1
|
Talukder P, Chanda S, Chaudhuri B, Choudhury SR, Saha D, Dash S, Banerjee A, Chatterjee B. CRISPR-Based Gene Editing: a Modern Approach for Study and Treatment of Cancer. Appl Biochem Biotechnol 2024; 196:4439-4456. [PMID: 37737443 DOI: 10.1007/s12010-023-04708-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/23/2023]
Abstract
The development and emergence of clustered regularly interspaced short palindromic repeats (CRISPR) as a genome-editing technology have created a plethora of opportunities in genetic engineering. The ability of sequence-specific addition or removal of DNA in an efficient and cost-effective manner has revolutionized modern research in the field of life science and healthcare. CRISPR is widely used as a genome engineering tool in clinical studies for observing gene expression and metabolic pathway regulations in detail. Even in the case of transgenic research and personalized gene manipulation studies, CRISPR-based technology is used extensively. To understand and even to correct the underlying genetic problem is of cancer, CRISPR-based technology can be used. Various kinds of work is going on throughout the world which are attempting to target different genes in order to discover novel and effective methodologies for the treatment of cancer. In this review, we provide a brief overview on the application of CRISPR gene editing technology in cancer treatment focusing on the key aspects of cancer screening, modelling and therapy techniques.
Collapse
Affiliation(s)
- Pratik Talukder
- Department of Biotechnology, University of Engineering and Management, Kolkata, West Bengal, 700156, India.
| | - Sounak Chanda
- Department of Biotechnology, University of Engineering and Management, Kolkata, West Bengal, 700156, India
| | - Biswadeep Chaudhuri
- Department of Biotechnology, University of Engineering and Management, Kolkata, West Bengal, 700156, India
| | | | - Debanjan Saha
- School of Biosciences and Technology, VIT, Vellore, Tamil Nadu, 632014, India
| | - Sudipta Dash
- Department of Biotechnology, IIT, Kharagpur, West Bengal, 721302, India
| | - Abhineet Banerjee
- Department of Biotechnology, NIT, Durgapur, West Bengal, 713209, India
| | | |
Collapse
|
2
|
Makowska A, Weiskirchen R. Nasopharyngeal Carcinoma Cell Lines: Reliable Alternatives to Primary Nasopharyngeal Cells? Cells 2024; 13:559. [PMID: 38606998 PMCID: PMC11011377 DOI: 10.3390/cells13070559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a type of cancer that originates from the mucosal lining of the nasopharynx and can invade and spread. Although contemporary chemoradiotherapy effectively manages the disease locally, there are still challenges with locoregional recurrence and distant failure. Therefore, it is crucial to have a deeper understanding of the molecular basis of NPC cell movement in order to develop a more effective treatment and to improve patient survival rates. Cancer cell line models are invaluable in studying health and disease and it is not surprising that they play a critical role in NPC research. Consequently, scientists have established around 80 immortalized human NPC lines that are commonly used as in vitro models. However, over the years, it has been observed that many cell lines are misidentified or contaminated by other cells. This cross-contamination leads to the creation of false cell lines that no longer match the original donor. In this commentary, we discuss the impact of misidentified NPC cell lines on the scientific literature. We found 1159 articles from 2000 to 2023 that used NPC cell lines contaminated with HeLa cells. Alarmingly, the number of publications and citations using these contaminated cell lines continued to increase, even after information about the contamination was officially published. These articles were most commonly published in the fields of oncology, pharmacology, and experimental medicine research. These findings highlight the importance of science policy and support the need for journals to require authentication testing before publication.
Collapse
Affiliation(s)
- Anna Makowska
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, RWTH University Hospital Aachen, D-52074 Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| |
Collapse
|
3
|
Zhang G, Wang Y, Han X, Lu T, Fu L, Jin H, Yang K, Cai H. FOXP4-AS1 May be a Potential Prognostic Biomarker in Human Cancers: A Meta-Analysis and Bioinformatics Analysis. Front Oncol 2022; 12:799265. [PMID: 35719909 PMCID: PMC9204280 DOI: 10.3389/fonc.2022.799265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/04/2022] [Indexed: 12/26/2022] Open
Abstract
Background Cancer is one of the leading causes of death worldwide. Early diagnosis can significantly lower cancer-related mortality. Studies have shown that the lncRNA Forkhead box P4 antisense RNA 1 (FOXP4-AS1) is aberrantly expressed in various solid tumors. A meta-analysis was performed to evaluate the correlation of FOXP4-AS1 with the prognosis of cancer patients and determine the clinical value of FOXP4-AS1 as a potential diagnostic marker. Methods Correlational studies from the Web of Science, Embase, OVID, Cochrane and PubMed databases were screened (up to April 1, 2021). Meta-analysis was performed using Stata SE12.0 software. Results Eleven original studies with 1,332 patients who were diagnosed with a solid cancer (nasopharyngeal carcinoma, hepatocellular carcinoma, colorectal cancer, gastric cancer, osteosarcoma, mantle cell lymphoma, prostate cancer, and pancreatic ductal adenocarcinoma) were included in the meta-analysis. High expression of FOXP4-AS1 was correlated with poor overall survival (OS) (HR = 1.77, 95% CI 1.29-2.44, P < 0.001) and shorter disease-free survival (DFS) (HR = 1.66, 95% CI 1.01-2.72, P = 0.044). Subgroup analysis based on sample size, follow-up time and Newcastle-Ottawa Scale (NOS) score revealed significant differences between FOXP4-AS1 levels and OS (P < 0.05). However, the expression level of FOXP4-AS1 was not significantly correlated with the OS of gastric cancer patients (P = 0.381). High expression of FOXP4-AS1 was predictive of a larger tumor size (OR = 3.82, 95% CI 2.3-6.3, P < 0.001). Conclusions Overexpression of FOXP4-AS1 correlates with poor prognosis of cancer patients, and is a potential prognostic biomarker and therapeutic target. Systematic Review Registration PROSPERO, identifier CRD42021245267.
Collapse
Affiliation(s)
- Guangming Zhang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China.,Department of General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China.,Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Lanzhou, China.,Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yongfeng Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China.,Department of General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China.,Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Lanzhou, China
| | | | - Tingting Lu
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Institution of Clinical Research and Evidence Based Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Liangyin Fu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China.,Department of General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China.,Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Lanzhou, China
| | - Haojie Jin
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Kehu Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Hui Cai
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China.,Department of General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China.,Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Lanzhou, China
| |
Collapse
|
4
|
Shojaei Baghini S, Gardanova ZR, Abadi SAH, Zaman BA, İlhan A, Shomali N, Adili A, Moghaddar R, Yaseri AF. CRISPR/Cas9 application in cancer therapy: a pioneering genome editing tool. Cell Mol Biol Lett 2022; 27:35. [PMID: 35508982 PMCID: PMC9066929 DOI: 10.1186/s11658-022-00336-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/13/2022] [Indexed: 12/20/2022] Open
Abstract
The progress of genetic engineering in the 1970s brought about a paradigm shift in genome editing technology. The clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) system is a flexible means to target and modify particular DNA sequences in the genome. Several applications of CRISPR/Cas9 are presently being studied in cancer biology and oncology to provide vigorous site-specific gene editing to enhance its biological and clinical uses. CRISPR's flexibility and ease of use have enabled the prompt achievement of almost any preferred alteration with greater efficiency and lower cost than preceding modalities. Also, CRISPR/Cas9 technology has recently been applied to improve the safety and efficacy of chimeric antigen receptor (CAR)-T cell therapies and defeat tumor cell resistance to conventional treatments such as chemotherapy and radiotherapy. The current review summarizes the application of CRISPR/Cas9 in cancer therapy. We also discuss the present obstacles and contemplate future possibilities in this context.
Collapse
Affiliation(s)
- Sadegh Shojaei Baghini
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Zhanna R. Gardanova
- Department of Psychotherapy, Pirogov Russian National Research Medical University, 1 Ostrovityanova St., 117997 Moscow, Russia
| | - Saeme Azizi Hassan Abadi
- Department of Nursery and Midwifery, Faculty of Laboratory Science, Islamic Azad University of Chalous, Mazandaran, Iran
| | - Burhan Abdullah Zaman
- Basic Sciences Department, College of Pharmacy, University of Duhok, Kurdistan Region, Iraq
| | - Ahmet İlhan
- Department of Medical Biochemistry, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Navid Shomali
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Adili
- Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, Tampa, USA
| | - Roozbeh Moghaddar
- Department of Pediatric Hematology and Oncology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | |
Collapse
|
5
|
Kang H, Zhao D, Xiang H, Li J, Zhao G, Li H. Large-scale transcriptome sequencing in broiler chickens to identify candidate genes for breast muscle weight and intramuscular fat content. Genet Sel Evol 2021; 53:66. [PMID: 34399688 PMCID: PMC8369645 DOI: 10.1186/s12711-021-00656-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/15/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND In broiler production, breast muscle weight and intramuscular fat (IMF) content are important economic traits. Understanding the genetic mechanisms that underlie these traits is essential to implement effective genetic improvement programs. To date, genome-wide association studies (GWAS) and gene expression analyses have been performed to identify candidate genes for these traits. However, GWAS mainly detect associations at the DNA level, while differential expression analyses usually have low power because they are typically based on small sample sizes. To detect candidate genes for breast muscle weight and IMF contents (intramuscular fat percentage and relative content of triglycerides, cholesterol, and phospholipids), we performed association analyses based on breast muscle transcriptomic data on approximately 400 Tiannong partridge chickens at slaughter age. RESULTS First, by performing an extensive simulation study, we evaluated the statistical properties of association analyses of gene expression levels and traits based on the linear mixed model (LMM) and three regularized linear regression models, i.e., least absolute shrinkage and selection operator (LASSO), ridge regression (RR), and elastic net (EN). The results show that LMM, LASSO and EN with tuning parameters that are determined based on the one standard error rule exhibited the lowest type I error rates. Using results from all three models, we detected 43 candidate genes with expression levels that were associated with breast muscle weight. In addition, candidate genes were detected for intramuscular fat percentage (1), triglyceride content (2), cholesterol content (1), and phospholipid content (1). Many of the identified genes have been demonstrated to play roles in the development and metabolism of skeletal muscle or adipocyte. Moreover, weighted gene co-expression network analyses revealed that many candidate genes were harbored by gene co-expression modules, which were also significantly correlated with the traits of interest. The results of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that these modules are involved in muscle development and contraction, and in lipid metabolism. CONCLUSIONS Our study provides valuable insight into the transcriptomic bases of breast muscle weight and IMF contents in Chinese indigenous yellow broilers. Our findings could be useful for the genetic improvement of these traits in broiler chickens.
Collapse
Affiliation(s)
- Huimin Kang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes; School of Life Science and Engineering, Foshan University, #33 Guang-yun-lu, Shishan, Nanhai, Foshan, 528231, Guangdong, People's Republic of China
| | - Di Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes; School of Life Science and Engineering, Foshan University, #33 Guang-yun-lu, Shishan, Nanhai, Foshan, 528231, Guangdong, People's Republic of China
| | - Hai Xiang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes; School of Life Science and Engineering, Foshan University, #33 Guang-yun-lu, Shishan, Nanhai, Foshan, 528231, Guangdong, People's Republic of China
| | - Jing Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes; School of Life Science and Engineering, Foshan University, #33 Guang-yun-lu, Shishan, Nanhai, Foshan, 528231, Guangdong, People's Republic of China
| | - Guiping Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes; School of Life Science and Engineering, Foshan University, #33 Guang-yun-lu, Shishan, Nanhai, Foshan, 528231, Guangdong, People's Republic of China. .,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China.
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes; School of Life Science and Engineering, Foshan University, #33 Guang-yun-lu, Shishan, Nanhai, Foshan, 528231, Guangdong, People's Republic of China. .,Guangdong Tinoo's Foods Group Co., Ltd, Jiangkou, Feilaixia, Qingcheng, Qingyuan, 511827, Guangdong, People's Republic of China.
| |
Collapse
|
6
|
Caccamo D, Currò M, Ientile R, Verderio EAM, Scala A, Mazzaglia A, Pennisi R, Musarra-Pizzo M, Zagami R, Neri G, Rosmini C, Potara M, Focsan M, Astilean S, Piperno A, Sciortino MT. Intracellular Fate and Impact on Gene Expression of Doxorubicin/Cyclodextrin-Graphene Nanomaterials at Sub-Toxic Concentration. Int J Mol Sci 2020; 21:ijms21144891. [PMID: 32664456 PMCID: PMC7402311 DOI: 10.3390/ijms21144891] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
The graphene road in nanomedicine still seems very long and winding because the current knowledge about graphene/cell interactions and the safety issues are not yet sufficiently clarified. Specifically, the impact of graphene exposure on gene expression is a largely unexplored concern. Herein, we investigated the intracellular fate of graphene (G) decorated with cyclodextrins (CD) and loaded with doxorubicin (DOX) and the modulation of genes involved in cancer-associated canonical pathways. Intracellular fate of GCD@DOX, tracked by FLIM, Raman mapping and fluorescence microscopy, evidenced the efficient cellular uptake of GCD@DOX and the presence of DOX in the nucleus, without graphene carrier. The NanoString nCounter™ platform provided evidence for 34 (out of 700) differentially expressed cancer-related genes in HEp-2 cells treated with GCD@DOX (25 µg/mL) compared with untreated cells. Cells treated with GCD alone (25 µg/mL) showed modification for 16 genes. Overall, 14 common genes were differentially expressed in both GCD and GCD@DOX treated cells and 4 of these genes with an opposite trend. The modification of cancer related genes also at sub-cytotoxic G concentration should be taken in consideration for the rational design of safe and effective G-based drug/gene delivery systems. The reliable advantages provided by NanoString® technology, such as sensibility and the direct RNA measurements, could be the cornerstone in this field.
Collapse
Affiliation(s)
- Daniela Caccamo
- Department of Biomedical Sciences, Dental Sciences and Morpho-Functional Imaging, Polyclinic Hospital University, 98125 Messina, Italy; (D.C.); (M.C.); (R.I.)
| | - Monica Currò
- Department of Biomedical Sciences, Dental Sciences and Morpho-Functional Imaging, Polyclinic Hospital University, 98125 Messina, Italy; (D.C.); (M.C.); (R.I.)
| | - Riccardo Ientile
- Department of Biomedical Sciences, Dental Sciences and Morpho-Functional Imaging, Polyclinic Hospital University, 98125 Messina, Italy; (D.C.); (M.C.); (R.I.)
| | - Elisabetta AM Verderio
- School of Science and Technology, Centre for Health, Ageing and Understanding of Disease, Nottingham Trent University, Nottingham NG11 8NS, UK;
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (R.P.); (M.M.P.); (G.N.); (C.R.)
| | - Antonino Mazzaglia
- CNR-Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.M.); (R.Z.)
| | - Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (R.P.); (M.M.P.); (G.N.); (C.R.)
- Department of Innate Immunology, Shenzhen International Institute for Biomedical Research, 140 Jinye Ave, Building A10, Life Science Park, Dapeng New District, Shenzhen 518119, China
| | - Maria Musarra-Pizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (R.P.); (M.M.P.); (G.N.); (C.R.)
| | - Roberto Zagami
- CNR-Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.M.); (R.Z.)
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (R.P.); (M.M.P.); (G.N.); (C.R.)
| | - Consolato Rosmini
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (R.P.); (M.M.P.); (G.N.); (C.R.)
| | - Monica Potara
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian Str. 42, 400271 Cluj-Napoca, Romania; (M.P.); (M.F.); (S.A.)
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian Str. 42, 400271 Cluj-Napoca, Romania; (M.P.); (M.F.); (S.A.)
| | - Simion Astilean
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian Str. 42, 400271 Cluj-Napoca, Romania; (M.P.); (M.F.); (S.A.)
- Department of Biomolecular Physics, Faculty of Physics, Babes-Bolyai University, M Kogalniceanu Str. 1, 400084 Cluj-Napoca, Romania
| | - Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (R.P.); (M.M.P.); (G.N.); (C.R.)
- Correspondence: (A.P.); (M.T.S.); Tel.: +39-090-6765173 (A.P.); +39-090-6765217 (M.T.S.)
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (R.P.); (M.M.P.); (G.N.); (C.R.)
- Correspondence: (A.P.); (M.T.S.); Tel.: +39-090-6765173 (A.P.); +39-090-6765217 (M.T.S.)
| |
Collapse
|
7
|
Prattapong P, Ngernsombat C, Aimjongjun S, Janvilisri T. CRISPR/Cas9-mediated double knockout of SRPK1 and SRPK2 in a nasopharyngeal carcinoma cell line. Cancer Rep (Hoboken) 2019; 3:e1224. [PMID: 32671994 DOI: 10.1002/cnr2.1224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/22/2019] [Accepted: 10/03/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Serine-arginine protein kinase (SRPK) is a regulator of alternative splicing events via phosphorylation of splicing factor proteins. Oncogenic roles of SRPK1 and SRPK2 have been reported in various types of cancer. To date, only SRPK1/2 specific inhibitors and small interfering RNA (siRNA) have been used for halting their function momentarily; however, there is no attempt to generate SRPK1/2 stable knockout cancer cells as a tool to investigate their roles in tumorigenesis. AIM Our objective is therefore to establish a nasopharyngeal carcinoma (NPC) cell line with stable SRPK1 or SRPK2 knockout and SRPK1/2 double knockout as a model to investigate their potential roles in NPC. METHODS AND RESULTS CNE1 was selected as a representative of NPC cell lines to create single and double knockout of SRPK1/2 proteins. SRPK1/2 KO plasmid with cas9, green fluorescent protein (GFP), and gRNA expression was cotransfected with SRPK1/2 homology-directed repair (HDR) plasmid containing puromycin resistance, red fluorescent protein (RFP), and 5' and 3' arm sequence for homologous recombination to CNE1 cells. The transfected CNE1 cells with GFP and RFP expression were sorted through fluorescence-activated cell sorting for further treatment with puromycin containing medium. This step generated stable single knockout of SRPK1 and SRPK2. The SRPK2 knockout NPC cells were used as a precursor for double knockout generation via transfection with Cre plasmid for excision of inserted material to generate puromycin-sensitive SRPK2 knockout clone. The puromycin-sensitive SRPK2 knockout cells were transfected with SRPK1 KO/HDR plasmid and treated with puromycin-containing medium. The puromycin-resistant cells of SRPK1/2 stable double knockout were expanded, and the corresponding protein expression was confirmed by western immunoblotting analysis. CONCLUSION Single and double knockout of SRPK1/2 were established using clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR-associated 9 (Cas9) system in an NPC cell line as a model for investigation of their splicing mechanism in NPC.
Collapse
Affiliation(s)
- Pongphol Prattapong
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Chawalit Ngernsombat
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sathid Aimjongjun
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|