussels, Belgium
| | - Renaud Lhommel
- Department of Nuclear Medicine, Saint Luc University Hospital and King Albert II Cancer Institute, Brussels, Belgium
| | - François Jamar
- Department of Nuclear Medicine, Saint Luc University Hospital and King Albert II Cancer Institute, Brussels, Belgium
| |
Collapse
|
5
|
Aramburu J, Antón R, Rodríguez-Fraile M, Sangro B, Bilbao JI. Computational Fluid Dynamics Modeling of Liver Radioembolization: A Review. Cardiovasc Intervent Radiol 2021; 45:12-20. [PMID: 34518913 PMCID: PMC8716346 DOI: 10.1007/s00270-021-02956-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022]
Abstract
Yttrium-90 radioembolization (RE) is a widely used transcatheter intraarterial therapy for patients with unresectable liver cancer. In the last decade, computer simulations of hepatic artery hemodynamics during RE have been performed with the aim of better understanding and improving the therapy. In this review, we introduce the concept of computational fluid dynamics (CFD) modeling with a clinical perspective and we review the CFD models used to study RE from the fluid mechanics point of view. Finally, we show what CFD simulations have taught us about the hemodynamics during RE, the current capabilities of CFD simulations of RE, and we suggest some future perspectives.
Collapse
Affiliation(s)
- Jorge Aramburu
- Universidad de Navarra, TECNUN Escuela de Ingeniería, 20018, Donostia-San Sebastián, Spain.
| | - Raúl Antón
- Universidad de Navarra, TECNUN Escuela de Ingeniería, 20018, Donostia-San Sebastián, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
| | - Macarena Rodríguez-Fraile
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain.,Department of Nuclear Medicine, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Bruno Sangro
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain.,Liver Unit, Clínica Universidad de Navarra and CIBEREHD, 31008, Pamplona, Spain
| | - José Ignacio Bilbao
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain.,Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| |
Collapse
|
6
|
Lin Z, Chen R, Gao B, Qin S, Wu B, Liu J, Cai XC. A highly parallel simulation of patient-specific hepatic flows. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3451. [PMID: 33609008 DOI: 10.1002/cnm.3451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/29/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
Computational hemodynamics is being developed as an alternative approach for assisting clinical diagnosis and treatment planning for liver diseases. The technology is non-invasive, but the computational time could be high when the full geometry of the blood vessels is taken into account. Existing approaches use either one-dimensional model of the artery or simplified three-dimensional tubular geometry in order to reduce the computational time, but the accuracy is sometime compromised, for example, when simulating blood flows in arteries with plaque. In this work, we study a highly parallel method for the transient incompressible Navier-Stokes equations for the simulation of the blood flows in the full three-dimensional patient-specific hepatic artery, portal vein and hepatic vein. As applications, we also simulate the flow in a patient with hepatectomy and calculate the S (PPG). One of the advantages of simulating blood flows in all hepatic vessels is that it provides a direct estimate of the PPG, which is a gold standard value to assess the portal hypertension. Moreover, the robustness and scalability of the algorithm are also investigated. A 83% parallel efficiency is achieved for solving a problem with 7 million elements on a supercomputer with more than 1000 processor cores.
Collapse
Affiliation(s)
- Zeng Lin
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Key Laboratory for Exascale Engineering and Scientific Computing, Shenzhen, China
| | - Rongliang Chen
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Key Laboratory for Exascale Engineering and Scientific Computing, Shenzhen, China
| | - Beibei Gao
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shanlin Qin
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bokai Wu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jia Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Key Laboratory for Exascale Engineering and Scientific Computing, Shenzhen, China
| | - Xiao-Chuan Cai
- Department of Mathematics, University of Macau, Macau, China
| |
Collapse
|
7
|
CFD Simulations of Radioembolization: A Proof-of-Concept Study on the Impact of the Hepatic Artery Tree Truncation. MATHEMATICS 2021. [DOI: 10.3390/math9080839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Radioembolization (RE) is a treatment for patients with liver cancer, one of the leading cause of cancer-related deaths worldwide. RE consists of the transcatheter intraarterial infusion of radioactive microspheres, which are injected at the hepatic artery level and are transported in the bloodstream, aiming to target tumors and spare healthy liver parenchyma. In paving the way towards a computer platform that allows for a treatment planning based on computational fluid dynamics (CFD) simulations, the current simulation (model preprocess, model solving, model postprocess) times (of the order of days) make the CFD-based assessment non-viable. One of the approaches to reduce the simulation time includes the reduction in size of the simulated truncated hepatic artery. In this study, we analyze for three patient-specific hepatic arteries the impact of reducing the geometry of the hepatic artery on the simulation time. Results show that geometries can be efficiently shortened without impacting greatly on the microsphere distribution.
Collapse
|
8
|
Antón R, Antoñana J, Aramburu J, Ezponda A, Prieto E, Andonegui A, Ortega J, Vivas I, Sancho L, Sangro B, Bilbao JI, Rodríguez-Fraile M. A proof-of-concept study of the in-vivo validation of a computational fluid dynamics model of personalized radioembolization. Sci Rep 2021; 11:3895. [PMID: 33594143 PMCID: PMC7886872 DOI: 10.1038/s41598-021-83414-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
Radioembolization (RE) with yttrium-90 (90Y) microspheres, a transcatheter intraarterial therapy for patients with liver cancer, can be modeled computationally. The purpose of this work was to correlate the results obtained with this methodology using in vivo data, so that this computational tool could be used for the optimization of the RE procedure. The hepatic artery three-dimensional (3D) hemodynamics and microsphere distribution during RE were modeled for six 90Y-loaded microsphere infusions in three patients with hepatocellular carcinoma using a commercially available computational fluid dynamics (CFD) software package. The model was built based on in vivo data acquired during the pretreatment stage. The results of the simulations were compared with the in vivo distribution assessed by 90Y PET/CT. Specifically, the microsphere distribution predicted was compared with the actual 90Y activity per liver segment with a commercially available 3D-voxel dosimetry software (PLANET Dose, DOSIsoft). The average difference between the CFD-based and the PET/CT-based activity distribution was 2.36 percentage points for Patient 1, 3.51 percentage points for Patient 2 and 2.02 percentage points for Patient 3. These results suggest that CFD simulations may help to predict 90Y-microsphere distribution after RE and could be used to optimize the RE procedure on a patient-specific basis.
Collapse
Affiliation(s)
- Raúl Antón
- Universidad de Navarra, TECNUN Escuela de Ingeniería, 20018, Donostia-San Sebastián, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
| | - Javier Antoñana
- Universidad de Navarra, TECNUN Escuela de Ingeniería, 20018, Donostia-San Sebastián, Spain
| | - Jorge Aramburu
- Universidad de Navarra, TECNUN Escuela de Ingeniería, 20018, Donostia-San Sebastián, Spain
| | - Ana Ezponda
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Elena Prieto
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
- Department of Nuclear Medicine, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Asier Andonegui
- Universidad de Navarra, TECNUN Escuela de Ingeniería, 20018, Donostia-San Sebastián, Spain
| | - Julio Ortega
- Universidad de Navarra, TECNUN Escuela de Ingeniería, 20018, Donostia-San Sebastián, Spain
- Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Isabel Vivas
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Lidia Sancho
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
- Department of Nuclear Medicine, Clínica Universidad de Navarra, 28027, Madrid, Spain
| | - Bruno Sangro
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
- Department of Hepatology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
- CIBEREHD, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas, 28029, Madrid, Spain
| | - José Ignacio Bilbao
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Macarena Rodríguez-Fraile
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain.
- Department of Nuclear Medicine, Clínica Universidad de Navarra, 31008, Pamplona, Spain.
| |
Collapse
|
9
|
Bomberna T, Koudehi GA, Claerebout C, Verslype C, Maleux G, Debbaut C. Transarterial drug delivery for liver cancer: numerical simulations and experimental validation of particle distribution in patient-specific livers. Expert Opin Drug Deliv 2020; 18:409-422. [PMID: 33210955 DOI: 10.1080/17425247.2021.1853702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background: Transarterial therapies are routinely used for the locoregional treatment of unresectable hepatocellular carcinoma (HCC). However, the impact of clinical parameters (i.e. injection location, particle size, particle density etc.) and patient-specific conditions (i.e. hepatic geometry, cancer burden) on the intrahepatic particle distribution (PD) after transarterial injection of embolizing microparticles is still unclear. Computational fluid dynamics (CFD) may help to better understand this impact.Methods: Using CFD, both the blood flow and microparticle mass transport were modeled throughout the 3D-reconstructed arterial vasculature of a patient-specific healthy and cirrhotic liver. An experimental feasibility study was performed to simulate the PD in a 3D-printed phantom of the cirrhotic arterial network.Results: Axial and in-plane injection locations were shown to be effective parameters to steer particles toward tumor tissue in both geometries. Increasing particle size or density made it more difficult for particles to exit the domain. As cancer burden increased, the catheter tip location mattered less. The in vitro study and numerical results confirmed that PD largely mimics flow distribution, but that significant differences are still possible.Conclusions: Our findings highlight that optimal parameter choice can lead to selective targeting of tumor tissue, but that targeting potential highly depends on patient-specific conditions.
Collapse
Affiliation(s)
- Tim Bomberna
- IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Gent, Belgium
| | - Ghazal Adeli Koudehi
- IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium
| | - Charlotte Claerebout
- IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium
| | - Chris Verslype
- Department of Clinical Digestive Oncology, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Geert Maleux
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium.,Department of Imaging and Pathology, Leuven, Belgium
| | - Charlotte Debbaut
- IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Gent, Belgium
| |
Collapse
|
10
|
Ortega J, Antón R, Ramos JC, Rivas A, Larraona GS, Sangro B, Bilbao JI, Aramburu J. On the importance of spiral-flow inflow boundary conditions when using idealized artery geometries in the analysis of liver radioembolization: A parametric study. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3337. [PMID: 32212316 DOI: 10.1002/cnm.3337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/04/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
In the last decades, the numerical studies on hemodynamics have become a valuable explorative scientific tool. The very first studies were done over idealized geometries, but as numerical methods and the power of computers have become more affordable, the studies tend to be patient specific. We apply the study to the numerical analysis of tumor-targeting during liver radioembolization (RE). RE is a treatment for liver cancer, and is performed by injecting radiolabeled microspheres via a catheter placed in the hepatic artery. The objective of the procedure is to maximize the release of radiolabeled microspheres into the tumor and avoid a healthy tissue damage. Idealized virtual arteries can serve as a generalist approach that permits to separately analyze the effect of a variable in the microsphere distribution with respect to others. However, it is important to use proper physiological boundary conditions (BCs). It is not obvious, the need to account for the effect of tortuosity when using an idealized virtual artery. We study the use of idealized geometry of a hepatic artery as a valid research tool, exploring the importance of using realistic spiral-flow inflow BC. By using a literature-based cancer scenario, we vary two parameters to analyze the microsphere distribution through the outlets of the geometry. The parameters varied are the type of microspheres injected and the microsphere injection velocity. The results with realistic inlet velocity profile showed that the particle distribution in the liver segments is not affected by the analyzed injection velocity values neither by the particle density. NOVELTY STATEMENT: In this article, we assessed the use of idealized geometries as a valid research tool and applied the use of an idealized geometry to the case of an idealized hepatic artery to study the particle-hemodynamics during radioembolization (RE). We studied three different inflow boundary conditions (BCs) to assess the usefulness of the geometry, two types of particle injection velocities and two types of commercially available microspheres for RE treatment. In recent years, the advent in computational resources allowed for more detailed patient-specific geometry generation and discretization and hemodynamics simulations. However, general studies based on idealized geometries can be performed in order to provide medical doctors with some basic and general guidelines when using a given catheter for a given cancer scenario. Moreover, using an idealized geometry can be a reasonable approach which allows us to isolate a given parameter and control other parameters, so that parameters can be independently assessed. Even though an idealized geometry does not match any patient's geometry, the use of an idealized geometry can be valid when drawing general conclusions that may be useful in patient-specific cases. However, we believe that even if an idealized hepatic artery geometry is used for the study, it is necessary to account for the upstream and downstream tortuosity of vessels through the BCs. In this work, we highlighted the need of modeling the tortuosity of upstream and downstream vasculatures through the BCs.
Collapse
Affiliation(s)
- Julio Ortega
- Escuela de Ingeniería Mecánica, Pontificia Universidad Católica de Valparaíso, Quilpué, Chile
- Departamento de Ingeniería Mecánica y Materiales, niversidad de Navarra, TECNUN - Escuela de Ingenieros, San Sebastián, Spain
| | - Raul Antón
- Departamento de Ingeniería Mecánica y Materiales, niversidad de Navarra, TECNUN - Escuela de Ingenieros, San Sebastián, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Juan C Ramos
- Departamento de Ingeniería Mecánica y Materiales, niversidad de Navarra, TECNUN - Escuela de Ingenieros, San Sebastián, Spain
| | - Alejandro Rivas
- Departamento de Ingeniería Mecánica y Materiales, niversidad de Navarra, TECNUN - Escuela de Ingenieros, San Sebastián, Spain
| | - Gorka S Larraona
- Departamento de Ingeniería Mecánica y Materiales, niversidad de Navarra, TECNUN - Escuela de Ingenieros, San Sebastián, Spain
| | - Bruno Sangro
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Clínica Universidad de Navarra, Pamplona, Spain
| | - Jose I Bilbao
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Clínica Universidad de Navarra, Pamplona, Spain
| | - Jorge Aramburu
- Departamento de Ingeniería Mecánica y Materiales, niversidad de Navarra, TECNUN - Escuela de Ingenieros, San Sebastián, Spain
| |
Collapse
|
11
|
Aramburu J, Antón R, Rivas A, Ramos JC, Sangro B, Bilbao JI. Liver Radioembolization: An Analysis of Parameters that Influence the Catheter-Based Particle-Delivery via CFD. Curr Med Chem 2020; 27:1600-1615. [DOI: 10.2174/0929867325666180622145647] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/18/2017] [Accepted: 05/25/2017] [Indexed: 12/13/2022]
Abstract
Radioembolization (RE) is a valuable treatment for liver cancer. It consists of administering
radioactive microspheres by an intra-arterially placed catheter with the aim of
lodging these microspheres, which are driven by the bloodstream, in the tumoral bed. Even
though it is a safe treatment, some radiation-induced complications may arise. In trying to
detect or solve the possible incidences that cause nontarget irradiation, simulating the particle-
hemodynamics in hepatic arteries during RE by computational fluid dynamics (CFD)
tools has become a valuable approach. This paper reviews the parameters that influence the
outcome of RE and that have been studied via numerical simulations. In this numerical approach,
the outcome of RE is regarded as successful if particles reach the artery branches that
feed tumor-bearing liver segments. Up to 10 parameters have been reviewed. The variation
of each parameter actually alters the hemodynamic pattern in the vicinities of the catheter tip
and locally alters the incorporation of the particles into the bloodstream. Therefore, in general,
the local influences of these parameters should result in global differences in terms of
particle distribution in the hepatic artery branches. However, it has been observed that under
some (qualitatively described) appropriate conditions where particles align with blood
streamlines, the local influence resulting from a variation of a given parameter vanishes and
no global differences are observed. Furthermore, the increasing number of CFD studies on
RE suggests that numerical simulations have become an invaluable research tool in the study
of RE.
Collapse
Affiliation(s)
- Jorge Aramburu
- Universidad de Navarra, TECNUN Escuela de Ingenieros, 20018 Donostia-San Sebastian, Spain
| | - Raúl Antón
- Universidad de Navarra, TECNUN Escuela de Ingenieros, 20018 Donostia-San Sebastian, Spain
| | - Alejandro Rivas
- Universidad de Navarra, TECNUN Escuela de Ingenieros, 20018 Donostia-San Sebastian, Spain
| | - Juan C. Ramos
- Universidad de Navarra, TECNUN Escuela de Ingenieros, 20018 Donostia-San Sebastian, Spain
| | - Bruno Sangro
- IdiSNA, Instituto de Investigacion Sanitaria de Navarra, 31008 Pamplona, Spain
| | - José I. Bilbao
- IdiSNA, Instituto de Investigacion Sanitaria de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
12
|
van Roekel C, Braat AJAT, Smits MLJ, Bruijnen RCG, de Keizer B, Lam MGEH. Radioembolization. Clin Nucl Med 2020. [DOI: 10.1007/978-3-030-39457-8_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Aramburu J, Antón R, Rivas A, Ramos JC, Larraona GS, Sangro B, Bilbao JI. A methodology for numerically analysing the hepatic artery haemodynamics during B-TACE: a proof of concept. Comput Methods Biomech Biomed Engin 2019; 22:518-532. [PMID: 30732467 DOI: 10.1080/10255842.2019.1567720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Balloon-occluded transarterial chemoembolisation (B-TACE) is an intraarterial transcatheter treatment for liver cancer. In B-TACE, an artery-occluding microballoon catheter occludes an artery and promotes collateral circulation for drug delivery to tumours. This paper presents a methodology for analysing the haemodynamics during B-TACE, by combining zero-dimensional and three-dimensional modelling tools. As a proof of concept, we apply the methodology to a patient-specific hepatic artery geometry and analyse two catheter locations. Results show that the blood flow redistribution can be predicted in this proof-of-concept study, suggesting that this approach could potentially be used to optimise catheter location.
Collapse
Affiliation(s)
- Jorge Aramburu
- a Universidad de Navarra , TECNUN Escuela de Ingenieros , Donostia-San Sebastián , Spain
| | - Raúl Antón
- a Universidad de Navarra , TECNUN Escuela de Ingenieros , Donostia-San Sebastián , Spain.,b Instituto de Investigación Sanitaria de Navarra (IdiSNA) , Pamplona , Spain
| | - Alejandro Rivas
- a Universidad de Navarra , TECNUN Escuela de Ingenieros , Donostia-San Sebastián , Spain
| | - Juan Carlos Ramos
- a Universidad de Navarra , TECNUN Escuela de Ingenieros , Donostia-San Sebastián , Spain
| | - Gorka S Larraona
- a Universidad de Navarra , TECNUN Escuela de Ingenieros , Donostia-San Sebastián , Spain
| | - Bruno Sangro
- b Instituto de Investigación Sanitaria de Navarra (IdiSNA) , Pamplona , Spain.,c Clínica Universidad de Navarra , Pamplona , Spain.,d Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) , Pamplona , Spain
| | - José Ignacio Bilbao
- b Instituto de Investigación Sanitaria de Navarra (IdiSNA) , Pamplona , Spain.,c Clínica Universidad de Navarra , Pamplona , Spain
| |
Collapse
|
14
|
Xu Z, Kleinstreuer C. Direct nanodrug delivery for tumor targeting subject to shear-augmented diffusion in blood flow. Med Biol Eng Comput 2018; 56:1949-1958. [DOI: 10.1007/s11517-018-1818-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/15/2018] [Indexed: 12/15/2022]
|
15
|
Aramburu J, Antón R, Rivas A, Ramos JC, Sangro B, Bilbao JI. The role of angled-tip microcatheter and microsphere injection velocity in liver radioembolization: A computational particle-hemodynamics study. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2017; 33. [PMID: 28474382 DOI: 10.1002/cnm.2895] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Liver radioembolization is a promising treatment option for combating liver tumors. It is performed by placing a microcatheter in the hepatic artery and administering radiation-emitting microspheres through the arterial bloodstream so that they get lodged in the tumoral bed. In avoiding nontarget radiation, the standard practice is to conduct a pretreatment, in which the microcatheter location and injection velocity are decided. However, between pretreatment and actual treatment, some of the parameters that influence the particle distribution in the liver can vary, resulting in radiation-induced complications. The present study aims to analyze the influence of a commercially available microcatheter with an angled tip and particle injection velocity in terms of segment-to-segment particle distribution. Specifically, 4 tip orientations and 2 injection velocities are combined to yield a set of 8 numerical simulations of the particle-hemodynamics in a patient-specific truncated hepatic artery. For each simulation, 4 cardiac pulses are simulated. Particles are injected during the first cycle, and the remaining pulses enable the majority of the injected particles to exit the computational domain. Results indicate that, in terms of injection velocity, particles are more spread out in the cross-sectional lumen areas as the injection velocity increases. The tip's orientation also plays a role because it influences the near-tip hemodynamics, therefore altering the particle travel through the hepatic artery. However, results suggest that particle distribution tries to match the blood flow split, therefore particle injection velocity and microcatheter tip orientation playing a minor role in segment-to-segment particle distribution.
Collapse
Affiliation(s)
- Jorge Aramburu
- Universidad de Navarra, TECNUN Escuela de Ingenieros, 20018, San Sebastián, Spain
| | - Raúl Antón
- Universidad de Navarra, TECNUN Escuela de Ingenieros, 20018, San Sebastián, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Alejandro Rivas
- Universidad de Navarra, TECNUN Escuela de Ingenieros, 20018, San Sebastián, Spain
| | - Juan Carlos Ramos
- Universidad de Navarra, TECNUN Escuela de Ingenieros, 20018, San Sebastián, Spain
| | - Bruno Sangro
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
- Clínica Universidad de Navarra, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
| | - José Ignacio Bilbao
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
- Clínica Universidad de Navarra, 31008, Pamplona, Spain
| |
Collapse
|