1
|
Liu YJ. Understanding the complete bioluminescence cycle from a multiscale computational perspective: A review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
2
|
Hernández-Rodríguez EW, Escorcia AM, van der Kamp MW, Montero-Alejo AL, Caballero J. Multi-scale simulation reveals that an amino acid substitution increases photosensitizing reaction inputs in Rhodopsins. J Comput Chem 2020; 41:2278-2295. [PMID: 32757375 DOI: 10.1002/jcc.26392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 06/27/2020] [Accepted: 07/04/2020] [Indexed: 11/11/2022]
Abstract
Evaluating the availability of molecular oxygen (O2 ) and energy of excited states in the retinal binding site of rhodopsin is a crucial challenging first step to understand photosensitizing reactions in wild-type (WT) and mutant rhodopsins by absorbing visible light. In the present work, energies of the ground and excited states related to 11-cis-retinal and the O2 accessibility to the β-ionone ring are evaluated inside WT and human M207R mutant rhodopsins. Putative O2 pathways within rhodopsins are identified by using molecular dynamics simulations, Voronoi-diagram analysis, and implicit ligand sampling while retinal energetic properties are investigated through density functional theory, and quantum mechanical/molecular mechanical methods. Here, the predictions reveal that an amino acid substitution can lead to enough energy and O2 accessibility in the core hosting retinal of mutant rhodopsins to favor the photosensitized singlet oxygen generation, which can be useful in understanding retinal degeneration mechanisms and in designing blue-lighting-absorbing proteic photosensitizers.
Collapse
Affiliation(s)
- Erix W Hernández-Rodríguez
- Laboratorio de Bioinformática y Química Computacional, Escuela de Química y Farmacia, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Andrés M Escorcia
- School of Biochemistry, University of Bristol, University Walk, Bristol, UK
| | | | - Ana L Montero-Alejo
- Departamento de Física, Facultad de Ciencias Naturales, Matemática y del Medio Ambiente (FCNMM), Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Julio Caballero
- Departamento de Bioinformática, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| |
Collapse
|
3
|
Lin CY, Romei MG, Oltrogge LM, Mathews II, Boxer SG. Unified Model for Photophysical and Electro-Optical Properties of Green Fluorescent Proteins. J Am Chem Soc 2019; 141:15250-15265. [PMID: 31450887 DOI: 10.1021/jacs.9b07152] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Green fluorescent proteins (GFPs) have become indispensable imaging and optogenetic tools. Their absorption and emission properties can be optimized for specific applications. Currently, no unified framework exists to comprehensively describe these photophysical properties, namely the absorption maxima, emission maxima, Stokes shifts, vibronic progressions, extinction coefficients, Stark tuning rates, and spontaneous emission rates, especially one that includes the effects of the protein environment. In this work, we study the correlations among these properties from systematically tuned GFP environmental mutants and chromophore variants. Correlation plots reveal monotonic trends, suggesting that all these properties are governed by one underlying factor dependent on the chromophore's environment. By treating the anionic GFP chromophore as a mixed-valence compound existing as a superposition of two resonance forms, we argue that this underlying factor is defined as the difference in energy between the two forms, or the driving force, which is tuned by the environment. We then introduce a Marcus-Hush model with the bond length alternation vibrational mode, treating the GFP absorption band as an intervalence charge transfer band. This model explains all of the observed strong correlations among photophysical properties; related subtopics are extensively discussed in the Supporting Information. Finally, we demonstrate the model's predictive power by utilizing the additivity of the driving force. The model described here elucidates the role of the protein environment in modulating the photophysical properties of the chromophore, providing insights and limitations for designing new GFPs with desired phenotypes. We argue that this model should also be generally applicable to both biological and nonbiological polymethine dyes.
Collapse
Affiliation(s)
- Chi-Yun Lin
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Matthew G Romei
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Luke M Oltrogge
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Irimpan I Mathews
- Stanford Synchrotron Radiation Lightsource , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Steven G Boxer
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| |
Collapse
|
4
|
Orozco-Gonzalez Y, Kabir MP, Gozem S. Electrostatic Spectral Tuning Maps for Biological Chromophores. J Phys Chem B 2019; 123:4813-4824. [DOI: 10.1021/acs.jpcb.9b00489] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Mohammad Pabel Kabir
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
5
|
Yanai K, Ishimura K, Nakayama A, Hasegawa JY. First-Order Interacting Space Approach to Excited-State Molecular Interaction: Solvatochromic Shift of p-Coumaric Acid and Retinal Schiff Base. J Chem Theory Comput 2018; 14:3643-3655. [DOI: 10.1021/acs.jctc.7b01089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kazuma Yanai
- Institute for Catalysis, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan
| | - Kazuya Ishimura
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Akira Nakayama
- Institute for Catalysis, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan
| | - Jun-ya Hasegawa
- Institute for Catalysis, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|
6
|
Loco D, Buda F, Lugtenburg J, Mennucci B. The Dynamic Origin of Color Tuning in Proteins Revealed by a Carotenoid Pigment. J Phys Chem Lett 2018; 9:2404-2410. [PMID: 29683674 DOI: 10.1021/acs.jpclett.8b00763] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding the microscopic origin of the color tuning in pigment-protein complexes is a challenging yet fundamental issue in photoactive biological systems. Here, we propose a possible interpretation by using a state-of-the-art multiscale strategy based on the integration of quantum chemistry and polarizable atomistic embeddings into a dynamic description. By means of such a strategy we are able to resolve the long-standing dispute over the coloration mechanism in the crustacyanin protein. It is shown that the combination of the dynamical flexibility of the carotenoid pigments (astaxanthin) with the responsive protein environment is essential to obtain quantitative predictions of the spectral tuning. The strong linear correlation between the excitation energies and the bond length alternation in the long-chain carotenoids modulated by the dynamical protein environment is a novel finding explaining the high color tunability in crustacyanin.
Collapse
Affiliation(s)
- Daniele Loco
- Dipartimento di Chimica e Chimica Industriale , University of Pisa , via G. Moruzzi 13 , 56124 , Pisa , Italy
| | - Francesco Buda
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2300 RA Leiden , The Netherlands
| | - Johan Lugtenburg
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2300 RA Leiden , The Netherlands
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale , University of Pisa , via G. Moruzzi 13 , 56124 , Pisa , Italy
| |
Collapse
|
7
|
Guareschi R, Valsson O, Curutchet C, Mennucci B, Filippi C. Electrostatic versus Resonance Interactions in Photoreceptor Proteins: The Case of Rhodopsin. J Phys Chem Lett 2016; 7:4547-4553. [PMID: 27786481 DOI: 10.1021/acs.jpclett.6b02043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Light sensing in photoreceptor proteins is subtly modulated by the multiple interactions between the chromophoric unit and its binding pocket. Many theoretical and experimental studies have tried to uncover the fundamental origin of these interactions but reached contradictory conclusions as to whether electrostatics, polarization, or intrinsically quantum effects prevail. Here, we select rhodopsin as a prototypical photoreceptor system to reveal the molecular mechanism underlying these interactions and regulating the spectral tuning. Combining a multireference perturbation method and density functional theory with a classical but atomistic and polarizable embedding scheme, we show that accounting for electrostatics only leads to a qualitatively wrong picture, while a responsive environment can successfully capture both the classical and quantum dominant effects. Several residues are found to tune the excitation by both differentially stabilizing ground and excited states and through nonclassical "inductive resonance" interactions. The results obtained with such a quantum-in-classical model are validated against both experimental data and fully quantum calculations.
Collapse
Affiliation(s)
- Riccardo Guareschi
- MESA+ Institute for Nanotechnology, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Omar Valsson
- Department of Chemistry and Applied Bioscience, ETH Zurich and Facoltà di Informatica, Instituto di Scienze Computazionali, Università della Svizzera italiana , Via Giuseppe Buffi 13, CH-6900 Lugano, Switzerland
| | - Carles Curutchet
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona , Av. Joan XXIII, s/n 08028 Barcelona, Spain
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa , Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Claudia Filippi
- MESA+ Institute for Nanotechnology, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
8
|
Li X, Chung LW, Li G. Multiscale Simulations on Spectral Tuning and the Photoisomerization Mechanism in Fluorescent RNA Spinach. J Chem Theory Comput 2016; 12:5453-5464. [PMID: 27685000 DOI: 10.1021/acs.jctc.6b00578] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fluorescent RNA aptamer Spinach can bind and activate a green fluorescent protein (GFP)-like chromophore (an anionic DFHBDI chromophore) displaying green fluorescence. Spectroscopic properties, spectral tuning, and the photoisomerization mechanism in the Spinach-DFHBDI complex have been investigated by high-level QM and hybrid ONIOM(QM:AMBER) methods (QM method: (TD)DFT, SF-BHHLYP, SAC-CI, LT-DF-LCC2, CASSCF, or MS-CASPT2), as well as classical molecular dynamics (MD) simulations. First, our benchmark calculations have shown that TD-DFT and spin-flip (SF) TD-DFT (SF-BHHLYP) failed to give a satisfactory description of absorption and emission of the anionic DFHBDI chromophore. Comparatively, SAC-CI, LT-DF-LCC2, and MS-CASPT2 can give more reliable transition energies and are mainly used to further study the spectra of the anionic DFHBDI chromophore in Spinach. The RNA environmental effects on the spectral tuning and the photoisomerization mechanism have been elucidated. Our simulations show that interactions of the anionic cis-DFHBDI chromophore with two G-quadruplexes as well as a UAU base triple suppress photoisomerization of DFHBDI. In addition, strong hydrogen bonds between the anionic cis-DFHBDI chromophore and nearby nucleotides facilitate its binding to Spinach and further inhibit the cis-trans photoisomerization of DFHBDI. Solvent molecules, ions, and loss of key hydrogen bonds with nearby nucleotides could induce dissociation of the anionic trans-DFHBDI chromophore from the binding site. These results provide new insights into fluorescent RNA Spinach and may help rational design of other fluorescent RNAs.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Lung Wa Chung
- Department of Chemistry, South University of Science and Technology of China , Shenzhen 518055, China
| | - Guohui Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| |
Collapse
|
9
|
Udvarhelyi A, Olivucci M, Domratcheva T. Role of the Molecular Environment in Flavoprotein Color and Redox Tuning: QM Cluster versus QM/MM Modeling. J Chem Theory Comput 2016; 11:3878-94. [PMID: 26574469 DOI: 10.1021/acs.jctc.5b00197] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigate the origin of the excitation energy shifts induced by the apoprotein in the active site of the bacterial photoreceptor BLUF (Blue Light sensor Using Flavin adenine dinucleotide). In order to compute the vertical excitation energies of three low-lying electronic states, including two π-π* states of flavin (S1 and S2) and a π-π* tyrosine-flavin electron-transfer state (ET), with respect to the energy of the closed-shell ground state (S0), we prepared alternative quantum mechanical (QM) cluster and quantum mechanics/molecular mechanics (QM/MM) models. We found that the excitation energies computed with both types of models correlate with the magnitude of the charge transfer character of the excitation. Accordingly, we conclude that the small charge transfer character of the light absorbing S0-S1 transition and the substantial charge transfer character of the nonabsorbing but redox active S0-ET transition explain the small color changes but substantial redox tuning in BLUF and also in other flavoproteins. Further analysis showed that redox tuning is governed by the electrostatic interaction in the QM/MM model and transfer of charge between the active site and its environment in the QM cluster. Moreover, the wave function polarization of the QM subsystem by the MM subsystem influences the magnitude of the charge transfer, resulting in the QM/MM and QM excitation energies that are not entirely consistent.
Collapse
Affiliation(s)
- Anikó Udvarhelyi
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research , Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, via A. Moro 2, Universitá di Siena , I-53100 Siena, Italy.,Chemistry Department, Overman Hall, Bowling Green State University , Bowling Green, Ohio 67200, United States.,Institut de Physique et de Chimie des Materiaux de Strasbourg, Université de Strasbourg , Batiment 69, 23 Rue du Loess, 67200 Strasbourg, France
| | - Tatiana Domratcheva
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research , Jahnstrasse 29, 69120 Heidelberg, Germany
| |
Collapse
|
10
|
National Medal of Science: A. P. Alivisatos und G. L. Richmond / National Medal of Technology and Innovation: J. M. DeSimone / Schrödinger-Medaille: H. Nakatsuji / Dirac-Medaille: J. Neugebauer. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
National Medal of Science: A. P. Alivisatos and G. L. Richmond / National Medal of Technology and Innovation: J. M. DeSimone / WATOC Schrödinger Medal: H. Nakatsuji / WATOC Dirac Medal: J. Neugebauer. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/anie.201601874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
List NH, Jensen HJA, Kongsted J. Local electric fields and molecular properties in heterogeneous environments through polarizable embedding. Phys Chem Chem Phys 2016; 18:10070-80. [PMID: 27007060 DOI: 10.1039/c6cp00669h] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In spectroscopies, the local field experienced by a molecule embedded in an environment will be different from the externally applied electromagnetic field, and this difference may significantly alter the response and transition properties of the molecule. The polarizable embedding (PE) model has previously been developed to model the local field contribution stemming from the direct molecule-environment coupling of the electromagnetic response properties of molecules in solution as well as in heterogeneous environments, such as proteins. Here we present an extension of this approach to address the additional effective external field effect, i.e., the manifestations of the environment polarization induced by the external field, which allows for the calculation of properties defined in terms of the external field. Within a response framework, we report calculations of the one- and two-photon absorption (1PA and 2PA, respectively) properties of PRODAN-methanol clusters as well as the fluorescent protein DsRed. Our results demonstrate the necessity of accounting for both the dynamical reaction field and effective external field contributions to the local field in order to reproduce full quantum chemical reference calculations. For the lowest π→π* transition in DsRed, inclusion of effective external field effects gives rise to a 1.9- and 3.5-fold reduction in the 1PA and 2PA cross-sections, respectively. The effective external field is, however, strongly influenced by the heterogeneity of the protein matrix, and the resulting effect can lead to either screening or enhancement depending on the nature of the transition under consideration.
Collapse
|
13
|
Park JW, Rhee YM. Emission shaping in fluorescent proteins: role of electrostatics and π-stacking. Phys Chem Chem Phys 2016; 18:3944-55. [DOI: 10.1039/c5cp07535a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We obtained the fluorescence spectrum of the GFP with trajectory simulations, and revealed the role of the protein sidechains in emission shifts.
Collapse
Affiliation(s)
- Jae Woo Park
- Center for Self-assembly and Complexity
- Institute for Basic Science (IBS)
- Pohang 37673
- Korea
- Department of Chemistry
| | - Young Min Rhee
- Center for Self-assembly and Complexity
- Institute for Basic Science (IBS)
- Pohang 37673
- Korea
- Department of Chemistry
| |
Collapse
|
14
|
List NH, Beerepoot MTP, Olsen JMH, Gao B, Ruud K, Jensen HJA, Kongsted J. Molecular quantum mechanical gradients within the polarizable embedding approach--application to the internal vibrational Stark shift of acetophenone. J Chem Phys 2015; 142:034119. [PMID: 25612701 DOI: 10.1063/1.4905909] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We present an implementation of analytical quantum mechanical molecular gradients within the polarizable embedding (PE) model to allow for efficient geometry optimizations and vibrational analysis of molecules embedded in large, geometrically frozen environments. We consider a variational ansatz for the quantum region, covering (multiconfigurational) self-consistent-field and Kohn-Sham density functional theory. As the first application of the implementation, we consider the internal vibrational Stark effect of the C=O group of acetophenone in different solvents and derive its vibrational linear Stark tuning rate using harmonic frequencies calculated from analytical gradients and computed local electric fields. Comparisons to PE calculations employing an enlarged quantum region as well as to a non-polarizable embedding scheme show that the inclusion of mutual polarization between acetophenone and water is essential in order to capture the structural modifications and the associated frequency shifts observed in water. For more apolar solvents, a proper description of dispersion and exchange-repulsion becomes increasingly important, and the quality of the optimized structures relies to a larger extent on the quality of the Lennard-Jones parameters.
Collapse
Affiliation(s)
- Nanna Holmgaard List
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense M, Odense DK-5230 Denmark
| | - Maarten T P Beerepoot
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Jógvan Magnus Haugaard Olsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense M, Odense DK-5230 Denmark
| | - Bin Gao
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Kenneth Ruud
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Hans Jørgen Aagaard Jensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense M, Odense DK-5230 Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense M, Odense DK-5230 Denmark
| |
Collapse
|
15
|
Schwabe T, Beerepoot MTP, Olsen JMH, Kongsted J. Analysis of computational models for an accurate study of electronic excitations in GFP. Phys Chem Chem Phys 2015; 17:2582-8. [DOI: 10.1039/c4cp04524f] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The accuracy of PERI-CC2 is successfully assessed against RVS-CC2 for GFP model clusters and subsequently applied to a whole protein model.
Collapse
Affiliation(s)
- Tobias Schwabe
- Center for Bioinformatics and Physical Chemistry Institute
- D-22148 Hamburg
- Germany
| | - Maarten T. P. Beerepoot
- Centre for Theoretical and Computational Chemistry
- Department of Chemistry
- University of Tromsø – The Arctic University of Norway
- N-9037 Tromsø
- Norway
| | - Jógvan Magnus Haugaard Olsen
- Laboratory of Computational Chemistry and Biochemistry
- Ecole Polytechnique Fédérale de Lausanne
- CH-1015 Lausanne
- Switzerland
- Department of Physics
| | - Jacob Kongsted
- Department of Physics
- Chemistry and Pharmacy
- University of Southern Denmark
- DK-5230 Odense
- Denmark
| |
Collapse
|
16
|
Pinto da Silva L, Esteves da Silva JCG. A theoretical analysis of the potential role of π-π stacking interactions in the photoprotolytic cycle of firefly luciferin. Chemphyschem 2014; 15:3761-7. [PMID: 25236293 DOI: 10.1002/cphc.201402558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Indexed: 11/10/2022]
Abstract
Firefly oxyluciferin is a photoacid that presents a pH-sensitive fluorescence, which results from pH-dependent changes on the conformation of self-aggregated π-π stacking complexes. Luciferin is a derivative of oxyluciferin with very similar fluorescence and photoacidic properties. This similarity indicates that luciferin is also expected to be able to form π-π stacking complexes, but no pH-sensitive fluorescence is found for this compound. Here, a theoretical approach is used to rationalize this finding. We have found that luciferin only forms π-π stacking complexes in the ground state at acidic pH. At basic pH and in the excited state, luciferin is present as a dianion. This species is not able to self-aggregate, owing to repulsive electrostatic interactions. Thus, this emissive species is not subject to π-π stacking interactions; this explains its pH-insensitive fluorescence.
Collapse
Affiliation(s)
- Luís Pinto da Silva
- Centro de Investigação em Química (CIQ-UP), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, R. Campo Alegre 697, 4169-007 Porto (Portugal)
| | | |
Collapse
|
17
|
Hasegawa JY, Yanai K, Ishimura K. Quantum mechanical molecular interactions for calculating the excitation energy in molecular environments: a first-order interacting space approach. Chemphyschem 2014; 16:305-11. [PMID: 25393373 PMCID: PMC4501320 DOI: 10.1002/cphc.201402635] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Indexed: 11/17/2022]
Abstract
Intermolecular interactions regulate the molecular properties in proteins and solutions such as solvatochromic systems. Some of the interactions have to be described at an electronic-structure level. In this study, a commutator for calculating the excitation energy is used for deriving a first-order interacting space (FOIS) to describe the environmental response to solute excitation. The FOIS wave function for a solute-in-solvent cluster is solved by second-order perturbation theory. The contributions to the excitation energy are decomposed into each interaction and for each solvent.
Collapse
Affiliation(s)
- Jun-Ya Hasegawa
- Catalysis Research Center, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, 011-0021 (Japan); JST-CREST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012 (Japan).
| | | | | |
Collapse
|
18
|
Quantum/molecular mechanics study of firefly bioluminescence on luciferase oxidative conformation. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.05.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Nakata H, Fedorov DG, Yokojima S, Kitaura K, Sakurai M, Nakamura S. Unrestricted density functional theory based on the fragment molecular orbital method for the ground and excited state calculations of large systems. J Chem Phys 2014; 140:144101. [DOI: 10.1063/1.4870261] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
20
|
Cheng YY, Zhu J, Liu YJ. Theoretical tuning of the firefly bioluminescence spectra by the modification of oxyluciferin. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2013.11.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Hernández-Rodríguez EW, Montero-Alejo AL, López R, Sánchez-García E, Montero-Cabrera LA, García de la Vega JM. Electron density deformations provide new insights into the spectral shift of rhodopsins. J Comput Chem 2013; 34:2460-71. [DOI: 10.1002/jcc.23414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/26/2013] [Accepted: 07/27/2013] [Indexed: 11/08/2022]
Affiliation(s)
| | - Ana Lilian Montero-Alejo
- Laboratorio de Química Computacional y Teórica; Departamento de Química Física; Universidad de La Habana; Havana; 10400; Cuba
| | - Rafael López
- Departamento de Química Física Aplicada; Facultad de Ciencias, Universidad Autónoma de Madrid; Madrid; 28049; Spain
| | - Elsa Sánchez-García
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1; Mülheim an der Ruhr; 45470; Germany
| | - Luis Alberto Montero-Cabrera
- Laboratorio de Química Computacional y Teórica; Departamento de Química Física; Universidad de La Habana; Havana; 10400; Cuba
| | | |
Collapse
|
22
|
Pinto da Silva L, Simkovitch R, Huppert D, Esteves da Silva JC. Theoretical study of the efficient fluorescence quenching process of the firefly luciferin. J Photochem Photobiol A Chem 2013. [DOI: 10.1016/j.jphotochem.2013.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Grigorenko BL, Nemukhin AV, Polyakov IV, Morozov DI, Krylov AI. First-Principles Characterization of the Energy Landscape and Optical Spectra of Green Fluorescent Protein along the A→I→B Proton Transfer Route. J Am Chem Soc 2013; 135:11541-9. [DOI: 10.1021/ja402472y] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Bella L. Grigorenko
- Chemistry
Department, M.V. Lomonosov Moscow State University, Leninskie Gory
1/3, Moscow, 119991, Russian Federation
- N.M. Emanuel Institute of Biochemical
Physics, Russian Academy of Sciences, Kosygina
4, Moscow, 119334, Russian Federation
| | - Alexander V. Nemukhin
- Chemistry
Department, M.V. Lomonosov Moscow State University, Leninskie Gory
1/3, Moscow, 119991, Russian Federation
- N.M. Emanuel Institute of Biochemical
Physics, Russian Academy of Sciences, Kosygina
4, Moscow, 119334, Russian Federation
| | - Igor V. Polyakov
- Chemistry
Department, M.V. Lomonosov Moscow State University, Leninskie Gory
1/3, Moscow, 119991, Russian Federation
| | - Dmitry I. Morozov
- Chemistry
Department, M.V. Lomonosov Moscow State University, Leninskie Gory
1/3, Moscow, 119991, Russian Federation
| | - Anna I. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California
90089-0482, United States
| |
Collapse
|
24
|
da Silva LP, Simkovitch R, Huppert D, da Silva JCGE. Oxyluciferin photoacidity: the missing element for solving the keto-enol mystery? Chemphyschem 2013; 14:3441-6. [PMID: 23843204 DOI: 10.1002/cphc.201300402] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/21/2013] [Indexed: 01/07/2023]
Abstract
The oxyluciferin family of fluorophores has been receiving much attention from the research community and several systematic studies have been performed in order to gain more insight regarding their photophysical properties and photoprotolytic cycles. In this minireview, we summarize the knowledge obtained so far and define several possible lines for future research. More importantly, we analyze the impact of the discoveries on the firefly bioluminescence phenomenon made so far and explain how they re-open again the discussion regarding the identity (keto or enol species) of the bioluminophore.
Collapse
Affiliation(s)
- Luís Pinto da Silva
- Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, R. Campo Alegre 687, 4169-007 Porto (Portugal), Fax: (+351) 220 402 659
| | | | | | | |
Collapse
|
25
|
Pinto da Silva L, Esteves da Silva JCG. Mechanistic study of the unimolecular decomposition of 1,2-dioxetanedione. J PHYS ORG CHEM 2013. [DOI: 10.1002/poc.3149] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Luís Pinto da Silva
- Centro de Investigação em Química, Departamento de Química e Bioquímica; Faculdade de Ciências da Universidade do Porto; R. Campo Alegre 687 4169-007 Porto Portugal
| | - Joaquim C. G. Esteves da Silva
- Centro de Investigação em Química, Departamento de Química e Bioquímica; Faculdade de Ciências da Universidade do Porto; R. Campo Alegre 687 4169-007 Porto Portugal
| |
Collapse
|
26
|
Kim HW, Rhee YM. On the pH Dependent Behavior of the Firefly Bioluminescence: Protein Dynamics and Water Content in the Active Pocket. J Phys Chem B 2013; 117:7260-9. [DOI: 10.1021/jp4024553] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Hyun Woo Kim
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang 790-784,
Korea, and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 790-784,
Korea
| | - Young Min Rhee
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang 790-784,
Korea, and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 790-784,
Korea
| |
Collapse
|
27
|
Valsson O, Campomanes P, Tavernelli I, Rothlisberger U, Filippi C. Rhodopsin Absorption from First Principles: Bypassing Common Pitfalls. J Chem Theory Comput 2013; 9:2441-54. [PMID: 26583734 DOI: 10.1021/ct3010408] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bovine rhodopsin is the most extensively studied retinal protein and is considered the prototype of this important class of photosensitive biosystems involved in the process of vision. Many theoretical investigations have attempted to elucidate the role of the protein matrix in modulating the absorption of retinal chromophore in rhodopsin, but, while generally agreeing in predicting the correct location of the absorption maximum, they often reached contradicting conclusions on how the environment tunes the spectrum. To address this controversial issue, we combine here a thorough structural and dynamical characterization of rhodopsin with a careful validation of its excited-state properties via the use of a wide range of state-of-the-art quantum chemical approaches including various flavors of time-dependent density functional theory (TDDFT), different multireference perturbative schemes (CASPT2 and NEVPT2), and quantum Monte Carlo (QMC) methods. Through extensive quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations, we obtain a comprehensive structural description of the chromophore-protein system and sample a wide range of thermally accessible configurations. We show that, in order to obtain reliable excitation properties, it is crucial to employ a sufficient number of representative configurations of the system. In fact, the common use of a single, ad hoc structure can easily lead to an incorrect model and an agreement with experimental absorption spectra due to cancelation of errors. Finally, we show that, to properly account for polarization effects on the chromophore and to quench the large blue-shift induced by the counterion on the excitation energies, it is necessary to adopt an enhanced description of the protein environment as given by a large quantum region including as many as 250 atoms.
Collapse
Affiliation(s)
- Omar Valsson
- MESA+ Institute for Nanotechnology, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Pablo Campomanes
- Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - Ivano Tavernelli
- Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - Claudia Filippi
- MESA+ Institute for Nanotechnology, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
28
|
Nadal-Ferret M, Gelabert R, Moreno M, Lluch JM. How Does the Environment Affect the Absorption Spectrum of the Fluorescent Protein mKeima? J Chem Theory Comput 2013; 9:1731-42. [DOI: 10.1021/ct301003t] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Marc Nadal-Ferret
- Departament
de Química and ‡Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Ricard Gelabert
- Departament
de Química and ‡Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Miquel Moreno
- Departament
de Química and ‡Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - José M. Lluch
- Departament
de Química and ‡Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
29
|
Riahi-Madvar A, Hosseinkhani S, Rezaee F. Implication of Arg213 and Arg337 on the kinetic and structural stability of firefly luciferase. Int J Biol Macromol 2013; 52:157-63. [DOI: 10.1016/j.ijbiomac.2012.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/05/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
|
30
|
Navizet I, Roca-Sanjuán D, Yue L, Liu YJ, Ferré N, Lindh R. Are the bio- and chemiluminescence states of the firefly oxyluciferin the same as the fluorescence state? Photochem Photobiol 2012; 89:319-25. [PMID: 23057607 DOI: 10.1111/php.12007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/05/2012] [Indexed: 11/30/2022]
Abstract
A usual strategy in both experimental and theoretical studies on bio- and chemiluminescence is to analyze the fluorescent properties of the bio- and chemiluminescence reaction product. Recent findings in a coelenteramide and Cypridina oxyluciferin model raise a concern on the validity of this procedure, showing that the light emitters in each of these luminescent processes might differ. Here, the thermal decomposition path of the firefly dioxetanone and the light emission states of the Firefly oxyluciferin responsible for the bio-, chemiluminescence, and fluorescence of the molecule are characterized using ab initio quantum chemistry and hybrid quantum chemistry/molecular mechanics methods to determine if the scenario found in the coelenteramide and Cypridina oxyluciferin study does also apply to the Firefly bioluminescent systems. The results point out to a unique emission state in the bio-, chemiluminescence, and fluorescence phenomena of the Firefly oxyluciferin and, therefore, using fluorescence properties of this system is reasonable.
Collapse
Affiliation(s)
- Isabelle Navizet
- Molecular Science Institute School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa.
| | | | | | | | | | | |
Collapse
|
31
|
Hasegawa JY, Fujimoto KJ, Kawatsu T. A Configuration Interaction Picture for a Molecular Environment Using Localized Molecular Orbitals: The Excited States of Retinal Proteins. J Chem Theory Comput 2012; 8:4452-61. [DOI: 10.1021/ct300510b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jun-ya Hasegawa
- Fukui Institute for Fundamental
Chemistry, Kyoto University, 34-4 Takano-Nishihiraki-cho,
Sakyo-ku, Kyoto 606-8103, Japan
- Quantum Chemistry Research Institute, Kyodai Katsura Venture Plaza, Goryou
Oohara 1-36, Nishikyo-ku, Kyoto 615-8245, Japan
- Institute for Molecular Science, National Institute of Natural Science, 38 Nishigo-Naka,
Myodaiji, Okazaki 444-8585, Japan
| | - Kazuhiro J. Fujimoto
- Department of Computational Science,
Graduate School of System Informatics, Kobe University, 1-1, Rokkodai, Nada, Kobe 657-8501, Japan
| | - Tsutomu Kawatsu
- Fukui Institute for Fundamental
Chemistry, Kyoto University, 34-4 Takano-Nishihiraki-cho,
Sakyo-ku, Kyoto 606-8103, Japan
- Institute for Molecular Science, National Institute of Natural Science, 38 Nishigo-Naka,
Myodaiji, Okazaki 444-8585, Japan
| |
Collapse
|
32
|
Drobizhev M, Scott JN, Callis PR, Rebane A. All-Optical Sensing of the Components of the Internal Local Electric Field in Proteins. IEEE PHOTONICS JOURNAL 2012; 4:1996-2001. [PMID: 25419440 PMCID: PMC4238891 DOI: 10.1109/jphot.2012.2221124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Here, we present a new all-optical method of interrogation of the internal electric field vector inside proteins. The method is based on experimental evaluation of the permanent dipole moment change upon excitation and the pure electronic transition frequency of a fluorophore embedded in a protein matrix. The permanent dipole moment change can be obtained from two-photon absorption measurements. In addition, permanent dipole moment change, tensor of polarizability change, and transition frequency for the free chromophore should be calculated quantum-mechanically. This allows obtaining the components of the electric field by considering the second-order Stark shift. We use the fluorescent protein mCherry as an example to demonstrate the applicability of the method.
Collapse
Affiliation(s)
- M Drobizhev
- Department of Physics, Montana State University, Bozeman, MT 59717 USA
| | - J N Scott
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 USA
| | - P R Callis
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 USA
| | - A Rebane
- Department of Physics, Montana State University, Bozeman, MT 59717 USA
| |
Collapse
|
33
|
Vieira J, Pinto da Silva L, Esteves da Silva JCG. Advances in the knowledge of light emission by firefly luciferin and oxyluciferin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 117:33-9. [PMID: 23026386 DOI: 10.1016/j.jphotobiol.2012.08.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 08/20/2012] [Accepted: 08/27/2012] [Indexed: 01/01/2023]
Abstract
Firefly luciferase is the most important and studied bioluminescence system. Due to very interesting characteristics, this system has gained numerous biomedical, pharmaceutical and bioanalytical applications, among others. In order to improve the use of this system, various researchers have tried to understand experimentally the colour of bioluminescence, and to create ways of tuning the colour emitted. The objective of this manuscript is to review the experimental studies of firefly luciferin and oxyluciferin, and related analogues, fluorescence and bioluminescence.
Collapse
Affiliation(s)
- João Vieira
- Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, R. Campo Alegre 687, 4169-007 Porto, Portugal.
| | | | | |
Collapse
|
34
|
Park JW, Rhee YM. Interpolated mechanics-molecular mechanics study of internal rotation dynamics of the chromophore unit in blue fluorescent protein and its variants. J Phys Chem B 2012; 116:11137-47. [PMID: 22891786 DOI: 10.1021/jp306257t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The excited state dynamics of the blue fluorescent protein (BFP) and its variants, azurite, EBFP1.2, and EBFP2.0, are studied using molecular dynamics (MD) simulations on potential energy surfaces (PESs) generated with the interpolated mechanics-molecular mechanics (IM/MM) scheme. This IM/MM strategy adopts the interpolated PES for an important area of the complex and the conventional force field for the remaining part. We focus on the internal rotation dynamics of the chromophore unit, which is directly related to its fluorescence property, and analyze the time evolutions of the nonrotated chromophore fractions based on trajectories over 10 μs of aggregate simulation time. The characteristics obtained from the calculated time progresses of the nonrotated chromophore fractions in BFP and other variants agree well with experimentally observed properties. The results show that the MD simulation with an IM/MM potential is an attractive approach for studying excited state dynamics of fluorescent proteins in consideration of its efficiency and reliability. We also attempt to investigate the detailed roles that the mutated residues play in delaying the excited state chromophore twisting and thus improving the fluorescence property, and discuss the contributions by the Coulombic and the steric interactions between the chromophore and the mutated residues.
Collapse
Affiliation(s)
- Jae Woo Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
| | | |
Collapse
|
35
|
Erez Y, Presiado I, Gepshtein R, Pinto da Silva L, Esteves da Silva JCG, Huppert D. Comparative Study of the Photoprotolytic Reactions of d-Luciferin and Oxyluciferin. J Phys Chem A 2012; 116:7452-61. [DOI: 10.1021/jp301910p] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuval Erez
- Raymond and Beverly Sackler
Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 69978,
Israel
| | - Itay Presiado
- Raymond and Beverly Sackler
Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 69978,
Israel
| | - Rinat Gepshtein
- Raymond and Beverly Sackler
Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 69978,
Israel
| | - Luís Pinto da Silva
- Centro de Investigação
em Química, Departamento de Quimica, Faculdade de Ciencias da Universidade do Porto R. Campo Alegre 687, 4169-007 Porto, Portugal
| | - Joaquim C. G. Esteves da Silva
- Centro de Investigação
em Química, Departamento de Quimica, Faculdade de Ciencias da Universidade do Porto R. Campo Alegre 687, 4169-007 Porto, Portugal
| | - Dan Huppert
- Raymond and Beverly Sackler
Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 69978,
Israel
| |
Collapse
|
36
|
Pinto da Silva L, Esteves da Silva JC. Theoretical analysis of the color tuning mechanism of oxyluciferin and 5-hydroxyoxyluciferin. COMPUT THEOR CHEM 2012. [DOI: 10.1016/j.comptc.2012.02.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Pinto da Silva L, Esteves da Silva JCG. Firefly chemiluminescence and bioluminescence: efficient generation of excited states. Chemphyschem 2012; 13:2257-62. [PMID: 22532490 DOI: 10.1002/cphc.201200195] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Indexed: 01/13/2023]
Abstract
Firefly luciferase catalyzes a light-emitting reaction in which an excited-state product is formed. Both experimental and theoretical methodologies are used to study this system, and the reactions catalyzed by luciferase are relatively well characterized. However, the mechanism by which an excited-state product is formed is still unknown. This Minireview deals with the current understanding of firefly bioluminescence and chemiluminescence. Thermal decomposition of simple 1,2-dioxetanes is also discussed, due to their role in formation of the excited-state bioluminophore.
Collapse
Affiliation(s)
- Luís Pinto da Silva
- Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | | |
Collapse
|
38
|
Ryazantsev MN, Altun A, Morokuma K. Color Tuning in rhodopsins: the origin of the spectral shift between the chloride-bound and anion-free forms of halorhodopsin. J Am Chem Soc 2012; 134:5520-3. [PMID: 22397521 DOI: 10.1021/ja3009117] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Detailed knowledge of the molecular mechanisms that control the spectral properties in the rhodopsin protein family is important for understanding the functions of these photoreceptors and for the rational design of artificial photosensitive proteins. Here we used a high-level ab initio QM/MM method to investigate the mechanism of spectral tuning in the chloride-bound and anion-free forms of halorhodopsin from Natronobacterium pharaonis (phR) and the interprotein spectral shift between them. We demonstrate that the chloride ion tunes the spectral properties of phR via two distinct mechanisms: (i) electrostatic interaction with the chromophore, which results in a 95 nm difference between the absorption maxima of the two forms, and (ii) induction of a structural reorganization in the protein, which changes the positions of charged and polar residues and reduces this difference to 29 nm. The present study expands our knowledge concerning the role of the reorganization of the internal H-bond network for color tuning in general and provides a detailed investigation of the tuning mechanism in phR in particular.
Collapse
Affiliation(s)
- Mikhail N Ryazantsev
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | | | | |
Collapse
|
39
|
Pinto da Silva L, Esteves da Silva JCG. TD-DFT/Molecular Mechanics Study of the Photinus pyralis Bioluminescence System. J Phys Chem B 2012; 116:2008-13. [DOI: 10.1021/jp2120059] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Luís Pinto da Silva
- Centro de Investigação
em Química
(CIQ-UP), Departamento de Química e Bioquímica, Universidade do Porto, Porto, Portugal
| | - Joaquim C. G. Esteves da Silva
- Centro de Investigação
em Química
(CIQ-UP), Departamento de Química e Bioquímica, Universidade do Porto, Porto, Portugal
| |
Collapse
|
40
|
Severo Pereira Gomes A, Jacob CR. Quantum-chemical embedding methods for treating local electronic excitations in complex chemical systems. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2pc90007f] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|