1
|
Mulder M, Hwang S, Broser M, Brünle S, Skopintsev P, Schattenberg C, Schnick C, Hartmann S, Church J, Schapiro I, Dworkowski F, Weinert T, Hegemann P, Sun H, Standfuss J. Structural Insights Into the Opening Mechanism of C1C2 Channelrhodopsin. J Am Chem Soc 2025; 147:1282-1290. [PMID: 39680650 PMCID: PMC11726564 DOI: 10.1021/jacs.4c15402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024]
Abstract
Channelrhodopsins, light-gated cation channels, enable precise control of neural cell depolarization or hyperpolarization with light in the field of optogenetics. This study integrates time-resolved serial crystallography and atomistic molecular dynamics (MD) simulations to resolve the structural changes during C1C2 channelrhodopsin activation. Our observations reveal that within the crystal environment, C1C2 predominantly remains in a light-activated state with characteristics of the M390 intermediate. Here, rearrangement of retinal within its binding pocket partially opens the central gate toward the extracellular vestibule. These structural changes initiate channel opening but were insufficient to allow K+ flow. Adjusting protonation states to represent the subsequent N520 intermediate in our MD simulations induced further conformational changes, including rearrangements of transmembrane helices 2 and 7, that opened the inner gate and the putative ion-translocation pathway. This allowed spontaneous cation conduction with low conductance, aligning with experimental findings. Our findings provide critical structural insights into key intermediates of the channel opening mechanism, enhancing our understanding of ion conduction and selectivity in channelrhodopsins at an atomistic level.
Collapse
Affiliation(s)
- Matthias Mulder
- PSI
Center for Life Sciences, Laboratory for Biomolecular Research, Paul Scherrer Institut, Villigen 5232, Switzerland
| | - Songhwan Hwang
- Research
Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin 13125, Germany
- Institute
of Biology, Department of Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin 10115, Germany
| | - Matthias Broser
- Institute
of Biology, Department of Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin 10115, Germany
| | - Steffen Brünle
- PSI
Center for Life Sciences, Laboratory for Biomolecular Research, Paul Scherrer Institut, Villigen 5232, Switzerland
| | - Petr Skopintsev
- PSI
Center for Life Sciences, Laboratory for Biomolecular Research, Paul Scherrer Institut, Villigen 5232, Switzerland
| | - Caspar Schattenberg
- Research
Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin 13125, Germany
| | - Christina Schnick
- Institute
of Biology, Department of Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin 10115, Germany
| | - Sina Hartmann
- PSI
Center for Life Sciences, Laboratory for Biomolecular Research, Paul Scherrer Institut, Villigen 5232, Switzerland
| | - Jonathan Church
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Igor Schapiro
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Florian Dworkowski
- PSI
Center Photon Sciences, Laboratory for Femtochemistry, Paul Scherrer Institut, Villigen 5232, Switzerland
| | - Tobias Weinert
- PSI
Center for Life Sciences, Laboratory for Biomolecular Research, Paul Scherrer Institut, Villigen 5232, Switzerland
| | - Peter Hegemann
- Institute
of Biology, Department of Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin 10115, Germany
| | - Han Sun
- Research
Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin 13125, Germany
- Institute
of Chemistry, Technische Universität Berlin, Berlin 10623, Germany
| | - Jörg Standfuss
- PSI
Center for Life Sciences, Laboratory for Biomolecular Research, Paul Scherrer Institut, Villigen 5232, Switzerland
| |
Collapse
|
2
|
Lamm GHU, Zabelskii D, Balandin T, Gordeliy V, Wachtveitl J. Calcium-Sensitive Microbial Rhodopsin VirChR1: A Femtosecond to Second Photocycle Study. J Phys Chem Lett 2024; 15:5510-5516. [PMID: 38749015 DOI: 10.1021/acs.jpclett.4c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Viral rhodopsins are light-gated cation channels representing a novel class of microbial rhodopsins. For viral rhodopsin 1 subfamily members VirChR1 and OLPVR1, channel activity is abolished above a certain calcium concentration. Here we present a calcium-dependent spectroscopic analysis of VirChR1 on the femtosecond to second time scale. Unlike channelrhodopsin-2, VirChR1 possesses two intermediate states P1 and P2 on the ultrafast time scale, similar to J and K in ion-pumping rhodopsins. Subsequently, we observe multifaceted photocycle kinetics with up to seven intermediate states. Calcium predominantly affects the last photocycle steps, including the appearance of additional intermediates P6Ca and P7 representing the blocked channel. Furthermore, the photocycle of the counterion variant D80N is drastically altered, yielding intermediates with different spectra and kinetics compared to those of the wt. These findings demonstrate the central role of the counterion within the defined reaction sequence of microbial rhodopsins that ultimately defines the protein function.
Collapse
Affiliation(s)
- Gerrit H U Lamm
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | | | - Taras Balandin
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Valentin Gordeliy
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
- University Grenoble Alpes, CEA, CNRS, Institute de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
3
|
Bühl E, Resler T, Lam R, Asido M, Bamberg E, Schlesinger R, Bamann C, Heberle J, Wachtveitl J. Assessing the Role of R120 in the Gating of CrChR2 by Time-Resolved Spectroscopy from Femtoseconds to Seconds. J Am Chem Soc 2023; 145:21832-21840. [PMID: 37773976 DOI: 10.1021/jacs.3c05399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The light-gated ion channel channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2) is the most frequently used optogenetic tool in neurosciences. However, the precise molecular mechanism of the channel opening and the correlation among retinal isomerization, the photocycle, and the channel activity of the protein are missing. Here, we present electrophysiological and spectroscopic investigations on the R120H variant of CrChR2. R120 is a key residue in an extended network linking the retinal chromophore to several gates of the ion channel. We show that despite the deficient channel activity, the photocycle of the variant is intact. In a comparative study for R120H and the wild type, we resolve the vibrational changes in the spectral range of the retinal and amide I bands across the time range from femtoseconds to seconds. Analysis of the amide I mode reveals a significant impairment of the ultrafast protein response after retinal excitation. We conclude that channel opening in CrChR2 is prepared immediately after retinal excitation. Additionally, chromophore isomerization is essential for both photocycle and channel activities, although both processes can occur independently.
Collapse
Affiliation(s)
- Elena Bühl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue Strasse 7, 60438 Frankfurt, Germany
| | - Tom Resler
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Rebecca Lam
- Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany
| | - Marvin Asido
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue Strasse 7, 60438 Frankfurt, Germany
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany
| | - Ramona Schlesinger
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Christian Bamann
- Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany
| | - Joachim Heberle
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue Strasse 7, 60438 Frankfurt, Germany
| |
Collapse
|
4
|
Sineshchekov OA, Govorunova EG, Li H, Wang Y, Spudich JL. Sequential absorption of two photons creates a bistable form of RubyACR responsible for its strong desensitization. Proc Natl Acad Sci U S A 2023; 120:e2301521120. [PMID: 37186849 PMCID: PMC10214203 DOI: 10.1073/pnas.2301521120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Channelrhodopsins with red-shifted absorption, rare in nature, are highly desired for optogenetics because light of longer wavelengths more deeply penetrates biological tissue. RubyACRs (Anion ChannelRhodopsins), a group of four closely related anion-conducting channelrhodopsins from thraustochytrid protists, are the most red-shifted channelrhodopsins known with absorption maxima up to 610 nm. Their photocurrents are large, as is typical of blue- and green-absorbing ACRs, but they rapidly decrease during continuous illumination (desensitization) and extremely slowly recover in the dark. Here, we show that long-lasting desensitization of RubyACRs results from photochemistry not observed in any previously studied channelrhodopsins. Absorption of a second photon by a photocycle intermediate with maximal absorption at 640 nm (P640) renders RubyACR bistable (i.e., very slowly interconvertible between two spectrally distinct forms). The photocycle of this bistable form involves long-lived nonconducting states (Llong and Mlong), formation of which is the reason for long-lasting desensitization of RubyACR photocurrents. Both Llong and Mlong are photoactive and convert to the initial unphotolyzed state upon blue or ultraviolet (UV) illumination, respectively. We show that desensitization of RubyACRs can be reduced or even eliminated by using ns laser flashes, trains of short light pulses instead of continuous illumination to avoid formation of Llong and Mlong, or by application of pulses of blue light between pulses of red light to photoconvert Llong to the initial unphotolyzed state.
Collapse
Affiliation(s)
- Oleg A. Sineshchekov
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX77030
| | - Elena G. Govorunova
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX77030
| | - Hai Li
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX77030
| | - Yumei Wang
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX77030
| | - John L. Spudich
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX77030
| |
Collapse
|
5
|
Asido M, Wachtveitl J. Photochemistry of the Light-Driven Sodium Pump Krokinobacter eikastus Rhodopsin 2 and Its Implications on Microbial Rhodopsin Research: Retrospective and Perspective. J Phys Chem B 2023; 127:3766-3773. [PMID: 36919947 DOI: 10.1021/acs.jpcb.2c08933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The discovery of the light-driven sodium pump Krokinobacter eikastus rhodopsin 2 (KR2) in 2013 has changed the paradigm that cation transport in microbial rhodopsins is restricted to the translocation of protons. Even though this finding is already remarkable by itself, it also reignited more general discussions about the functional mechanism of ion transport. The unique composition of the retinal binding pocket in KR2 with a tight interaction between the retinal Schiff base and its respective counterion D116 also has interesting implications on the photochemical pathway of the chromophore. Here, we discuss the most recent advances in our understanding of the KR2 functionality from the primary event of photon absorption by all-trans retinal up to the actual protein response in the later phases of the photocycle, mainly from the point of view of optical spectroscopy. In this context, we furthermore highlight some of the ongoing debates on the photochemistry of microbial rhodopsins and give some perspectives for promising future directions in this field of research.
Collapse
Affiliation(s)
- Marvin Asido
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue Straße 7, 60438 Frankfurt am Main, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue Straße 7, 60438 Frankfurt am Main, Germany
| |
Collapse
|
6
|
van Stokkum IH, Hontani Y, Vierock J, Krause BS, Hegemann P, Kennis JT. Reaction Dynamics in the Chrimson Channelrhodopsin: Observation of Product-State Evolution and Slow Diffusive Protein Motions. J Phys Chem Lett 2023; 14:1485-1493. [PMID: 36745035 PMCID: PMC9940203 DOI: 10.1021/acs.jpclett.2c03110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Chrimson is a red-light absorbing channelrhodopsin useful for deep-tissue optogenetics applications. Here, we present the Chrimson reaction dynamics from femtoseconds to seconds, analyzed with target analysis methods to disentangle spectrally and temporally overlapping excited- and product-state dynamics. We found multiple phases ranging from ≈100 fs to ≈20 ps in the excited-state decay, where spectral features overlapping with stimulated emission components were assigned to early dynamics of K-like species on a 10 ps time scale. Selective excitation at the maximum or the blue edge of the absorption spectrum resulted in spectrally distinct but kinetically similar excited-state and product-state species, which gradually became indistinguishable on the μs to 100 μs time scales. Hence, by removing specific protein conformations within an inhomogeneously broadened ensemble, we resolved slow protein backbone and amino acid side-chain motions in the dark that underlie inhomogeneous broadening, demonstrating that the latter represents a dynamic interconversion between protein substates.
Collapse
Affiliation(s)
- Ivo H.M. van Stokkum
- Department
of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HVAmsterdam, The Netherlands
| | - Yusaku Hontani
- Department
of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HVAmsterdam, The Netherlands
| | - Johannes Vierock
- Institut
für Biologie, Experimentelle Biophysik, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115Berlin, Germany
| | - Benjamin S. Krause
- Institut
für Biologie, Experimentelle Biophysik, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115Berlin, Germany
| | - Peter Hegemann
- Institut
für Biologie, Experimentelle Biophysik, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115Berlin, Germany
| | - John T.M. Kennis
- Department
of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HVAmsterdam, The Netherlands
| |
Collapse
|
7
|
Walter M, Schubert L, Heberle J, Schlesinger R, Losi A. Time-resolved photoacoustics of channelrhodopsins: early energetics and light-driven volume changes. Photochem Photobiol Sci 2022; 22:477-486. [PMID: 36273368 DOI: 10.1007/s43630-022-00327-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022]
Abstract
AbstractIn biological photoreceptors, the energy stored in early transient species is a key feature to drive the photocycle or a chain of reactions. Time-resolved photoacoustics (PA) can explore the energy landscape of transient species formed within few ns after photoexcitation, as well as volumetric changes (ΔV) of these intermediates with respect to the parental state. In this work, PA identified these important parameters for several channelrhodopsins, namely CaChR1 from Chlamydomonas augustae and CrChR2 from Chlamydomonas reinhardtii and various variants. PA has access to the sub-ns formation of the early photoproduct P1 and to its relaxation, provided that this latter process occurs within a few μs. We found that ΔVP1 for CaChR1 is ca. 12 mL/mol, while it is much smaller for CrChR2 (4.7 mL/mol) and for H. salinarum bacteriorhodopsin (HsBR, ΔVK = 2.8 mL/mol). PA experiments on variants strongly indicate that part of this large ΔVP1 value for CaChR1 is caused by the protonation dynamics of the Schiff base counterion complex involving E169 and D299. PA data further show that the energy level of P1 is higher in CrChR2 (ca. 96 kJ/mol) than in CaChr1 (ca. 46 kJ/mol), comparable to the energy level of the K state of HsBR (60 kJ/mol). Instrumental to gain these molecular values from the raw PA data was the estimation of the quantum yield (Φ) for P1 formation via transient spectroscopy; for both channelrhodopsins, ΦP2 was evaluated as ca. 0.4.
Graphical Abstract
Collapse
Affiliation(s)
- Maria Walter
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Luiz Schubert
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Joachim Heberle
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Ramona Schlesinger
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Aba Losi
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area Delle Scienze 7/A, 43124, Parma, Italy.
| |
Collapse
|
8
|
Govorunova EG, Gou Y, Sineshchekov OA, Li H, Lu X, Wang Y, Brown LS, St-Pierre F, Xue M, Spudich JL. Kalium channelrhodopsins are natural light-gated potassium channels that mediate optogenetic inhibition. Nat Neurosci 2022; 25:967-974. [PMID: 35726059 PMCID: PMC9854242 DOI: 10.1038/s41593-022-01094-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 05/12/2022] [Indexed: 02/02/2023]
Abstract
Channelrhodopsins are used widely for optical control of neurons, in which they generate photoinduced proton, sodium or chloride influx. Potassium (K+) is central to neuron electrophysiology, yet no natural K+-selective light-gated channel has been identified. Here, we report kalium channelrhodopsins (KCRs) from Hyphochytrium catenoides. Previously known gated potassium channels are mainly ligand- or voltage-gated and share a conserved K+-selectivity filter. KCRs differ in that they are light-gated and have independently evolved an alternative K+ selectivity mechanism. The KCRs are potent, highly selective of K+ over Na+, and open in less than 1 ms following photoactivation. The permeability ratio PK/PNa of 23 makes H. catenoides KCR1 (HcKCR1) a powerful hyperpolarizing tool to suppress excitable cell firing upon illumination, demonstrated here in mouse cortical neurons. HcKCR1 enables optogenetic control of K+ gradients, which is promising for the study and potential treatment of potassium channelopathies such as epilepsy, Parkinson's disease and long-QT syndrome and other cardiac arrhythmias.
Collapse
Affiliation(s)
- Elena G Govorunova
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Yueyang Gou
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Oleg A Sineshchekov
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Hai Li
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Xiaoyu Lu
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA
| | - Yumei Wang
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
| | - François St-Pierre
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Mingshan Xue
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - John L Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
9
|
Xin Q, Cheng J, Wang H, Zhang W, Lu H, Zhou J, Lo GV, Dou Y, Yuan S. Modeling the syn-cycle in the light activated opening of the channelrhodopsin-2 ion channel. RSC Adv 2022; 12:6515-6524. [PMID: 35424642 PMCID: PMC8981705 DOI: 10.1039/d1ra08521b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/14/2022] [Indexed: 11/21/2022] Open
Abstract
The ion channel of channelrhodopsin-2 (ChR2) is activated by absorbing light. The light stimulates retinal to isomerize to start the photocycle. There are two pathways for photocycles, which are caused by isomerization of the retinal from all-trans, 15-anti to 13-cis, 15-anti in the dark-adapted state (anti-cycle) and from 13-cis, 15-syn to all-trans, 15-syn in the light-adapted state (syn-cycle). In this work, the structure of the syn-cycle intermediate and mechanism of channel opening were studied by molecular dynamics (MD) and steered molecular dynamics (SMD) simulations. Due to the lack of crystal structure of intermediates in the syn-cycle of ChR2, the intermediate models were constructed from the homologous intermediates in the anti-cycle. The isomerization of retinal was shown to cause the central gate (CG) hydrogen bond network to rearrange, cutting the link between TM2 and TM7. TM2 is moved by the intrahelical hydrogen bond of E90 and K93, and induced the intracellular gate (ICG) to expand. The ion penetration pathway between TM1, TM2, TM3 and TM7 in the P500* state was observed by MD simulations. However, this channel is not fully opened compared with the homologous P500 state in the anti-cycle. In addition, the protons on Schiff bases were found to be unable to form hydrogen bonds with the counter residues (E123 and D253) in the P500* state, preventing an evolution of the P500* state to a P390-like state in the syn-cycle. Modelling the syn-cycle is a series of operations on the ChR2 crystal structure (PDB ID: 6EID). By replacement and isomerization, we obtained P500* and P480 intermediates. A feasible explanation that no P390* was observed in experiment was inferred.![]()
Collapse
Affiliation(s)
- Qi Xin
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 40065, China
| | - Jie Cheng
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 40065, China
| | - Hongwei Wang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane St Lucia, QLD 4072, Australia
| | - Wenying Zhang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 40065, China
| | - Hong Lu
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 40065, China
| | - Junpeng Zhou
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 40065, China
| | - Glenn V. Lo
- Department of Chemistry and Physical Sciences, Nicholls State University, P.O. Box 2022, Thibodaux, LA 70310, USA
| | - Yusheng Dou
- Department of Chemistry and Physical Sciences, Nicholls State University, P.O. Box 2022, Thibodaux, LA 70310, USA
| | - Shuai Yuan
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 40065, China
| |
Collapse
|
10
|
Cheng J, Zhang W, Zhou S, Ran X, Shang Y, Lo GV, Dou Y, Yuan S. The effect on ion channel of different protonation states of E90 in channelrhodopsin-2: a molecular dynamics simulation. RSC Adv 2021; 11:14542-14551. [PMID: 35424009 PMCID: PMC8697799 DOI: 10.1039/d1ra01879e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/13/2021] [Indexed: 11/21/2022] Open
Abstract
Channelrhodopsin-2 (ChR2) is a cationic channel protein that has been extensively studied in optogenetics. The ion channel is opened via a series of proton transfers and H-bond changes during the photocycle but the detailed mechanism is still unknown. Molecular dynamics (MD) simulations with enhanced sampling were performed on the dark-adapted state (i.e., D470) and two photocycle intermediates (P1500 and P2390) to study the proton transfer path of the Schiff base and the subsequent conformational changes. The results suggest there are two possible proton transfer pathways from the Schiff base to proton acceptors (i.e., E123 or D253), depending on the protonation of E90. If E90 is protonated in the P1500 state, the proton on the Schiff base will transfer to E123. The polyene chain of 13-cis retinal tilts and opens the channel that detours the blocking central gate (CG) and forms a narrow channel through the transmembrane helices (TM) 2, 3, 6 and 7. In contrast, if E90 deprotonates after retinal isomerization, the primary proton acceptor is D253, and an almost-open channel through TM1, 2, 3 and 7 is generated. The channel diameter is very close to the experimental value. The potential mean force (PMF) suggests that the free energy is extremely low for ions passing through this channel. With E90 protonated, the proton acceptor of RSBH+ is E123 with a narrow channel along TM3; while with E90 deprotonated, proton transfer from RSBH+ to D253 generates an approximately open channel along TM2.![]()
Collapse
Affiliation(s)
- Jie Cheng
- Chongqing Key Laboratory of Big Data for Bio Intelligence
- Chongqing University of Posts and Telecommunications
- Chongqing 40065
- China
| | - Wenying Zhang
- Chongqing Key Laboratory of Big Data for Bio Intelligence
- Chongqing University of Posts and Telecommunications
- Chongqing 40065
- China
| | - Shuangyan Zhou
- Chongqing Key Laboratory of Big Data for Bio Intelligence
- Chongqing University of Posts and Telecommunications
- Chongqing 40065
- China
| | - Xu Ran
- Chongqing Key Laboratory of Big Data for Bio Intelligence
- Chongqing University of Posts and Telecommunications
- Chongqing 40065
- China
| | - Yiwen Shang
- Chongqing Key Laboratory of Big Data for Bio Intelligence
- Chongqing University of Posts and Telecommunications
- Chongqing 40065
- China
| | - Glenn V. Lo
- Department of Chemistry and Physical Sciences
- Nicholls State University
- Thibodaux
- USA
| | - Yusheng Dou
- Department of Chemistry and Physical Sciences
- Nicholls State University
- Thibodaux
- USA
| | - Shuai Yuan
- Chongqing Key Laboratory of Big Data for Bio Intelligence
- Chongqing University of Posts and Telecommunications
- Chongqing 40065
- China
| |
Collapse
|
11
|
Eberhardt P, Slavov C, Sörmann J, Bamann C, Braun M, Wachtveitl J. Temperature Dependence of the Krokinobacter rhodopsin 2 Kinetics. Biophys J 2020; 120:568-575. [PMID: 33347887 DOI: 10.1016/j.bpj.2020.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/13/2020] [Accepted: 12/07/2020] [Indexed: 11/16/2022] Open
Abstract
We investigated the temperature-dependent kinetics of the light-driven Na+ pump Krokinobacter rhodopsin 2 (KR2) at Na+-pumping conditions. The recorded microsecond flash photolysis data were subjected to detailed global target analysis, employing Eyring constraints and spectral decomposition. The analysis resulted in the kinetic rates, the composition of the different photocycle equilibria, and the spectra of the involved photointermediates. Our results show that with the temperature increase (from 10 to 40°C), the overall photocycle duration is accelerated by a factor of 6, with the L-to-M transition exhibiting an impressive 40-fold increase. It follows from the analysis that in KR2 the chromophore and the protein scaffold are more kinetically decoupled than in other microbial rhodopsins. We link this effect to the rigidity of the retinal protein environment. This kinetic decoupling should be considered in future studies and could potentially be exploited for fine-tuning biotechnological applications.
Collapse
Affiliation(s)
- Peter Eberhardt
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Chavdar Slavov
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Janina Sörmann
- Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Christian Bamann
- Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Markus Braun
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
12
|
Lavigne C, Brumer P. Pulsed two-photon coherent control of channelrhodopsin-2 photocurrent in live brain cells. J Chem Phys 2020; 153:034303. [PMID: 32716190 DOI: 10.1063/5.0012642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Channelrhodopsin-2 (ChR2) is an ion channel activated by the absorption of light. A recent experiment demonstrated that the current emanating from neurons in live brain cells expressing ChR2 can be controlled using two-photon phase control. Here, we propose an experimentally testable coherent control mechanism for this phenomenon. Significantly, we describe how femtosecond, quantum coherent processes arising from weak-field ultrafast excitation are responsible for the reported control of the millisecond classical dynamics of the neuronal current.
Collapse
Affiliation(s)
- Cyrille Lavigne
- Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Paul Brumer
- Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
13
|
Groenhof G, Modi V, Morozov D. Observe while it happens: catching photoactive proteins in the act with non-adiabatic molecular dynamics simulations. Curr Opin Struct Biol 2020; 61:106-112. [PMID: 31927414 DOI: 10.1016/j.sbi.2019.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/14/2019] [Indexed: 01/24/2023]
Abstract
Organisms use photo-receptors to react to light. The first step is usually the absorption of a photon by a prosthetic group embedded inside the photo-receptor, often a conjugated chromophore. The electronic changes in the chromophore induced by photo-absorption can trigger a cascade of structural or chemical transformations that culminate into a response to light. Understanding how these proteins have evolved to mediate their activation process has remained challenging because the required time and spacial resolutions are notoriously difficult to achieve experimentally. Therefore, mechanistic insights into photoreceptor activation have been predominantly obtained with computer simulations. Here we briefly outline the challenges associated with such computations and review the progress made in this field.
Collapse
Affiliation(s)
- Gerrit Groenhof
- Nanoscience Center and Department of Chemistry, P.O. Box 35, 40014 University of Jyväskylä, Finland.
| | - Vaibhav Modi
- Nanoscience Center and Department of Chemistry, P.O. Box 35, 40014 University of Jyväskylä, Finland
| | - Dmitry Morozov
- Nanoscience Center and Department of Chemistry, P.O. Box 35, 40014 University of Jyväskylä, Finland
| |
Collapse
|
14
|
Penzkofer A, Silapetere A, Hegemann P. Absorption and Emission Spectroscopic Investigation of the Thermal Dynamics of the Archaerhodopsin 3 Based Fluorescent Voltage Sensor QuasAr1. Int J Mol Sci 2019; 20:E4086. [PMID: 31438573 PMCID: PMC6747118 DOI: 10.3390/ijms20174086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022] Open
Abstract
QuasAr1 is a fluorescent voltage sensor derived from Archaerhodopsin 3 (Arch) of Halorubrum sodomense by directed evolution. Here we report absorption and emission spectroscopic studies of QuasAr1 in Tris buffer at pH 8. Absorption cross-section spectra, fluorescence quantum distributions, fluorescence quantum yields, and fluorescence excitation spectra were determined. The thermal stability of QuasAr1 was studied by long-time attenuation coefficient measurements at room temperature (23 ± 2 °C) and at 2.5 ± 0.5 °C. The apparent melting temperature was determined by stepwise sample heating up and cooling down (obtained apparent melting temperature: 65 ± 3 °C). In the protein melting process the originally present protonated retinal Schiff base (PRSB) with absorption maximum at 580 nm converted to de-protonated retinal Schiff base (RSB) with absorption maximum at 380 nm. Long-time storage of QuasAr1 at temperatures around 2.5 °C and around 23 °C caused gradual protonated retinal Schiff base isomer changes to other isomer conformations, de-protonation to retinal Schiff base isomers, and apoprotein structure changes showing up in ultraviolet absorption increase. Reaction coordinate schemes are presented for the thermal protonated retinal Schiff base isomerizations and deprotonations in parallel with the dynamic apoprotein restructurings.
Collapse
Affiliation(s)
- Alfons Penzkofer
- Fakultät für Physik, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Arita Silapetere
- Experimentelle Biophysik, Institut für Biologie, Humboldt Universität zu Berlin, Invalidenstraße 42, D-10115 Berlin, Germany
| | - Peter Hegemann
- Experimentelle Biophysik, Institut für Biologie, Humboldt Universität zu Berlin, Invalidenstraße 42, D-10115 Berlin, Germany
| |
Collapse
|
15
|
Liang R, Liu F, Martínez TJ. Nonadiabatic Photodynamics of Retinal Protonated Schiff Base in Channelrhodopsin 2. J Phys Chem Lett 2019; 10:2862-2868. [PMID: 31083920 DOI: 10.1021/acs.jpclett.9b00701] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Channelrhodopsin 2 (ChR2) is a light-gated ion channel and an important tool in optogenetics. Photoisomerization of retinal protonated Schiff base (RPSB) in ChR2 triggers channel activation. Despite the importance of ChR2 in optogenetics, the detailed mechanism for photoisomerization and channel activation is still not fully understood. Here, we report on computer simulations to investigate the photoisomerization mechanism and its effect on the activation of ChR2. Nonadiabatic dynamics simulation of ChR2 was carried out using the ab initio multiple spawning (AIMS) method and quantum mechanics/molecular mechanics (QM/MM) with a restricted ensemble Kohn-Sham (REKS) treatment of the QM region. Our results agree well with spectroscopic measurements and reveal that the RPSB isomerization is highly specific around the C13=C14 bond and follows the "aborted bicycle-pedal" mechanism. In addition, RPSB photoisomerization facilitates its deprotonation and partially increases the hydration level in the channel, which could trigger subsequent channel opening and ion conduction.
Collapse
Affiliation(s)
- Ruibin Liang
- Department of Chemistry and The PULSE Institute , Stanford University , Stanford , California 94305 , United States
- SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Fang Liu
- Department of Chemistry and The PULSE Institute , Stanford University , Stanford , California 94305 , United States
- SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Todd J Martínez
- Department of Chemistry and The PULSE Institute , Stanford University , Stanford , California 94305 , United States
- SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| |
Collapse
|
16
|
Hontani Y, Ganapathy S, Frehan S, Kloz M, de Grip WJ, Kennis JTM. Photoreaction Dynamics of Red-Shifting Retinal Analogues Reconstituted in Proteorhodopsin. J Phys Chem B 2019; 123:4242-4250. [PMID: 30998011 PMCID: PMC6526469 DOI: 10.1021/acs.jpcb.9b01136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Microbial rhodopsins
constitute a key protein family in optobiotechnological
applications such as optogenetics and voltage imaging. Spectral tuning
of rhodopsins into the deep-red and near-infrared spectral regions
is of great demand in such applications because more bathochromic
light into the near-infrared range penetrates deeper in living tissue.
Recently, retinal analogues have been successfully used in ion transporting
and fluorescent rhodopsins to achieve red-shifted absorption, activity,
and emission properties. Understanding their photochemical mechanism
is essential for further design of appropriate retinal analogues but
is yet only poorly understood for most retinal analogue pigments.
Here, we report the photoreaction dynamics of red-shifted analogue
pigments of the proton pump proteorhodopsin (PR) containing A2 (all-trans-3,4-dehydroretinal), MOA2 (all-trans-3-methoxy-3,4-dehydroretinal), or DMAR (all-trans-3-dimethylamino-16-nor-1,2,3,4-didehydroretinal), utilizing femto-
to submillisecond transient absorption spectroscopy. We found that
the A2 analogue photoisomerizes in 1.4, 3.0, and/or 13 ps upon 510
nm light illumination, which is comparable to the native retinal (A1)
in PR. On the other hand, the deprotonation of the A2 pigment Schiff
base was observed with a dominant time constant of 67 μs, which
is significantly slower than the A1 pigment. In the MOA2 pigment,
no isomerization or photoproduct formation was detected upon 520 nm
excitation, implying that all the excited molecules returned to the
initial ground state in 2.0 and 4.2 ps. The DMAR pigment showed very
slow excited state dynamics similar to the previously studied MMAR
pigment, but only very little photoproduct was formed. The low efficiency
of the photoproduct formation likely is the reason why DMAR analogue
pigments of PR showed very weak proton pumping activity.
Collapse
Affiliation(s)
- Yusaku Hontani
- Department of Physics and Astronomy , Vrije Universiteit , Amsterdam 1081 HV , The Netherlands
| | - Srividya Ganapathy
- Department of Biophysical Organic Chemistry, Leiden Institute of Chemistry, Gorlaeus Laboratories , Leiden University , Leiden 2300 RA , The Netherlands
| | - Sean Frehan
- Department of Physics and Astronomy , Vrije Universiteit , Amsterdam 1081 HV , The Netherlands
| | - Miroslav Kloz
- ELI-Beamlines , Institute of Physics , Na Slovance 2 , Praha 8 182 21 , Czech Republic
| | - Willem J de Grip
- Department of Biophysical Organic Chemistry, Leiden Institute of Chemistry, Gorlaeus Laboratories , Leiden University , Leiden 2300 RA , The Netherlands.,Department of Biochemistry , Radboud University Medical Center , Nijmegen 6500 HB , The Netherlands
| | - John T M Kennis
- Department of Physics and Astronomy , Vrije Universiteit , Amsterdam 1081 HV , The Netherlands
| |
Collapse
|
17
|
Unifying photocycle model for light adaptation and temporal evolution of cation conductance in channelrhodopsin-2. Proc Natl Acad Sci U S A 2019; 116:9380-9389. [PMID: 31004059 PMCID: PMC6510988 DOI: 10.1073/pnas.1818707116] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Although channelrhodopsin (ChR) is a widely applied light-activated ion channel, important properties such as light adaptation, photocurrent inactivation, and alteration of the ion selectivity during continuous illumination are not well understood from a molecular perspective. Herein, we address these open questions using single-turnover electrophysiology, time-resolved step-scan FTIR, and Raman spectroscopy of fully dark-adapted ChR2. This yields a unifying parallel photocycle model integrating now all so far controversial discussed data. In dark-adapted ChR2, the protonated retinal Schiff base chromophore (RSBH+) adopts an all-trans,C=N-anti conformation only. Upon light activation, a branching reaction into either a 13-cis,C=N-anti or a 13-cis,C=N-syn retinal conformation occurs. The anti-cycle features sequential H+ and Na+ conductance in a late M-like state and an N-like open-channel state. In contrast, the 13-cis,C=N-syn isomer represents a second closed-channel state identical to the long-lived P480 state, which has been previously assigned to a late intermediate in a single-photocycle model. Light excitation of P480 induces a parallel syn-photocycle with an open-channel state of small conductance and high proton selectivity. E90 becomes deprotonated in P480 and stays deprotonated in the C=N-syn cycle. Deprotonation of E90 and successive pore hydration are crucial for late proton conductance following light adaptation. Parallel anti- and syn-photocycles now explain inactivation and ion selectivity changes of ChR2 during continuous illumination, fostering the future rational design of optogenetic tools.
Collapse
|
18
|
Bühl E, Eberhardt P, Bamann C, Bamberg E, Braun M, Wachtveitl J. Ultrafast Protein Response in Channelrhodopsin-2 Studied by Time-Resolved Infrared Spectroscopy. J Phys Chem Lett 2018; 9:7180-7184. [PMID: 30525663 DOI: 10.1021/acs.jpclett.8b03382] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ultrafast infrared transient absorption in the carbonyl vibrational region of protonated aspartate and glutamate residues in channelrhodopsin-2 from Chlamydomonas reinhardtii shows immediate protein response to retinal excitation. The observed difference bands are formed directly after the excitation on the subpicosecond time scale and were assigned to side chains in the retinal vicinity, such as D156 and E90. This finding implies an ultrafast and effective energy transfer from the retinal to its environment via hydrogen-bonded networks and reveals extraordinarily strong chromophore-protein coupling and intense interaction within the protein. Relevance to the protein function as an optically gated ion channel is discussed.
Collapse
Affiliation(s)
- Elena Bühl
- Institute of Physical and Theoretical Chemistry , Goethe University , Max von Laue-Straße 7 , 60438 Frankfurt am Main , Germany
| | - Peter Eberhardt
- Institute of Physical and Theoretical Chemistry , Goethe University , Max von Laue-Straße 7 , 60438 Frankfurt am Main , Germany
| | - Christian Bamann
- Max Planck Institute of Biophysics , Max von Laue-Straße 3 , 60438 Frankfurt am Main , Germany
| | - Ernst Bamberg
- Max Planck Institute of Biophysics , Max von Laue-Straße 3 , 60438 Frankfurt am Main , Germany
| | - Markus Braun
- Institute of Physical and Theoretical Chemistry , Goethe University , Max von Laue-Straße 7 , 60438 Frankfurt am Main , Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry , Goethe University , Max von Laue-Straße 7 , 60438 Frankfurt am Main , Germany
| |
Collapse
|
19
|
Hontani Y, Ganapathy S, Frehan S, Kloz M, de Grip WJ, Kennis JTM. Strong pH-Dependent Near-Infrared Fluorescence in a Microbial Rhodopsin Reconstituted with a Red-Shifting Retinal Analogue. J Phys Chem Lett 2018; 9:6469-6474. [PMID: 30376338 PMCID: PMC6240888 DOI: 10.1021/acs.jpclett.8b02780] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/30/2018] [Indexed: 06/08/2023]
Abstract
Near-infrared (NIR)-driven rhodopsins are of great interest in optogenetics and other optobiotechnological developments such as artificial photosynthesis and deep-tissue voltage imaging. Here we report that the proton pump proteorhodopsin (PR) containing a NIR-active retinal analogue (PR:MMAR) exhibits intense NIR fluorescence at a quantum yield of 3.3%. This is 130 times higher than native PR ( Lenz , M. O. ; Biophys J. 2006 , 91 , 255 - 262 ) and 3-8 times higher than the QuasAr and PROPS voltage sensors ( Kralj , J. ; Science 2011 , 333 , 345 - 348 ; Hochbaum , D. R. ; Nat. Methods 2014 , 11 , 825 - 833 ). The NIR fluorescence strongly depends on the pH in the range of 6-8.5, suggesting potential application of MMAR-binding proteins as ultrasensitive NIR-driven pH and/or voltage sensors. Femtosecond transient absorption spectroscopy showed that upon near-IR excitation, PR:MMAR features an unusually long fluorescence lifetime of 310 ps and the absence of isomerized photoproducts, consistent with the high fluorescence quantum yield. Stimulated Raman analysis indicates that the NIR-absorbing species develops upon protonation of a conserved aspartate, which promotes charge delocalization and bond length leveling due to an additional methylamino group in MMAR, in essence providing a secondary protonated Schiff base. This results in much smaller bond length alteration along the conjugated backbone, thereby conferring significant single-bond character to the C13═C14 bond and structural deformation of the chromophore, which interferes with photoinduced isomerization and extends the lifetime for fluorescence. Hence, our studies allow for a molecular understanding of the relation between absorption/emission wavelength, isomerization, and fluorescence in PR:MMAR. As acidification enhances the resonance state, this explains the strong pH dependence of the NIR emission.
Collapse
Affiliation(s)
- Yusaku Hontani
- Department
of Physics and Astronomy, Vrije Universiteit, Amsterdam 1081 HV, The Netherlands
| | - Srividya Ganapathy
- Department
of Biophysical Organic Chemistry, Leiden Institute of
Chemistry, Gorlaeus Laboratories, Leiden University, Leiden 2300 RA, The Netherlands
| | - Sean Frehan
- Department
of Physics and Astronomy, Vrije Universiteit, Amsterdam 1081 HV, The Netherlands
| | - Miroslav Kloz
- Department
of Physics and Astronomy, Vrije Universiteit, Amsterdam 1081 HV, The Netherlands
- ELI-Beamlines,
Institute of Physics, Na Slovance 2, 182 21 Praha 8, Czech Republic
| | - Willem J. de Grip
- Department
of Biophysical Organic Chemistry, Leiden Institute of
Chemistry, Gorlaeus Laboratories, Leiden University, Leiden 2300 RA, The Netherlands
- Department
of Biochemistry, Radboud University Medical
Center, Nijmegen 6500 HB, The Netherlands
| | - John T. M. Kennis
- Department
of Physics and Astronomy, Vrije Universiteit, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
20
|
Cheng C, Kamiya M, Takemoto M, Ishitani R, Nureki O, Yoshida N, Hayashi S. An Atomistic Model of a Precursor State of Light-Induced Channel Opening of Channelrhodopsin. Biophys J 2018; 115:1281-1291. [PMID: 30236783 PMCID: PMC6170652 DOI: 10.1016/j.bpj.2018.08.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 01/01/2023] Open
Abstract
Channelrhodopsins (ChRs) are microbial light-gated ion channels with a retinal chromophore and are widely utilized in optogenetics to precisely control neuronal activity with light. Despite increasing understanding of their structures and photoactivation kinetics, the atomistic mechanism of light gating and ion conduction remains elusive. Here, we present an atomic structural model of a chimeric ChR in a precursor state of the channel opening determined by an accurate hybrid molecular simulation technique and a statistical theory of internal water distribution. The photoactivated structure features extensive tilt of the chromophore accompanied by redistribution of water molecules in its binding pocket, which is absent in previously known photoactivated structures of analogous photoreceptors, and widely agrees with structural and spectroscopic experimental evidence of ChRs. The atomistic model manifests a photoactivated ion-conduction pathway that is markedly different from a previously proposed one and successfully explains experimentally observed mutagenic effects on key channel properties.
Collapse
Affiliation(s)
- Cheng Cheng
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Motoshi Kamiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Mizuki Takemoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Ryuichiro Ishitani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Norio Yoshida
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka, Japan.
| | - Shigehiko Hayashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
21
|
Stamatakis AM, Schachter MJ, Gulati S, Zitelli KT, Malanowski S, Tajik A, Fritz C, Trulson M, Otte SL. Simultaneous Optogenetics and Cellular Resolution Calcium Imaging During Active Behavior Using a Miniaturized Microscope. Front Neurosci 2018; 12:496. [PMID: 30087590 PMCID: PMC6066578 DOI: 10.3389/fnins.2018.00496] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/02/2018] [Indexed: 12/13/2022] Open
Abstract
The ability to precisely monitor and manipulate neural circuits is essential to understand the brain. Advancements over the last decade in optical techniques such as calcium imaging and optogenetics have empowered researchers to gain insight into brain function by systematically manipulating or monitoring defined neural circuits. Combining these cutting-edge techniques enables a more direct mechanism for ascribing neural dynamics to behavior. Here, we developed a miniaturized integrated microscope that allows for simultaneous optogenetic manipulation and cellular-resolution calcium imaging within the same field of view in freely behaving mice. The integrated microscope has two LEDs, one filtered with a 435-460 nm excitation filter for imaging green calcium indicators, and a second LED filtered with a 590-650 nm excitation filter for optogenetic modulation of red-shifted opsins. We developed and tested this technology to minimize biological and optical crosstalk. We observed insignificant amounts of biological and optical crosstalk with regards to the optogenetic LED affecting calcium imaging. We observed some amounts of residual crosstalk of the imaging light on optogenetic manipulation. Despite residual crosstalk, we have demonstrated the utility of this technology by probing the causal relationship between basolateral amygdala (BLA) -to- nucleus accumbens (NAc) circuit function, behavior, and network dynamics. Using this integrated microscope we were able to observe both a significant behavioral and cellular calcium response of the optogenetic modulation on the BLA-to-NAc circuit. This integrated strategy will allow for routine investigation of the causality of circuit manipulation on cellular-resolution network dynamics and behavior.
Collapse
|
22
|
Saita M, Pranga-Sellnau F, Resler T, Schlesinger R, Heberle J, Lorenz-Fonfria VA. Photoexcitation of the P4480 State Induces a Secondary Photocycle That Potentially Desensitizes Channelrhodopsin-2. J Am Chem Soc 2018; 140:9899-9903. [DOI: 10.1021/jacs.8b03931] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Mattia Saita
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Franziska Pranga-Sellnau
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Tom Resler
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Ramona Schlesinger
- Genetic Biophysics, Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Joachim Heberle
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Victor A. Lorenz-Fonfria
- Institute of Molecular Science, Universitat de València, 46980 Paterna, Spain
- Department of Biochemistry and Molecular Biology, Universitat de València, 46100 Burjassot, Spain
| |
Collapse
|
23
|
Abstract
Channelrhodopsin-2 (ChR2) is a light-sensitive ion channel widely used in optogenetics. Photoactivation triggers a trans-to-cis isomerization of a covalently bound retinal. Ensuing conformational changes open a cation-selective channel. We explore the structural dynamics in the early photocycle leading to channel opening by classical (MM) and quantum mechanical (QM) molecular simulations. With QM/MM simulations, we generated a protein-adapted force field for the retinal chromophore, which we validated against absorption spectra. In a 4-µs MM simulation of a dark-adapted ChR2 dimer, water entered the vestibules of the closed channel. Retinal all-trans to 13-cis isomerization, simulated with metadynamics, triggered a major restructuring of the charge cluster forming the channel gate. On a microsecond time scale, water penetrated the gate to form a membrane-spanning preopen pore between helices H1, H2, H3, and H7. This influx of water into an ion-impermeable preopen pore is consistent with time-resolved infrared spectroscopy and electrophysiology experiments. In the retinal 13-cis state, D253 emerged as the proton acceptor of the Schiff base. Upon proton transfer from the Schiff base to D253, modeled by QM/MM simulations, we obtained an early-M/P2390-like intermediate. Rapid rotation of the unprotonated Schiff base toward the cytosolic side effectively prevents its reprotonation from the extracellular side. From MM and QM simulations, we gained detailed insight into the mechanism of ChR2 photoactivation and early events in pore formation. By rearranging the network of charges and hydrogen bonds forming the gate, water emerges as a key player in light-driven ChR2 channel opening.
Collapse
Affiliation(s)
- Albert Ardevol
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany;
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany;
- Department of Physics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
24
|
Guo Y, Wolff FE, Schapiro I, Elstner M, Marazzi M. Different hydrogen bonding environments of the retinal protonated Schiff base control the photoisomerization in channelrhodopsin-2. Phys Chem Chem Phys 2018; 20:27501-27509. [DOI: 10.1039/c8cp05210g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The first event of the channelrhodopsin-2 (ChR2) photocycle, i.e. trans-to-cis photoisomerization, is studied by means of quantum mechanics/molecular mechanics, taking into account the flexible retinal environment in the ground state.
Collapse
Affiliation(s)
- Yanan Guo
- Department of Theoretical Chemical Biology
- Institute of Physical Chemistry
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| | - Franziska E. Wolff
- Department of Theoretical Chemical Biology
- Institute of Physical Chemistry
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research
- Institute of Chemistry
- Hebrew University of Jerusalem
- Jerusalem
- Israel
| | - Marcus Elstner
- Department of Theoretical Chemical Biology
- Institute of Physical Chemistry
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| | - Marco Marazzi
- Department of Theoretical Chemical Biology
- Institute of Physical Chemistry
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| |
Collapse
|
25
|
Paul K, Sengupta P, Ark ED, Tu H, Zhao Y, Boppart SA. Coherent control of an opsin in living brain tissue. NATURE PHYSICS 2017; 13:1111-1116. [PMID: 29983725 PMCID: PMC6029863 DOI: 10.1038/nphys4257] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 08/15/2017] [Indexed: 05/20/2023]
Abstract
Retinal-based opsins are light-sensitive proteins. The photoisomerization reaction of these proteins has been studied outside cellular environments using ultrashort tailored light pulses1-5. However, how living cell functions can be modulated via opsins by modifying fundamental nonlinear optical properties of light interacting with the retinal chromophore has remained largely unexplored. We report the use of chirped ultrashort near-infrared pulses to modulate light-evoked ionic current from Channelrhodopsin-2 (ChR2) in brain tissue, and consequently the firing pattern of neurons, by manipulating the phase of the spectral components of the light. These results confirm that quantum coherence of the retinal-based protein system, even in a living neuron, can influence its current output, and open up the possibilities of using designer-tailored pulses for controlling molecular dynamics of opsins in living tissue to selectively enhance or suppress neuronal function for adaptive feedback-loop applications in the future.
Collapse
Affiliation(s)
- Kush Paul
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Parijat Sengupta
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Eugene D Ark
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Haohua Tu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Youbo Zhao
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Stephen A Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
26
|
Vierock J, Grimm C, Nitzan N, Hegemann P. Molecular determinants of proton selectivity and gating in the red-light activated channelrhodopsin Chrimson. Sci Rep 2017; 7:9928. [PMID: 28855540 PMCID: PMC5577340 DOI: 10.1038/s41598-017-09600-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/21/2017] [Indexed: 12/15/2022] Open
Abstract
Channelrhodopsins are light-gated ion channels of green algae used for the precise temporal and spatial control of transmembrane ion fluxes. The channelrhodopsin Chrimson from Chlamydomonas noctigama allows unprecedented deep tissue penetration due to peak absorption at 590 nm. We demonstrate by electrophysiological recordings and imaging techniques that Chrimson is highly proton selective causing intracellular acidification in HEK cells that is responsible for slow photocurrent decline during prolonged illumination. We localized molecular determinants of both high proton selectivity and red light activation to the extracellular pore. Whereas exchange of Glu143 only drops proton conductance and generates an operational Na-channel with 590 nm activation, exchange of Glu139 in addition increased the open state lifetime and shifted the absorption hypsochromic by 70 nm. In conjunction with Glu300 in the center and Glu124 and Glu125 at the intracellular end of the pore, Glu139 contributes to a delocalized activation gate and stabilizes by long-range interaction counterion configuration involving protonation of Glu165 that we identified as a key determinant of the large opsin shift in Chrimson.
Collapse
Affiliation(s)
- Johannes Vierock
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.
| | - Christiane Grimm
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Noam Nitzan
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.,Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Peter Hegemann
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| |
Collapse
|
27
|
Abstract
Channelrhodopsin (ChR) is a key protein of the optogenetic toolkit. C1C2, a functional chimeric protein of Chlamydomonas reinhardtii ChR1 and ChR2, is the only ChR whose crystal structure has been solved, and thus uniquely suitable for structure-based analysis. We report C1C2 photoreaction dynamics with ultrafast transient absorption and multi-pulse spectroscopy combined with target analysis and structure-based hybrid quantum mechanics/molecular mechanics calculations. Two relaxation pathways exist on the excited (S1) state through two conical intersections CI1 and CI2, that are reached via clockwise and counter-clockwise rotations: (i) the C13=C14 isomerization path with 450 fs via CI1 and (ii) a relaxation path to the initial ground state with 2.0 ps and 11 ps via CI2, depending on the hydrogen-bonding network, hence indicating active-site structural heterogeneity. The presence of the additional conical intersection CI2 rationalizes the relatively low quantum yield of photoisomerization (30 ± 3%), reported here. Furthermore, we show the photoreaction dynamics from picoseconds to seconds, characterizing the complete photocycle of C1C2.
Collapse
|
28
|
Govorunova EG, Sineshchekov OA, Li H, Spudich JL. Microbial Rhodopsins: Diversity, Mechanisms, and Optogenetic Applications. Annu Rev Biochem 2017; 86:845-872. [PMID: 28301742 PMCID: PMC5747503 DOI: 10.1146/annurev-biochem-101910-144233] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microbial rhodopsins are a family of photoactive retinylidene proteins widespread throughout the microbial world. They are notable for their diversity of function, using variations of a shared seven-transmembrane helix design and similar photochemical reactions to carry out distinctly different light-driven energy and sensory transduction processes. Their study has contributed to our understanding of how evolution modifies protein scaffolds to create new protein chemistry, and their use as tools to control membrane potential with light is fundamental to optogenetics for research and clinical applications. We review the currently known functions and present more in-depth assessment of three functionally and structurally distinct types discovered over the past two years: (a) anion channelrhodopsins (ACRs) from cryptophyte algae, which enable efficient optogenetic neural suppression; (b) cryptophyte cation channelrhodopsins (CCRs), structurally distinct from the green algae CCRs used extensively for neural activation and from cryptophyte ACRs; and
Collapse
Affiliation(s)
- Elena G Govorunova
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030; , , ,
| | - Oleg A Sineshchekov
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030; , , ,
| | - Hai Li
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030; , , ,
| | - John L Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030; , , ,
| |
Collapse
|
29
|
Urmann D, Lorenz C, Linker SM, Braun M, Wachtveitl J, Bamann C. Photochemical Properties of the Red-shifted Channelrhodopsin Chrimson. Photochem Photobiol 2017; 93:782-795. [DOI: 10.1111/php.12741] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/02/2017] [Indexed: 01/03/2023]
Affiliation(s)
- David Urmann
- Institute of Physical and Theoretical Chemistry; Johann Wolfgang Goethe University Frankfurt; Frankfurt am Main Germany
| | - Charlotte Lorenz
- Department of Biophysical Chemistry; Max Planck Institute of Biophysics; Frankfurt am Main Germany
| | - Stephanie M. Linker
- Department of Biophysical Chemistry; Max Planck Institute of Biophysics; Frankfurt am Main Germany
| | - Markus Braun
- Institute of Physical and Theoretical Chemistry; Johann Wolfgang Goethe University Frankfurt; Frankfurt am Main Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry; Johann Wolfgang Goethe University Frankfurt; Frankfurt am Main Germany
| | - Christian Bamann
- Department of Biophysical Chemistry; Max Planck Institute of Biophysics; Frankfurt am Main Germany
| |
Collapse
|
30
|
Govorunova EG, Sineshchekov OA, Rodarte EM, Janz R, Morelle O, Melkonian M, Wong GKS, Spudich JL. The Expanding Family of Natural Anion Channelrhodopsins Reveals Large Variations in Kinetics, Conductance, and Spectral Sensitivity. Sci Rep 2017; 7:43358. [PMID: 28256618 PMCID: PMC5335703 DOI: 10.1038/srep43358] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/23/2017] [Indexed: 11/09/2022] Open
Abstract
Natural anion channelrhodopsins (ACRs) discovered in the cryptophyte alga Guillardia theta generate large hyperpolarizing currents at membrane potentials above the Nernst equilibrium potential for Cl- and thus can be used as efficient inhibitory tools for optogenetics. We have identified and characterized new ACR homologs in different cryptophyte species, showing that all of them are anion-selective, and thus expanded this protein family to 20 functionally confirmed members. Sequence comparison of natural ACRs and engineered Cl--conducting mutants of cation channelrhodopsins (CCRs) showed radical differences in their anion selectivity filters. In particular, the Glu90 residue in channelrhodopsin 2, which needed to be mutated to a neutral or alkaline residue to confer anion selectivity to CCRs, is nevertheless conserved in all of the ACRs identified. The new ACRs showed a large variation of the amplitude, kinetics, and spectral sensitivity of their photocurrents. A notable variant, designated "ZipACR", is particularly promising for inhibitory optogenetics because of its combination of larger current amplitudes than those of previously reported ACRs and an unprecedentedly fast conductance cycle (current half-decay time 2-4 ms depending on voltage). ZipACR expressed in cultured mouse hippocampal neurons enabled precise photoinhibition of individual spikes in trains of up to 50 Hz frequency.
Collapse
Affiliation(s)
- Elena G Govorunova
- Center for Membrane Biology, Department of Biochemistry &Molecular Biology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Oleg A Sineshchekov
- Center for Membrane Biology, Department of Biochemistry &Molecular Biology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Elsa M Rodarte
- Department of Neurobiology &Anatomy, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Roger Janz
- Department of Neurobiology &Anatomy, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Olivier Morelle
- Institute of Botany, Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Michael Melkonian
- Institute of Botany, Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Gane K-S Wong
- Departments of Biological Sciences and of Medicine, University of Alberta, Edmonton, Alberta, Canada.,BGI-Shenzhen, Shenzhen, China
| | - John L Spudich
- Center for Membrane Biology, Department of Biochemistry &Molecular Biology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
31
|
Hontani Y, Broser M, Silapetere A, Krause BS, Hegemann P, Kennis JTM. The femtosecond-to-second photochemistry of red-shifted fast-closing anion channelrhodopsin PsACR1. Phys Chem Chem Phys 2017; 19:30402-30409. [DOI: 10.1039/c7cp06414d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Femtosecond-to-second complete photocycle model of anion channelrhodopsin PsACR1.
Collapse
Affiliation(s)
- Yusaku Hontani
- Department of Physics and Astronomy
- Vrije Universiteit Amsterdam
- Amsterdam 1081 HV, De Boelelaan
- The Netherlands
| | - Matthias Broser
- Institut für Biologie
- Experimentelle Biophysik
- Humboldt-Universität zu Berlin
- D-10115 Berlin
- Germany
| | - Arita Silapetere
- Institut für Biologie
- Experimentelle Biophysik
- Humboldt-Universität zu Berlin
- D-10115 Berlin
- Germany
| | - Benjamin S. Krause
- Institut für Biologie
- Experimentelle Biophysik
- Humboldt-Universität zu Berlin
- D-10115 Berlin
- Germany
| | - Peter Hegemann
- Institut für Biologie
- Experimentelle Biophysik
- Humboldt-Universität zu Berlin
- D-10115 Berlin
- Germany
| | - John T. M. Kennis
- Department of Physics and Astronomy
- Vrije Universiteit Amsterdam
- Amsterdam 1081 HV, De Boelelaan
- The Netherlands
| |
Collapse
|
32
|
Feldman TB, Smitienko OA, Shelaev IV, Gostev FE, Nekrasova OV, Dolgikh DA, Nadtochenko VA, Kirpichnikov MP, Ostrovsky MA. Femtosecond spectroscopic study of photochromic reactions of bacteriorhodopsin and visual rhodopsin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2016; 164:296-305. [PMID: 27723489 DOI: 10.1016/j.jphotobiol.2016.09.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 11/16/2022]
Abstract
Photochromic ultrafast reactions of bacteriorhodopsin (H. salinarum) and bovine rhodopsin were conducted with a femtosecond two-pump probe pulse setup with the time resolution of 20-25fs. The dynamics of the forward and reverse photochemical reactions for both retinal-containing proteins was compared. It is demonstrated that when retinal-containing proteins are excited by femtosecond pulses, dynamics pattern of the vibrational coherent wave packets in the course of the reaction is different for bacteriorhodopsin and visual rhodopsin. As shown in these studies, the low-frequencies that form a wave packets experimentally observed in the dynamics of primary products formation as a result of retinal photoisomerization have different intensities and are clearer for bovine rhodopsin. Photo-reversible reactions for both retinal proteins were performed from the stage of the relatively stable photointermediates that appear within 3-5ps after the light pulse impact. It is demonstrated that the efficiency of the reverse phototransition K-form→bacteriorhodopsin is almost five-fold higher than that of the Batho-intermediate→visual rhodopsin phototransition. The results obtained indicate that in the course of evolution the intramolecular mechanism of the chromophore-protein interaction in visual rhodopsin becomes more perfect and specific. The decrease in the probability of the reverse chromophore photoisomerization (all-trans→11-cis retinal) in primary photo-induced rhodopsin products causes an increase in the efficiency of the photoreception process.
Collapse
Affiliation(s)
- Tatiana B Feldman
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119334, Russia.
| | - Olga A Smitienko
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119334, Russia
| | - Ivan V Shelaev
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119991, Russia
| | - Fedor E Gostev
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119991, Russia
| | - Oksana V Nekrasova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, Moscow 117997, Russia
| | - Dmitriy A Dolgikh
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, Moscow 117997, Russia
| | - Victor A Nadtochenko
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119334, Russia; Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119991, Russia; Institute of Problems of Chemical Physics, Russian Academy of Sciences, Academician Semenov avenue 1, Chernogolovka, Moscow region 142432, Russia
| | - Mikhail P Kirpichnikov
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, Moscow 117997, Russia
| | - Mikhail A Ostrovsky
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119334, Russia
| |
Collapse
|
33
|
Iyer ESS, Misra R, Maity A, Liubashevski O, Sudo Y, Sheves M, Ruhman S. Temperature Independence of Ultrafast Photoisomerization in Thermophilic Rhodopsin: Assessment versus Other Microbial Proton Pumps. J Am Chem Soc 2016; 138:12401-7. [DOI: 10.1021/jacs.6b05002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Ramprasad Misra
- Department
of Organic Chemistry, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Arnab Maity
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Oleg Liubashevski
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Yuki Sudo
- Division
of Pharmaceutical sciences, Okayama University, Kita-Ku, Okayama 700-0082, Japan
| | - Mordechai Sheves
- Department
of Organic Chemistry, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sanford Ruhman
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| |
Collapse
|
34
|
Stensitzki T, Yang Y, Muders V, Schlesinger R, Heberle J, Heyne K. Femtosecond infrared spectroscopy of channelrhodopsin-1 chromophore isomerization. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2016; 3:043208. [PMID: 27191011 PMCID: PMC4851625 DOI: 10.1063/1.4948338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/15/2016] [Indexed: 06/05/2023]
Abstract
Vibrational dynamics of the retinal all-trans to 13-cis photoisomerization in channelrhodopsin-1 from Chlamydomonas augustae (CaChR1) was investigated by femtosecond visible pump mid-IR probe spectroscopy. After photoexcitation, the transient infrared absorption of C-C stretching modes was detected. The formation of the 13-cis photoproduct marker band at 1193 cm(-1) was observed within the time resolution of 0.3 ps. We estimated the photoisomerization yield to (60 ± 6) %. We found additional time constants of (0.55 ± 0.05) ps and (6 ± 1) ps, assigned to cooling, and cooling processes with a back-reaction pathway. An additional bleaching band demonstrates the ground-state heterogeneity of retinal.
Collapse
Affiliation(s)
- T Stensitzki
- Department of Physics, Institute of Experimental Physics , Freie Universität Berlin , Arnimallee 14, 14195 Berlin, Germany
| | - Y Yang
- Department of Physics, Institute of Experimental Physics , Freie Universität Berlin , Arnimallee 14, 14195 Berlin, Germany
| | - V Muders
- Genetic Biophysics, Department of Physics, Freie Universität Berlin , Arnimallee 14, 14195 Berlin, Germany
| | - R Schlesinger
- Genetic Biophysics, Department of Physics, Freie Universität Berlin , Arnimallee 14, 14195 Berlin, Germany
| | - J Heberle
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin , Arnimallee 14, 14195 Berlin, Germany
| | - K Heyne
- Department of Physics, Institute of Experimental Physics , Freie Universität Berlin , Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
35
|
Schnedermann C, Muders V, Ehrenberg D, Schlesinger R, Kukura P, Heberle J. Vibronic Dynamics of the Ultrafast all-trans to 13-cis Photoisomerization of Retinal in Channelrhodopsin-1. J Am Chem Soc 2016; 138:4757-62. [DOI: 10.1021/jacs.5b12251] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christoph Schnedermann
- Physical
and Theoretical Chemistry Laboratory, University of Oxford, South Parks
Road, Oxford OX1 3QZ, United Kingdom
| | | | | | | | - Philipp Kukura
- Physical
and Theoretical Chemistry Laboratory, University of Oxford, South Parks
Road, Oxford OX1 3QZ, United Kingdom
| | | |
Collapse
|
36
|
Guo Y, Beyle FE, Bold BM, Watanabe HC, Koslowski A, Thiel W, Hegemann P, Marazzi M, Elstner M. Active site structure and absorption spectrum of channelrhodopsin-2 wild-type and C128T mutant. Chem Sci 2016; 7:3879-3891. [PMID: 30155032 PMCID: PMC6013792 DOI: 10.1039/c6sc00468g] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/24/2016] [Indexed: 12/25/2022] Open
Abstract
We show by extensive ground state and absorption spectra simulations that the channelrhodopsin-2 active site samples three different hydrogen-bonding patterns.
In spite of considerable interest, the active site of channelrhodopsin still lacks a detailed atomistic description, the understanding of which could strongly enhance the development of novel optogenetics tools. We present a computational study combining different state-of-the-art techniques, including hybrid quantum mechanics/molecular mechanics schemes and high-level quantum chemical methods, to properly describe the hydrogen-bonding pattern between the retinal chromophore and its counterions in channelrhodopsin-2 Wild-Type and C128T mutant. Especially, we show by extensive ground state dynamics that the active site, containing a glutamic acid (E123) and a water molecule, is highly dynamic, sampling three different hydrogen-bonding patterns. This results in a broad absorption spectrum that is representative of the different structural motifs found. A comparison with bacteriorhodopsin, characterized by a pentagonal hydrogen-bonded active site structure, elucidates their different absorption properties.
Collapse
Affiliation(s)
- Yanan Guo
- Department of Theoretical Chemical Biology , Institute of Physical Chemistry , KIT , Kaiserstrasse 12 , 76131 Karlsruhe , Germany . ;
| | - Franziska E Beyle
- Department of Theoretical Chemical Biology , Institute of Physical Chemistry , KIT , Kaiserstrasse 12 , 76131 Karlsruhe , Germany . ;
| | - Beatrix M Bold
- Department of Theoretical Chemical Biology , Institute of Physical Chemistry , KIT , Kaiserstrasse 12 , 76131 Karlsruhe , Germany . ;
| | - Hiroshi C Watanabe
- Research Center for Advanced Science and Technology , The University of Tokyo , 4-6-1 Komaba, Meguro-ku , Tokyo 153-8904 , Japan
| | - Axel Koslowski
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany
| | - Peter Hegemann
- Institute of Biology , Experimental Biophysics , Humboldt-Universität , Invalidenstraße 42 , D-10115 Berlin , Germany
| | - Marco Marazzi
- Department of Theoretical Chemical Biology , Institute of Physical Chemistry , KIT , Kaiserstrasse 12 , 76131 Karlsruhe , Germany . ;
| | - Marcus Elstner
- Department of Theoretical Chemical Biology , Institute of Physical Chemistry , KIT , Kaiserstrasse 12 , 76131 Karlsruhe , Germany . ;
| |
Collapse
|
37
|
Bruun S, Stoeppler D, Keidel A, Kuhlmann U, Luck M, Diehl A, Geiger MA, Woodmansee D, Trauner D, Hegemann P, Oschkinat H, Hildebrandt P, Stehfest K. Light-Dark Adaptation of Channelrhodopsin Involves Photoconversion between the all-trans and 13-cis Retinal Isomers. Biochemistry 2015; 54:5389-400. [PMID: 26237332 DOI: 10.1021/acs.biochem.5b00597] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Channelrhodopsins (ChR) are light-gated ion channels of green algae that are widely used to probe the function of neuronal cells with light. Most ChRs show a substantial reduction in photocurrents during illumination, a process named "light adaptation". The main objective of this spectroscopic study was to elucidate the molecular processes associated with light-dark adaptation. Here we show by liquid and solid-state nuclear magnetic resonance spectroscopy that the retinal chromophore of fully dark-adapted ChR is exclusively in an all-trans configuration. Resonance Raman (RR) spectroscopy, however, revealed that already low light intensities establish a photostationary equilibrium between all-trans,15-anti and 13-cis,15-syn configurations at a ratio of 3:1. The underlying photoreactions involve simultaneous isomerization of the C(13)═C(14) and C(15)═N bonds. Both isomers of this DAapp state may run through photoinduced reaction cycles initiated by photoisomerization of only the C(13)═C(14) bond. RR spectroscopic experiments further demonstrated that photoinduced conversion of the apparent dark-adapted (DAapp) state to the photocycle intermediates P500 and P390 is distinctly more efficient for the all-trans isomer than for the 13-cis isomer, possibly because of different chromophore-water interactions. Our data demonstrating two complementary photocycles of the DAapp isomers are fully consistent with the existence of two conducting states that vary in quantitative relation during light-dark adaptation, as suggested previously by electrical measurements.
Collapse
Affiliation(s)
- Sara Bruun
- Technische Universität Berlin , Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Daniel Stoeppler
- Leibniz-Institut für Molekulare Pharmakologie (FMP) , Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Anke Keidel
- Technische Universität Berlin , Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Uwe Kuhlmann
- Technische Universität Berlin , Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Meike Luck
- Humboldt-Universität zu Berlin , Institut für Biologie, Invalidenstrasse 42, D-10115 Berlin, Germany
| | - Anne Diehl
- Leibniz-Institut für Molekulare Pharmakologie (FMP) , Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Michel-Andreas Geiger
- Leibniz-Institut für Molekulare Pharmakologie (FMP) , Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - David Woodmansee
- Department of Chemistry, Ludwig-Maximilians-Universität München , Butenandtstraße 5-13, 81377 München, Germany
| | - Dirk Trauner
- Department of Chemistry, Ludwig-Maximilians-Universität München , Butenandtstraße 5-13, 81377 München, Germany
| | - Peter Hegemann
- Humboldt-Universität zu Berlin , Institut für Biologie, Invalidenstrasse 42, D-10115 Berlin, Germany
| | - Hartmut Oschkinat
- Leibniz-Institut für Molekulare Pharmakologie (FMP) , Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin , Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Katja Stehfest
- Humboldt-Universität zu Berlin , Institut für Biologie, Invalidenstrasse 42, D-10115 Berlin, Germany
| |
Collapse
|
38
|
Enlightening the photoactive site of channelrhodopsin-2 by DNP-enhanced solid-state NMR spectroscopy. Proc Natl Acad Sci U S A 2015. [PMID: 26216996 DOI: 10.1073/pnas.1507713112] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Channelrhodopsin-2 from Chlamydomonas reinhardtii is a light-gated ion channel. Over recent years, this ion channel has attracted considerable interest because of its unparalleled role in optogenetic applications. However, despite considerable efforts, an understanding of how molecular events during the photocycle, including the retinal trans-cis isomerization and the deprotonation/reprotonation of the Schiff base, are coupled to the channel-opening mechanism remains elusive. To elucidate this question, changes of conformation and configuration of several photocycle and conducting/nonconducting states need to be determined at atomic resolution. Here, we show that such data can be obtained by solid-state NMR enhanced by dynamic nuclear polarization applied to (15)N-labeled channelrhodopsin-2 carrying 14,15-(13)C2 retinal reconstituted into lipid bilayers. In its dark state, a pure all-trans retinal conformation with a stretched C14-C15 bond and a significant out-of-plane twist of the H-C14-C15-H dihedral angle could be observed. Using a combination of illumination, freezing, and thermal relaxation procedures, a number of intermediate states was generated and analyzed by DNP-enhanced solid-state NMR. Three distinct intermediates could be analyzed with high structural resolution: the early [Formula: see text] K-like state, the slowly decaying late intermediate [Formula: see text], and a third intermediate populated only under continuous illumination conditions. Our data provide novel insight into the photoactive site of channelrhodopsin-2 during the photocycle. They further show that DNP-enhanced solid-state NMR fills the gap for challenging membrane proteins between functional studies and X-ray-based structure analysis, which is required for resolving molecular mechanisms.
Collapse
|
39
|
Stensitzki T, Muders V, Schlesinger R, Heberle J, Heyne K. The primary photoreaction of channelrhodopsin-1: wavelength dependent photoreactions induced by ground-state heterogeneity. Front Mol Biosci 2015; 2:41. [PMID: 26258130 PMCID: PMC4510425 DOI: 10.3389/fmolb.2015.00041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/06/2015] [Indexed: 12/31/2022] Open
Abstract
The primary photodynamics of channelrhodopsin-1 from Chlamydomonas augustae (CaChR1) was investigated by VIS-pump supercontinuum probe experiments from femtoseconds to 100 picoseconds. In contrast to reported experiments on channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2), we found a clear dependence of the photoreaction dynamics on varying the excitation wavelength. Upon excitation at 500 and at 550 nm we detected different bleaching bands, and spectrally distinct photoproduct absorptions in the first picoseconds. We assign the former to the ground-state heterogeneity of a mixture of 13-cis and all-trans retinal maximally absorbing around 480 and 540 nm, respectively. At 550 nm, all-trans retinal of the ground state is almost exclusively excited. Here, we found a fast all-trans to 13-cis isomerization process to a hot and spectrally broad P1 photoproduct with a time constant of (100 ± 50) fs, followed by photoproduct relaxation with time constants of (500 ± 100) fs and (5 ± 1) ps. The remaining fraction relaxes back to the parent ground state with time constants of (500 ± 100) fs and (5 ± 1) ps. Upon excitation at 500 nm a mixture of both chromophore conformations is excited, resulting in overlapping reaction dynamics with additional time constants of <300 fs, (1.8 ± 0.3) ps and (90 ± 25) ps. A new photoproduct Q is formed absorbing at around 600 nm. Strong coherent oscillatory signals were found pertaining up to several picoseconds. We determined low frequency modes around 200 cm−1, similar to those reported for bacteriorhodopsin.
Collapse
Affiliation(s)
- Till Stensitzki
- Institute of Experimental Physics, Free University Berlin Berlin, Germany
| | - Vera Muders
- Institute of Experimental Physics, Free University Berlin Berlin, Germany
| | - Ramona Schlesinger
- Institute of Experimental Physics, Free University Berlin Berlin, Germany
| | - Joachim Heberle
- Institute of Experimental Physics, Free University Berlin Berlin, Germany
| | - Karsten Heyne
- Institute of Experimental Physics, Free University Berlin Berlin, Germany
| |
Collapse
|
40
|
Affiliation(s)
- Franziska Schneider
- Experimental Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; , ,
| | - Christiane Grimm
- Experimental Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; , ,
| | - Peter Hegemann
- Experimental Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; , ,
| |
Collapse
|
41
|
Szundi I, Li H, Chen E, Bogomolni R, Spudich JL, Kliger DS. Platymonas subcordiformis Channelrhodopsin-2 Function: I. THE PHOTOCHEMICAL REACTION CYCLE. J Biol Chem 2015; 290:16573-84. [PMID: 25971972 DOI: 10.1074/jbc.m114.631614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Indexed: 11/06/2022] Open
Abstract
The photocycle kinetics of Platymonas subcordiformis channelrhodopsin-2 (PsChR2), among the most highly efficient light-gated cation channels and the most blue-shifted channelrhodopsin, was studied by time-resolved absorption spectroscopy in the 340-650-nm range and in the 100-ns to 3-s time window. Global exponential fitting of the time dependence of spectral changes revealed six lifetimes: 0.60 μs, 5.3 μs, 170 μs, 1.4 ms, 6.7 ms, and 1.4 s. The sequential intermediates derived for a single unidirectional cycle scheme based on these lifetimes were found to contain mixtures of K, L, M, O, and P molecular states, named in analogy to photointermediates in the bacteriorhodopsin photocycle. The photochemistry is described by the superposition of two independent parallel photocycles. The analysis revealed that 30% of the photoexcited receptor molecules followed Cycle 1 through the K, M, O, and P states, whereas 70% followed Cycle 2 through the K, L, M, and O states. The recovered state, R, is spectrally close, but not identical, to the dark state on the seconds time scale. The two-cycle model of this high efficiency channelrhodopsin-2 (ChR) opens new perspectives in understanding the mechanism of channelrhodopsin function.
Collapse
Affiliation(s)
- Istvan Szundi
- From the Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064 and
| | - Hai Li
- the Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030
| | - Eefei Chen
- From the Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064 and
| | - Roberto Bogomolni
- From the Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064 and
| | - John L Spudich
- the Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030
| | - David S Kliger
- From the Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064 and
| |
Collapse
|
42
|
Szundi I, Bogomolni R, Kliger DS. Platymonas subcordiformis Channelrhodopsin-2 (PsChR2) Function: II. RELATIONSHIP OF THE PHOTOCHEMICAL REACTION CYCLE TO CHANNEL CURRENTS. J Biol Chem 2015; 290:16585-94. [PMID: 25971978 DOI: 10.1074/jbc.m115.653071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Indexed: 11/06/2022] Open
Abstract
Channelrhodopsins, such as the algal phototaxis receptor Platymonas subcordiformis channelrhodopsin-2 (PsChR2), are light-gated cation channels used as optogenetic tools for photocontrol of membrane potential in living cells. Channelrhodopsin (ChR)-mediated photocurrent responses are complex and poorly understood, exhibiting alterations in peak current amplitude, extents and kinetics of inactivation, and kinetics of the recovery of the prestimulus dark current that are sensitive to duration and frequency of photostimuli. From the analysis of time-resolved optical absorption data, presented in the accompanying article, we derived a two-cycle model that describes the photocycles of PsChR2. Here, we applied the model to evaluate the transient currents produced by PsChR2 expressed in HEK293 cells under both fast laser excitation and step-like continuous illumination. Interpretation of the photocurrents in terms of the photocycle kinetics indicates that the O states in both cycles are responsible for the channel current and fit the current transients under the different illumination regimes. The peak and plateau currents in response to a single light step, a train of light pulses, and a light step superimposed on a continuous light background observed for ChR2 proteins are explained in terms of contributions from the two parallel photocycles. The analysis shows that the peak current desensitization and recovery phenomena are inherent properties of the photocycles. The light dependence of desensitization is reproduced and explained by the time evolution of the concentration transients in response to step-like illumination. Our data show that photocycle kinetic parameters are sufficient to explain the complex dependence of photocurrent responses to photostimuli.
Collapse
Affiliation(s)
- Istvan Szundi
- From the Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| | - Roberto Bogomolni
- From the Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| | - David S Kliger
- From the Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| |
Collapse
|
43
|
Lórenz-Fonfría VA, Schultz BJ, Resler T, Schlesinger R, Bamann C, Bamberg E, Heberle J. Pre-gating conformational changes in the ChETA variant of channelrhodopsin-2 monitored by nanosecond IR spectroscopy. J Am Chem Soc 2015; 137:1850-61. [PMID: 25584873 DOI: 10.1021/ja5108595] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Light-gated ion permeation by channelrhodopsin-2 (ChR2) relies on the photoisomerization of the retinal chromophore and the subsequent photocycle, leading to the formation (on-gating) and decay (off-gating) of the conductive state. Here, we have analyzed the photocycle of a fast-cycling ChR2 variant (E123T mutation, also known as ChETA), by time-resolved UV/vis, step-scan FT-IR, and tunable quantum cascade laser IR spectroscopies with nanosecond resolution. Pre-gating conformational changes rise with a half-life of 200 ns, silent to UV/vis but detected by IR spectroscopy. They involve changes in the peptide backbone and in the H-bond of the side chain of the critical residue D156. Thus, the P1(500) intermediate must be separated into early and late states. Light-adapted ChR2 contains a mixture of all-trans and 13-cis retinal in a 70:30 ratio which are both photoactive. Analysis of ethylenic and fingerprint vibrations of retinal provides evidence that the 13-cis photocycle recovers in 1 ms. This recovery is faster than channel off-gating and most of the proton transfer reactions, implying that the 13-cis photocycle is of minor functional relevance for ChR2.
Collapse
Affiliation(s)
- Víctor A Lórenz-Fonfría
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin , Arnimallee 14, 14195 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Dokukina I, Weingart O. Spectral properties and isomerisation path of retinal in C1C2 channelrhodopsin. Phys Chem Chem Phys 2015; 17:25142-50. [DOI: 10.1039/c5cp02650d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Computed torsion profiles along the reactive coordinate in S1reveal a two-path deactivation mechanism for retinal in C1C2 channelrhodopsin.
Collapse
Affiliation(s)
- I. Dokukina
- Institut für Theoretische Chemie und Computerchemie
- Heinrich-Heine-Universität Düsseldorf
- 40225 Düsseldorf
- Germany
| | - O. Weingart
- Institut für Theoretische Chemie und Computerchemie
- Heinrich-Heine-Universität Düsseldorf
- 40225 Düsseldorf
- Germany
| |
Collapse
|
45
|
Kuhne J, Eisenhauer K, Ritter E, Hegemann P, Gerwert K, Bartl F. Early formation of the ion-conducting pore in channelrhodopsin-2. Angew Chem Int Ed Engl 2014; 54:4953-7. [PMID: 25537168 DOI: 10.1002/anie.201410180] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/20/2014] [Indexed: 11/10/2022]
Abstract
Channelrhodopsins (ChRs) are light-gated ion channels that are widely used in optogenetics. They allow precise control of neuronal activity with light, but a detailed understanding of how the channel is gated and the ions are conducted is still lacking. The recent determination of the X-ray structural model in the closed state marks an important milestone. Herein the open state structure is presented and the early formation of the ion conducting pore is elucidated in atomic detail using time-resolved FTIR spectroscopy. Photo-isomerization of the retinal-chromophore causes a downward movement of the highly conserved E90, which opens the pore. Molecular dynamic (MD) simulations show that water molecules invade through this opened pore, Helix 2 tilts and the channel fully opens within ms. Since E90 is a highly conserved residue, the proposed E90-Helix2-tilt (EHT) model might describe a general activation mechanism and provides a new avenue for further mechanistic studies and engineering.
Collapse
Affiliation(s)
- Jens Kuhne
- Lehrstuhl für Biophysik, Ruhr Universität Bochum, Universitätsstrasse 150, 44780 Bochum (Germany)
| | | | | | | | | | | |
Collapse
|
46
|
Kuhne J, Eisenhauer K, Ritter E, Hegemann P, Gerwert K, Bartl F. Die frühe Entstehung der ionenleitenden Pore in Channelrhodopsin-2. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201410180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
47
|
Ogren JI, Yi A, Mamaev S, Li H, Lugtenburg J, DeGrip WJ, Spudich JL, Rothschild KJ. Comparison of the structural changes occurring during the primary phototransition of two different channelrhodopsins from Chlamydomonas algae. Biochemistry 2014; 54:377-88. [PMID: 25469620 PMCID: PMC4303311 DOI: 10.1021/bi501243y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
Channelrhodopsins
(ChRs) from green flagellate algae function as
light-gated ion channels when expressed heterologously in mammalian
cells. Considerable interest has focused on understanding the molecular
mechanisms of ChRs to bioengineer their properties for specific optogenetic
applications such as elucidating the function of specific neurons
in brain circuits. While most studies have used channelrhodopsin-2
from Chlamydomonas reinhardtii (CrChR2), in this work low-temperature Fourier transform infrared-difference
spectroscopy is applied to study the conformational changes occurring
during the primary phototransition of the red-shifted ChR1 from Chlamydomonas augustae (CaChR1). Substitution
with isotope-labeled retinals or the retinal analogue A2, site-directed
mutagenesis, hydrogen–deuterium exchange, and H218O exchange were used to assign bands to the retinal
chromophore, protein, and internal water molecules. The primary phototransition
of CaChR1 at 80 K involves, in contrast to that of CrChR2, almost exclusively an all-trans to 13-cis isomerization of the retinal chromophore,
as in the primary phototransition of bacteriorhodopsin (BR). In addition,
significant differences are found for structural changes of the protein
and internal water(s) compared to those of CrChR2,
including the response of several Asp/Glu residues to retinal isomerization.
A negative amide II band is identified in the retinal ethylenic stretch
region of CaChR1, which reflects along with amide
I bands alterations in protein backbone structure early in the photocycle.
A decrease in the hydrogen bond strength of a weakly hydrogen bonded
internal water is detected in both CaChR1 and CrChR2, but the bands are much broader in CrChR2, indicating a more heterogeneous environment. Mutations involving
residues Glu169 and Asp299 (homologues of the Asp85 and Asp212 Schiff
base counterions, respectively, in BR) lead to the conclusion that
Asp299 is protonated during P1 formation and suggest that these residues
interact through a strong hydrogen bond that facilitates the transfer
of a proton from Glu169.
Collapse
Affiliation(s)
- John I Ogren
- Molecular Biophysics Laboratory, Photonics Center, and Department of Physics, Boston University , Boston, Massachusetts 02215, United States
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown L, Kandori H. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev 2014; 114:126-63. [PMID: 24364740 PMCID: PMC3979449 DOI: 10.1021/cr4003769] [Citation(s) in RCA: 808] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Oliver P. Ernst
- Departments
of Biochemistry and Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Toronto, Ontario M5S 1A8, Canada
| | - David T. Lodowski
- Center
for Proteomics and Bioinformatics, Case
Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Marcus Elstner
- Institute
for Physical Chemistry, Karlsruhe Institute
of Technology, Kaiserstrasse
12, 76131 Karlsruhe, Germany
| | - Peter Hegemann
- Institute
of Biology, Experimental Biophysics, Humboldt-Universität
zu Berlin, Invalidenstrasse
42, 10115 Berlin, Germany
| | - Leonid
S. Brown
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Hideki Kandori
- Department
of Frontier Materials, Nagoya Institute
of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
49
|
Lórenz-Fonfría VA, Heberle J. Channelrhodopsin unchained: structure and mechanism of a light-gated cation channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:626-42. [PMID: 24212055 DOI: 10.1016/j.bbabio.2013.10.014] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/21/2013] [Accepted: 10/30/2013] [Indexed: 12/25/2022]
Abstract
The new and vibrant field of optogenetics was founded by the seminal discovery of channelrhodopsin, the first light-gated cation channel. Despite the numerous applications that have revolutionised neurophysiology, the functional mechanism is far from understood on the molecular level. An arsenal of biophysical techniques has been established in the last decades of research on microbial rhodopsins. However, application of these techniques is hampered by the duration and the complexity of the photoreaction of channelrhodopsin compared with other microbial rhodopsins. A particular interest in resolving the molecular mechanism lies in the structural changes that lead to channel opening and closure. Here, we review the current structural and mechanistic knowledge that has been accomplished by integrating the static structure provided by X-ray crystallography and electron microscopy with time-resolved spectroscopic and electrophysiological techniques. The dynamical reactions of the chromophore are effectively coupled to structural changes of the protein, as shown by ultrafast spectroscopy. The hierarchical sequence of structural changes in the protein backbone that spans the time range from 10(-12)s to 10(-3)s prepares the channel to open and, consequently, cations can pass. Proton transfer reactions that are associated with channel gating have been resolved. In particular, glutamate 253 and aspartic acid 156 were identified as proton acceptor and donor to the retinal Schiff base. The reprotonation of the latter is the critical determinant for channel closure. The proton pathway that eventually leads to proton pumping is also discussed. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Víctor A Lórenz-Fonfría
- Freie Universität Berlin, Experimental Molecular Biophysics, Arnimallee 14, 14195 Berlin, Germany
| | - Joachim Heberle
- Freie Universität Berlin, Experimental Molecular Biophysics, Arnimallee 14, 14195 Berlin, Germany.
| |
Collapse
|
50
|
Govorunova EG, Sineshchekov OA, Li H, Janz R, Spudich JL. Characterization of a highly efficient blue-shifted channelrhodopsin from the marine alga Platymonas subcordiformis. J Biol Chem 2013; 288:29911-22. [PMID: 23995841 DOI: 10.1074/jbc.m113.505495] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Rhodopsin photosensors of phototactic algae act as light-gated cation channels when expressed in animal cells. These proteins (channelrhodopsins) are extensively used for millisecond scale photocontrol of cellular functions (optogenetics). We report characterization of PsChR, one of the phototaxis receptors in the alga Platymonas (Tetraselmis) subcordiformis. PsChR exhibited ∼3-fold higher unitary conductance and greater relative permeability for Na(+) ions, as compared with the most frequently used channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2). Photocurrents generated by PsChR in HEK293 cells showed lesser inactivation and faster peak recovery than those by CrChR2. Their maximal spectral sensitivity was at 445 nm, making PsChR the most blue-shifted channelrhodopsin so far identified. The λmax of detergent-purified PsChR was 437 nm at neutral pH and exhibited red shifts (pKa values at 6.6 and 3.8) upon acidification. The purified pigment undergoes a photocycle with a prominent red-shifted intermediate whose formation and decay kinetics match the kinetics of channel opening and closing. The rise and decay of an M-like intermediate prior to formation of this putative conductive state were faster than in CrChR2. PsChR mediated sufficient light-induced membrane depolarization in cultured hippocampal neurons to trigger reliable repetitive spiking at the upper threshold frequency of the neurons. At low frequencies spiking probability decreases less with PsChR than with CrChR2 because of the faster recovery of the former. Its blue-shifted absorption enables optogenetics at wavelengths even below 400 nm. A combination of characteristics makes PsChR important for further research on structure-function relationships in ChRs and potentially useful for optogenetics, especially for combinatorial applications when short wavelength excitation is required.
Collapse
Affiliation(s)
- Elena G Govorunova
- From the Department of Biochemistry & Molecular Biology, Center for Membrane Biology and
| | | | | | | | | |
Collapse
|