1
|
Yonenuma R, Mori H. Synthesis and self-assembly of a diphenylalanine–tetraphenylethylene hybrid monomer and RAFT polymers with aggregation-induced emission. Polym Chem 2023. [DOI: 10.1039/d2py01602h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
A hybrid monomer consisting of diphenylalanine with the self-assembling ability and tetraphenylethylene with aggregation-induced emission properties was synthesized and employed for reversible addition–fragmentation chain transfer polymerization.
Collapse
Affiliation(s)
- Ryo Yonenuma
- Department of Organic Material Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa City, Yamagata Prefecture 992-8510, Japan
| | - Hideharu Mori
- Department of Organic Material Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa City, Yamagata Prefecture 992-8510, Japan
| |
Collapse
|
2
|
Okada Y, Hoshi T, Kobayashi N. Recent Progress in Optically-Active Phthalocyanines and Their Related Azamacrocycles. Front Chem 2020; 8:595998. [PMID: 33195104 PMCID: PMC7604507 DOI: 10.3389/fchem.2020.595998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/28/2020] [Indexed: 11/13/2022] Open
Abstract
Optically-active phthalocyanines (Pcs) and related macrocycles reported in the 2010-2020 period are introduced in this review. They are grouped into several categories: (1) chiral binaphthyl-containing Pcs, (2) optically active alkyl chain-containing Pcs, (3) chiral axial ligand- coordinated or -linked Pcs, (4) chiral subphthalocyanines (SubPcs), and (5) related azamacrocycles. For each compound, the structure and important characteristics are summarized.
Collapse
Affiliation(s)
- Yusuke Okada
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Tomonori Hoshi
- Clinical Research, Innovation and Education Center, Tohoku University Hospital, Sendai, Japan
| | - Nagao Kobayashi
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| |
Collapse
|
3
|
Bächle F, Maichle-Mössmer C, Ziegler T. Helical Self-Assembly of Optically Active Glycoconjugated Phthalocyanine J-Aggregates. Chempluschem 2020; 84:1081-1093. [PMID: 31943966 DOI: 10.1002/cplu.201900381] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/18/2019] [Indexed: 01/26/2023]
Abstract
Four galactoconjugated zinc(II) phthalocyanines (Pcs) have been prepared and fully characterized. The carbohydrate-containing phthalonitrile precursors of the Pcs were synthesized through a copper-catalysed azide-alkyne cycloaddition (CuAAC). The Pcs show a remarkable aggregation behaviour in solution, depending on the nature of the solvent, the temperature and the substitution position on the phthalocyanine. Solvent-dependent CD-spectroscopy experiments show that these Pcs aggregate as chiral helices in solution. Crystal structure data of a phthalocyanine bearing two carbohydrate units substantiate the properties shown by CD spectroscopy. Furthermore, the 1,2,3-triazole moieties of the Pcs play a decisive role in the formation of supramolecular aggregates. The glycoconjugated zinc(II) phthalocyanines described here show molar extinction coefficients ϵmax >105 M-1 cm-1 and absorption maxima λmax >680 nm, which make them attractive photosensitizers for Photodynamic Therapy (PDT).
Collapse
Affiliation(s)
- Felix Bächle
- Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Cäcilia Maichle-Mössmer
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Thomas Ziegler
- Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| |
Collapse
|
4
|
Revuelta-Maza MÁ, Torres T, Torre GDL. Synthesis and Aggregation Studies of Functional Binaphthyl-Bridged Chiral Phthalocyanines. Org Lett 2019; 21:8183-8186. [DOI: 10.1021/acs.orglett.9b02718] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Tomás Torres
- Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados (IMDEA)-Nanociencia, c/Faraday 9, Cantoblanco, 28049 Madrid, Spain
| | - Gema de la Torre
- Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
5
|
Ma P, Lv L, Zhu P, Wang Y, Li S. Morphology-controlled self-assembled micro-structures of nickel porphyrin with enhanced ethanol sensing properties. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Li X, Kim CY, Lee S, Lee D, Chung HM, Kim G, Heo SH, Kim C, Hong KS, Yoon J. Nanostructured Phthalocyanine Assemblies with Protein-Driven Switchable Photoactivities for Biophotonic Imaging and Therapy. J Am Chem Soc 2017; 139:10880-10886. [DOI: 10.1021/jacs.7b05916] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xingshu Li
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| | - C-yoon Kim
- Department
of Medicine, School of Medicine, Konkuk University, Seoul 143-701, Korea
| | - Seunghyun Lee
- Department
of Electrical Engineering and Creative IT Engineering, POSTECH, Pohang 37673, Korea
| | - Dayoung Lee
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| | - Hyung-Min Chung
- Department
of Medicine, School of Medicine, Konkuk University, Seoul 143-701, Korea
| | - Gyoungmi Kim
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| | - Si-Hyun Heo
- Department
of Medicine, School of Medicine, Konkuk University, Seoul 143-701, Korea
| | - Chulhong Kim
- Department
of Electrical Engineering and Creative IT Engineering, POSTECH, Pohang 37673, Korea
| | - Ki-Sung Hong
- Department
of Medicine, School of Medicine, Konkuk University, Seoul 143-701, Korea
| | - Juyoung Yoon
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
7
|
Bian Y, Chen J, Xu S, Zhu L, Zhou Y, Xiang Y, Xia D. Self-assembled core–shell nanospheres and dendritic nanostructure of novel tetra-(3-phenyprop-2-allyloxy) phthalocyanine in different solvents. RSC Adv 2015. [DOI: 10.1039/c5ra07308a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel metal-free tetra-(3-phenyprop-2-allyloxy) phthalocyanine was synthesized and characterized, and self-assemblies of it with a core–shell nanospherical and dendritic morphology were formed with H-bonds and π–π interactions probably being the main driving force.
Collapse
Affiliation(s)
- Yinghui Bian
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Jinshe Chen
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Shaotang Xu
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Lijun Zhu
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Yulu Zhou
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Yuzhi Xiang
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Daohong Xia
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao 266580
- China
| |
Collapse
|