1
|
Tu Y, Wen G, Selianitis D, Pispas S. Dense Monolayer Network Structures of Double Hydrophilic Hyperbranched Copolymers at the Air/Water Interface. Macromol Rapid Commun 2024; 45:e2300548. [PMID: 37972570 DOI: 10.1002/marc.202300548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Influences of subphase pH and temperature on the interfacial aggregation behavior of two double hydrophilic hyperbranched copolymers of poly[oligo(ethylene glycol) methacrylate-co-(2-diisopropylamino)ethyl methacrylate] (P(OEGMA-co-DIPAEMA)) at the air/water interface are studied by the Langmuir film balance technique. Morphologies of their Langmuir-Blodgett (LB) films are characterized by atomic force microscopy (AFM). At the interface, P(OEGMA-co-DIPAEMA) copolymers tend to form a dense network structure of circular micelles composed of branching agent-connected carbon backbone cores and mixed shells of OEGMA and DIPAEMA segments (pendant groups). This network structure containing many honeycomb-like holes with diameters of 6-8 nm is identified for the first time and clearly observed in the enlarged AFM images of their LB films. Under acidic conditions, surface pressure versus molecular area isotherms of the two copolymers in the low-pressure region show larger mean molecular area than those under neutral and alkaline conditions due to the lack of impediment from DIPAEMA segments. Upon further compression, each isotherm exhibits a wide pseudo-plateau, which corresponds to OEGMA segments being pressed into the subphase. Furthermore, the isotherms under neutral and alkaline conditions exhibit the lower critical solution temperature behavior of OEGMA segments, and the critical temperature is lower when the hyperbranched copolymer contains higher OEGMA content.
Collapse
Affiliation(s)
- Yongliang Tu
- Department of Polymer Materials and Engineering, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, 4 Linyuan Road, Harbin, 150040, P. R. China
| | - Gangyao Wen
- Department of Polymer Materials and Engineering, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, 4 Linyuan Road, Harbin, 150040, P. R. China
| | - Dimitrios Selianitis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens, 11635, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens, 11635, Greece
| |
Collapse
|
2
|
Zbonikowski R, Iwan M, Paczesny J. Stimuli-Responsive Langmuir Films Composed of Nanoparticles Decorated with Poly( N-isopropyl acrylamide) (PNIPAM) at the Air/Water Interface. ACS OMEGA 2023; 8:23706-23719. [PMID: 37426285 PMCID: PMC10323952 DOI: 10.1021/acsomega.3c01862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/16/2023] [Indexed: 07/11/2023]
Abstract
The nanotechnology shift from static toward stimuli-responsive systems is gaining momentum. We study adaptive and responsive Langmuir films at the air/water interface to facilitate the creation of two-dimensional (2D) complex systems. We verify the possibility of controlling the assembly of relatively large entities, i.e., nanoparticles with diameter around 90 nm, by inducing conformational changes within an about 5 nm poly(N-isopropyl acrylamide) (PNIPAM) capping layer. The system performs reversible switching between uniform and nonuniform states. The densely packed and uniform state is observed at a higher temperature, i.e., opposite to most phase transitions, where more ordered phases appear at lower temperatures. The induced nanoparticles' conformational changes result in different properties of the interfacial monolayer, including various types of aggregation. The analysis of surface pressure at different temperatures and upon temperature changes, surface potential measurements, surface rheology experiments, Brewster angle microscopy (BAM), and scanning electron microscopy (SEM) observations are accompanied by calculations to discuss the principles of the nanoparticles' self-assembly. Those findings provide guidelines for designing other adaptive 2D systems, such as programable membranes or optical interfacial devices.
Collapse
|
3
|
Tran L, Haase MF. Templating Interfacial Nanoparticle Assemblies via in Situ Techniques. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8584-8602. [PMID: 30808166 DOI: 10.1021/acs.langmuir.9b00130] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In situ surface modification of nanoparticles has a rich industrial history, but in recent years, it has also received increased attention in the field of directed self-assembly. In situ techniques rely on components within a Pickering emulsion system, such as amphiphiles that act as hydrophobizers or ionic species that screen charges, to drive the interfacial assembly of particles. Instead of stepwise procedures to chemically tune the particle wettability, in situ methods use elements already present within the system to alter the nanoparticle interfacial behavior, often depending on Coulombic interactions to simplify operations. The surface modifications are not contingent on specific chemical reactions, which further enables a multitude of possible nanoparticles to be used within a given system. In recent studies, in situ methods have been combined with external means of shaping the interface to produce materials with high interfacial areas and complex geometries. These systems have facilely tunable properties, enabling their use in an extensive array of applications. In this feature article, in honor of the late Prof. Helmuth Möhwald, we review how in situ techniques have influenced the development of soft, advanced materials, covering the fundamental interfacial phenomena with an outlook on materials science.
Collapse
Affiliation(s)
- Lisa Tran
- Department of Chemical Engineering , Columbia University , New York , New York 10027 , United States
| | - Martin F Haase
- Department of Chemical Engineering , Rowan University , Glassboro , New Jersey 08028 , United States
| |
Collapse
|
4
|
|
5
|
Zhang H, Wang W, Mallapragada S, Travesset A, Vaknin D. Macroscopic and tunable nanoparticle superlattices. NANOSCALE 2017; 9:164-171. [PMID: 27791213 DOI: 10.1039/c6nr07136h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We describe a robust method to assemble nanoparticles into highly ordered superlattices by inducing aqueous phase separation of neutral capping polymers. Here we demonstrate the approach with thiolated polyethylene-glycol-functionalized gold nanoparticles (PEG-AuNPs) in the presence of salts (for example, K2CO3) in solutions that spontaneously migrate to the liquid-vapor interface to form a Gibbs monolayer. We show that by increasing salt concentration, PEG-AuNP monolayers transform from two-dimensional (2D) gas-like to liquid-like phase and eventually, beyond a threshold concentration, to a highly ordered hexagonal structure, as characterized by surface sensitive synchrotron X-ray reflectivity and grazing incidence X-ray diffraction. Furthermore, the method allows control of the inplane packing in the crystalline phase by varying the K2CO3 and PEG-AuNPs concentrations and the length of PEG. Using polymer-brush theory, we argue that the assembly and crystallization is driven by the need to reduce surface tension between PEG and the salt solution. Our approach of taking advantage of the phase separation of PEG in salt solutions is general (i.e., can be used with any nanoparticles) leads to high-quality macroscopic and tunable crystals. Finally, we discuss how the method can also be applied to the design of orderly 3D structures.
Collapse
Affiliation(s)
- Honghu Zhang
- Ames Laboratory and Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | |
Collapse
|
6
|
Zhang F, Li J, Li X, Yang M, Yang H, Zhang XM. In Situ Surface Engineering of Mesoporous Silica Generates Interfacial Activity and Catalytic Acceleration Effect. ACS OMEGA 2016; 1:930-938. [PMID: 31457173 PMCID: PMC6640749 DOI: 10.1021/acsomega.6b00209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/13/2016] [Indexed: 05/22/2023]
Abstract
Mesoporous structured catalysts featuring interfacial activity are the most promising candidates for biphasic interface catalysis because their nanopores can concurrently accommodate catalytic active components and provide countless permeable channels for mass transfer between the interior and the exterior of Pickering droplets. However, to date, a convenient and effective strategy for the preparation of an anchor site-containing interfacial active mesoporous catalyst is still lacking. In the present work, we report a novel and efficient interfacial active mesoporous silica (MS) catalyst, which is prepared by a facile cocondensation of two types of organosilanes and subsequent anchoring of Pd NPs onto its surface through the confinement and coordination interactions. The as-prepared catalyst is then applied as emulsifier to stabilize the water-in-oil (W/O) Pickering emulsion and investigated as an interfacial catalyst for the hydrogenation of nitroarenes. An obviously enhanced rate toward the nitrobenzene hydrogenation is observed for the 0.8 mol% Pd/PAP-functionalized mesoporous silica-20 catalyst in the emulsion system (both conversion and selectivity are >99% within 30 min) in comparison to a single aqueous solution. Moreover, the emulsion catalytic system can be easily recycled six times without the separation of the catalyst from the water phase during the recycling process. This finding demonstrates that the incorporation of phenylaminopropyl trimethoxysilane amphiphilic groups during the hydrolysis of tetramethyl orthosilicate not only endows MS with interfacial activity but also improves the catalytic activity and stability.
Collapse
Affiliation(s)
- Fengwei Zhang
- Institute of Crystalline Materials and School of Chemistry and Chemical
Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Juan Li
- Institute of Crystalline Materials and School of Chemistry and Chemical
Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Xincheng Li
- Institute of Crystalline Materials and School of Chemistry and Chemical
Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Mengqi Yang
- Institute of Crystalline Materials and School of Chemistry and Chemical
Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Hengquan Yang
- Institute of Crystalline Materials and School of Chemistry and Chemical
Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Xian-Ming Zhang
- Institute of Crystalline Materials and School of Chemistry and Chemical
Engineering, Shanxi University, Taiyuan 030006, P. R. China
| |
Collapse
|
7
|
Moehwald H, Brezesinski G. From Langmuir Monolayers to Multilayer Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10445-10458. [PMID: 27540629 DOI: 10.1021/acs.langmuir.6b02518] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This feature article is intended to describe a route from Langmuir monolayers as the most suitable and well-defined models to polyelectrolyte multilayers. The latter are structurally controlled not with angstrom but with nanometer precision; however, they are very modular with regard to building blocks and function and are robust, therefore promising many diverse applications. There have been many methods developed to structurally characterize Langmuir monolayers; therefore, they serve as models in membrane biophysics and materials science as well as in general physics as two-dimensional model systems. Many of these methods as well as ideas to control interfaces could be taken over to study polyelectrolyte multilayers with their extended internal interfaces. Finally, as an outlook we try to sketch various aspects to transit toward systems with higher structural hierarchy, enabling the coupling of different functions and arriving at responsive three-dimensional systems.
Collapse
Affiliation(s)
- Helmuth Moehwald
- Max-Planck-Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Gerald Brezesinski
- Max-Planck-Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
8
|
Vorobiev A, Khassanov A, Ukleev V, Snigireva I, Konovalov O. Substantial Difference in Ordering of 10, 15, and 20 nm Iron Oxide Nanoparticles on a Water Surface: In Situ Characterization by the Grazing Incidence X-ray Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:11639-11648. [PMID: 26399881 DOI: 10.1021/acs.langmuir.5b02644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In the present study, for the first time, a unique combination of in situ grazing incidence small-angle X-ray scattering and X-ray reflectivity, accompanied by the pressure-area isotherm analysis, Brewster angle microscopy, and ex situ scanning electron microscopy, was applied for investigation of two-dimensional superlattices of magnetic nanoparticles as they form on a water surface in a Langmuir trough. Iron oxide particles of different sizes stabilized with a single layer of oleic acid were used. It is demonstrated that monodisperse 10 nm particles on a water surface reproducibly form identical highly ordered monolayers in a wide range of experimental conditions, while monodisperse 20 nm particles always form compact three-dimensional clusters and never the monolayers. Monodisperse particles of an intermediate size, 15 nm in diameter, build a metastable monolayer, which shows a tendency for spontaneous transformation to bi-, tri-, and multilayer islands. The importance to use both grazing incidence small-angle X-ray scattering and X-ray reflectivity together with the complementary techniques, to avoid misinterpretation of separate experimental data sets, is underlined.
Collapse
Affiliation(s)
- A Vorobiev
- Department of Physics and Astronomy, Uppsala University , Box 516, 751 20 Uppsala, Sweden
- European Synchrotron Radiation Facility , 71 Avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - A Khassanov
- European Synchrotron Radiation Facility , 71 Avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
- Organic Materials and Devices, Friedrich-Alexander-Universität Erlangen-Nürnberg , Martensstraße 7, 91058 Erlangen, Germany
| | - V Ukleev
- Department of Physics and Astronomy, Uppsala University , Box 516, 751 20 Uppsala, Sweden
- Petersburg Nuclear Physics Institute , Orlova Roscha, Gatchina, St. Petersburg 188300, Russia
| | - I Snigireva
- European Synchrotron Radiation Facility , 71 Avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - O Konovalov
- European Synchrotron Radiation Facility , 71 Avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| |
Collapse
|
9
|
Bettini S, Bonfrate V, Syrgiannis Z, Sannino A, Salvatore L, Madaghiele M, Valli L, Giancane G. Biocompatible Collagen Paramagnetic Scaffold for Controlled Drug Release. Biomacromolecules 2015; 16:2599-608. [PMID: 26270197 DOI: 10.1021/acs.biomac.5b00829] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A porous collagen-based hydrogel scaffold was prepared in the presence of iron oxide nanoparticles (NPs) and was characterized by means of infrared spectroscopy and scanning electron microscopy. The hybrid scaffold was then loaded with fluorescein sodium salt as a model compound. The release of the hydrosoluble species was triggered and accurately controlled by the application of an external magnetic field, as monitored by fluorescence spectroscopy. The biocompatibility of the proposed matrix was also tested by the MTT assay performed on 3T3 cells. Cell viability was only slightly reduced when the cells were incubated in the presence of the collagen-NP hydrogel, compared to controls. The economicity of the chemical protocol used to obtain the paramagnetic scaffolds as well as their biocompatibility and the safety of the external trigger needed to induce the drug release suggest the proposed collagen paramagnetic matrices for a number of applications including tissue engeneering and drug delivery.
Collapse
Affiliation(s)
- Simona Bettini
- Department of Biological and Environmental Sciences and Technologies, DISTEBA, University of Salento , Via per Arnesano, I-73100 Lecce, Italy
| | - Valentina Bonfrate
- Department of Engineering for Innovation, Campus University Ecotekne , Via per Monteroni, I-73100 Lecce, Italy
| | - Zois Syrgiannis
- Centre of Excellence for Nanostructured Materials (CENMAT), INSTM, Unit of Trieste, Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste , via L. Giorgieri 1, 34127, Trieste, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, Campus University Ecotekne , Via per Monteroni, I-73100 Lecce, Italy
| | - Luca Salvatore
- Department of Engineering for Innovation, Campus University Ecotekne , Via per Monteroni, I-73100 Lecce, Italy
| | - Marta Madaghiele
- Department of Engineering for Innovation, Campus University Ecotekne , Via per Monteroni, I-73100 Lecce, Italy
| | - Ludovico Valli
- Department of Biological and Environmental Sciences and Technologies, DISTEBA, University of Salento , Via per Arnesano, I-73100 Lecce, Italy
| | - Gabriele Giancane
- Department of Cultural Heritage, University of Salento , Via Birago 64, I-73100 Lecce, Italy
| |
Collapse
|
10
|
Foster LM, Worthen AJ, Foster EL, Dong J, Roach CM, Metaxas AE, Hardy CD, Larsen ES, Bollinger JA, Truskett TM, Bielawski CW, Johnston KP. High interfacial activity of polymers "grafted through" functionalized iron oxide nanoparticle clusters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:10188-96. [PMID: 25111153 DOI: 10.1021/la501445f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The mechanism by which polymers, when grafted to inorganic nanoparticles, lower the interfacial tension at the oil-water interface is not well understood, despite the great interest in particle stabilized emulsions and foams. A simple and highly versatile free radical "grafting through" technique was used to bond high organic fractions (by weight) of poly(oligo(ethylene oxide) monomethyl ether methacrylate) onto iron oxide clusters, without the need for catalysts. In the resulting ∼1 μm hybrid particles, the inorganic cores and grafting architecture contribute to the high local concentration of grafted polymer chains to the dodecane/water interface to produce low interfacial tensions of only 0.003 w/v % (polymer and particle core). This "critical particle concentration" (CPC) for these hybrid inorganic/polymer amphiphilic particles to lower the interfacial tension by 36 mN/m was over 30-fold lower than the critical micelle concentration of the free polymer (without inorganic cores) to produce nearly the same interfacial tension. The low CPC is favored by the high adsorption energy (∼10(6) kBT) for the large ∼1 μm hybrid particles, the high local polymer concentration on the particles surfaces, and the ability of the deformable hybrid nanocluster cores as well as the polymer chains to conform to the interface. The nanocluster cores also increased the entanglement of the polymer chains in bulk DI water or synthetic seawater, producing a viscosity up to 35,000 cP at 0.01 s(-1), in contrast with only 600 cP for the free polymer. As a consequence of these interfacial and rheological properties, the hybrid particles stabilized oil-in-water emulsions at concentrations as low as 0.01 w/v %, with average drop sizes down to 30 μm. In contrast, the bulk viscosity was low for the free polymer, and it did not stabilize the emulsions. The ability to influence the interfacial activity and rheology of polymers upon grafting them to inorganic particles, including clusters, may be expected to be broadly applicable to stabilization of emulsions and foams.
Collapse
Affiliation(s)
- Lynn M Foster
- McKetta Department of Chemical Engineering and ‡Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712-0231, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Stefaniu C, Brezesinski G, Möhwald H. Langmuir monolayers as models to study processes at membrane surfaces. Adv Colloid Interface Sci 2014; 208:197-213. [PMID: 24612663 DOI: 10.1016/j.cis.2014.02.013] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 12/12/2022]
Abstract
The use of new sophisticated and highly surface sensitive techniques as synchrotron based X-ray scattering techniques and in-house infrared reflection absorption spectroscopy (IRRAS) has revolutionized the monolayer research. Not only the determination of monolayer structures but also interactions between amphiphilic monolayers at the soft air/liquid interface and molecules dissolved in the subphase are important for many areas in material and life sciences. Monolayers are convenient quasi-two-dimensional model systems. This review focuses on interactions between amphiphilic molecules in binary and ternary mixtures as well as on interfacial interactions with interesting biomolecules dissolved in the subphase. The phase state of monolayers can be easily triggered at constant temperature by increasing the packing density of the lipids by compression. Simultaneously the monolayer structure changes are followed in situ by grazing incidence X-ray diffraction or IRRAS. The interactions can be indirectly determined by the observed structure changes. Additionally, the yield of enzymatic reaction can be quantitatively determined, secondary structures of peptides and proteins can be measured and compared with those observed in bulk. In this way, the influence of a confinement on the structural properties of biomolecules can be determined. The adsorption of DNA can be quantified as well as the competing adsorption of ions at charged interfaces. The influence of modified nanoparticles on model membranes can be clearly determined. In this review, the relevance and utility of Langmuir monolayers as suitable models to study physical and chemical interactions at membrane surfaces are clearly demonstrated.
Collapse
Affiliation(s)
- Cristina Stefaniu
- Max Planck Institute of Colloids and Interfaces, Science Park Potsdam-Golm, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Gerald Brezesinski
- Max Planck Institute of Colloids and Interfaces, Science Park Potsdam-Golm, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Helmuth Möhwald
- Max Planck Institute of Colloids and Interfaces, Science Park Potsdam-Golm, Am Mühlenberg 1, D-14476 Potsdam, Germany.
| |
Collapse
|
12
|
Stefaniu C, Brezesinski G. X-ray investigation of monolayers formed at the soft air/water interface. Curr Opin Colloid Interface Sci 2014. [DOI: 10.1016/j.cocis.2014.01.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Zell ZA, Isa L, Ilg P, Leal LG, Squires TM. Adsorption energies of poly(ethylene oxide)-based surfactants and nanoparticles on an air-water surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:110-119. [PMID: 24328531 DOI: 10.1021/la404233a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The self-assembly of polymer-based surfactants and nanoparticles on fluid-fluid interfaces is central to many applications, including dispersion stabilization, creation of novel 2D materials, and surface patterning. Very often these processes involve compressing interfacial monolayers of particles or polymers to obtain a desired material microstructure. At high surface pressures, however, even highly interfacially active objects can desorb from the interface. Methods of directly measuring the energy which keeps the polymer or particles bound to the interface (adsorption/desorption energies) are therefore of high interest for these processes. Moreover, though a geometric description linking adsorption energy and wetting properties through the definition of a contact angle can be established for rigid nano- or microparticles, such a description breaks down for deformable or aggregating objects. Here, we demonstrate a technique to quantify desorption energies directly, by comparing surface pressure-density compression measurements using a Wilhelmy plate and a custom-microfabricated deflection tensiometer. We focus on poly(ethylene oxide)-based polymers and nanoparticles. For PEO-based homo- and copolymers, the adsorption energy of PEO chains scales linearly with molecular weight and can be tuned by changing the subphase composition. Moreover, the desorption surface pressure of PEO-stabilized nanoparticles corresponds to the saturation surface pressure for spontaneously adsorbed monolayers, yielding trapping energies of ∼10(3) k(B)T.
Collapse
Affiliation(s)
- Zachary A Zell
- Department of Chemical Engineering, University of California, Santa Barbara , Santa Barbara, California 93106-5080, United States
| | | | | | | | | |
Collapse
|
14
|
Sedó J, Saiz-Poseu J, Busqué F, Ruiz-Molina D. Catechol-based biomimetic functional materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013. [PMID: 23180685 DOI: 10.1002/adma.201202343] [Citation(s) in RCA: 477] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Catechols are found in nature taking part in a remarkably broad scope of biochemical processes and functions. Though not exclusively, such versatility may be traced back to several properties uniquely found together in the o-dihydroxyaryl chemical function; namely, its ability to establish reversible equilibria at moderate redox potentials and pHs and to irreversibly cross-link through complex oxidation mechanisms; its excellent chelating properties, greatly exemplified by, but by no means exclusive, to the binding of Fe(3+); and the diverse modes of interaction of the vicinal hydroxyl groups with all kinds of surfaces of remarkably different chemical and physical nature. Thanks to this diversity, catechols can be found either as simple molecular systems, forming part of supramolacular structures, coordinated to different metal ions or as macromolecules mostly arising from polymerization mechanisms through covalent bonds. Such versatility has allowed catechols to participate in several natural processes and functions that range from the adhesive properties of marine organisms to the storage of some transition metal ions. As a result of such an astonishing range of functionalities, catechol-based systems have in recent years been subject to intense research, aimed at mimicking these natural systems in order to develop new functional materials and coatings. A comprehensive review of these studies is discussed in this paper.
Collapse
Affiliation(s)
- Josep Sedó
- Centro de Investigación en Nanociencia y Nanotecnología, Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
| | | | | | | |
Collapse
|
15
|
Wang W, Pleasants J, Bu W, Park RY, Kuzmenko I, Vaknin D. Amorphous iron-(hydr) oxide networks at liquid/vapor interfaces: In situ X-ray scattering and spectroscopy studies. J Colloid Interface Sci 2012; 384:45-54. [DOI: 10.1016/j.jcis.2012.06.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 06/08/2012] [Accepted: 06/12/2012] [Indexed: 11/29/2022]
|
16
|
Giner-Casares JJ, Brezesinski G, Möhwald H, Landsmann S, Polarz S. Polyoxometalate Surfactants as Unique Molecules for Interfacial Self-Assembly. J Phys Chem Lett 2012; 3:322-6. [PMID: 26285845 DOI: 10.1021/jz201588z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Whereas, commonly, Langmuir monolayers are structurally dominated by the aliphatic chains, we present here the first case of monolayers where the chains merely serve anchoring at the air/water interface and the organization is dictated by the hydrophilic head group self-assembling in a hexagonal lattice. These head groups are polyoxometalates known for their multifunctional potential. The chain length has been systematically varied, allowing for a general study of the impact of the chain length on the supramolecular structure. These model structures are studied here by a combination of modern techniques, the leading ones being X-ray reflectivity and grazing incidence X-ray diffraction. The quantitative structural insights offered in this Letter might represent a starting point for the rational design and study of a new class of emulsions, including an organic tail and a multifunctional inorganic polar head.
Collapse
Affiliation(s)
- Juan J Giner-Casares
- †Department of Interfaces, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany
- ‡Department of Physical Chemistry, University of Córdoba, Campus de Rabanales, 14014 Córdoba, Spain
| | - Gerald Brezesinski
- †Department of Interfaces, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany
| | - Helmuth Möhwald
- †Department of Interfaces, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany
| | - Steve Landsmann
- §Department of Chemistry, University of Konstanz, D-78457 Konstanz, Germany
| | - Sebastian Polarz
- §Department of Chemistry, University of Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|
17
|
Wang J, Xia T, Wu C, Feng J, Meng F, Shi Z, Meng J. Self-assembled magnetite peony structures with petal-like nanoslices: one-step synthesis, excellent magnetic and water treatment properties. RSC Adv 2012. [DOI: 10.1039/c2ra01229d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
18
|
Amara D, Grinblat J, Margel S. Solventless thermal decomposition of ferrocene as a new approach for one-step synthesis of magnetite nanocubes and nanospheres. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c1jm13942h] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|