1
|
Abramczyk H, Surmacki JM, Kopeć M, Jarczewska K, Romanowska-Pietrasiak B. Hemoglobin and cytochrome c. reinterpreting the origins of oxygenation and oxidation in erythrocytes and in vivo cancer lung cells. Sci Rep 2023; 13:14731. [PMID: 37679473 PMCID: PMC10485004 DOI: 10.1038/s41598-023-41858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023] Open
Abstract
Maintaining life (respiration), cell death (apoptosis), oxygen transport and immunity are main biological functions of heme containing proteins. These functions are controlled by the axial ligands and the redox status of the iron ion (oscillations between Fe2+ and Fe3+) in the heme group. This paper aims to evaluate the current state of knowledge on oxidation and oxygenation effects in heme proteins. We determined the redox status of the iron ion in whole blood (without and with anticoagulant), hemoglobin in erythrocytes, in isolated cytochrome c and cytochrome c in mitochondria of the human lung cancer cells using UV-VIS electronic absorption spectroscopy, Raman spectroscopy and Raman imaging. Here we discussed the mechanism responsible for the Q electronic absorption band spectral behavior, i.e., its splitting, and its change in extinction coefficient, as well as vibrational modifications upon oxygenation and oxidation. We compared the redox status of heme in hemoglobin of human erythrocytes and cytochrome c in mitochondria of human lung cancer cells. Presented results allow simultaneous identification of oxy- and deoxy-Hb, where 1547 and 1604 cm-1 vibrations correspond to deoxygenated hemoglobin, while 1585 and 1638 cm-1 correspond to oxyhemoglobin, respectively. Our results extend knowledge of oxidation and oxygenation effects in heme proteins. We demonstrated experimentally the mechanism of electronic-vibrational coupling for the Q band splitting. Presented results extend knowledge on oxidation and oxygenation effects in heme proteins and provide evidence that both processes are strongly coupled. We showed that retinoic acid affects the redox state of heme in cytochrome c in mitochondria. The change of the redox status of cytochrome c in mitochondria from the oxidized form to the reduced form has very serious consequences in dysfunction of mitochondria resulting in inhibition of respiration, apoptosis and cytokine induction.
Collapse
Affiliation(s)
- Halina Abramczyk
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Lodz University of Technology, Wroblewskiego 15, 93-590, Lodz, Poland.
| | - Jakub Maciej Surmacki
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Lodz University of Technology, Wroblewskiego 15, 93-590, Lodz, Poland
| | - Monika Kopeć
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Lodz University of Technology, Wroblewskiego 15, 93-590, Lodz, Poland
| | - Karolina Jarczewska
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Lodz University of Technology, Wroblewskiego 15, 93-590, Lodz, Poland
| | - Beata Romanowska-Pietrasiak
- Oncological Surgery Department, Medical Genetics Department, Copernicus Provincial Multidisciplinary Centre of Oncology and Traumatology in Lodz, Pabianicka 62, 93-513, Lodz, Poland
| |
Collapse
|
2
|
Alcicek FC, Blat A, Rutkowska W, Bulat K, Szczesny-Malysiak E, Franczyk-Zarow M, Kostogrys R, Dybas J, Marzec KM. Secondary structure alterations of RBC assessed by FTIR-ATR in correlation to 2,3-DPG levels in ApoE/LDLR -/- Mice. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121819. [PMID: 36084582 DOI: 10.1016/j.saa.2022.121819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/12/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
In the present study, we characterized the secondary structure alterations of intact red blood cells (RBCs) cytosol with special attention to the sex-related alterations in 8- and 24-week-old female and male ApoE/LDLR-/- mice, compared to age-matched female and male C57BL/6J control animals. Results were obtained with previously established methodology based on Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR). Additionally, we evaluated 2,3-DPG levels in the RBCs and showed its potential link to the hemoglobin (Hb) secondary structure alterations. Considering Hb structure alterations probed by FTIR-ATR, the ratio of turns to α-helices in 8-week-old ApoE/LDLR-/- mice suggested more pronounced secondary structure alterations within the RBCs than in the age-matched control. Sex-related differences were observed solely in 24-week-old male ApoE/LDLR-/- mice, which showed statistically significant increase in the secondary structure alterations compared to 24-week-old female ApoE/LDLR-/- mice. Similar to the secondary structure alterations, no sex-related differences were observed in the levels of 2,3-DPG in RBCs, except for 24-week-old male ApoE/LDLR-/- mice, which showed significantly higher levels compared to the age-matched female ApoE/LDLR-/- mice. Considering the age-related alterations, we observed significant increases in the intracellular 2,3-DPG of RBCs with animals' age in all studied groups, except for female ApoE/LDLR-/- mice, where a significant difference was not reported. This suggests the clear correlation between secondary structure of Hb alterations and 2,3-DPG levels for male and female murine RBC and proves a higher resistance of older female RBCs to the secondary structure changes with progression of atherosclerosis. Moreover, it may be concluded that higher 2,3-DPG levels in RBCs occurred in response to the secondary structure alterations of Hb in ApoE/LDLR-/- mice.
Collapse
Affiliation(s)
- Fatih Celal Alcicek
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Aneta Blat
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387 Krakow, Poland
| | - Wiktoria Rutkowska
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387 Krakow, Poland
| | - Katarzyna Bulat
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland; Łukasiewicz Research Network, Krakow Institute of Technology, 73 Zakopianska St., 30-418 Krakow, Poland
| | - Ewa Szczesny-Malysiak
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Magdalena Franczyk-Zarow
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture, 122 Balicka St., 30-149 Krakow, Poland
| | - Renata Kostogrys
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture, 122 Balicka St., 30-149 Krakow, Poland
| | - Jakub Dybas
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland.
| | - Katarzyna M Marzec
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland; Łukasiewicz Research Network, Krakow Institute of Technology, 73 Zakopianska St., 30-418 Krakow, Poland.
| |
Collapse
|
3
|
Trends in biomedical analysis of red blood cells – Raman spectroscopy against other spectroscopic, microscopic and classical techniques. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
Adegoke JA, Raper H, Gassner C, Heraud P, Wood BR. Visible microspectrophotometry coupled with machine learning to discriminate the erythrocytic life cycle stages of P. falciparum malaria parasites in functional single cells. Analyst 2022; 147:2662-2670. [DOI: 10.1039/d2an00274d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visible microspectroscopy combined with machine learning is able to detect and quantify functional malaria infected erythrocytes at different stages of the P. falciparum erythrocytic life cycle.
Collapse
Affiliation(s)
- John A. Adegoke
- Centre for Biospectroscopy, School of Chemistry, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia
| | - Hannah Raper
- Centre for Biospectroscopy, School of Chemistry, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia
| | - Callum Gassner
- Centre for Biospectroscopy, School of Chemistry, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia
| | - Philip Heraud
- Centre for Biospectroscopy, School of Chemistry, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia
| | - Bayden R. Wood
- Centre for Biospectroscopy, School of Chemistry, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
5
|
Adegoke JA, De Paoli A, Afara IO, Kochan K, Creek DJ, Heraud P, Wood BR. Ultraviolet/Visible and Near-Infrared Dual Spectroscopic Method for Detection and Quantification of Low-Level Malaria Parasitemia in Whole Blood. Anal Chem 2021; 93:13302-13310. [PMID: 34558904 DOI: 10.1021/acs.analchem.1c02948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The scourge of malaria infection continues to strike hardest against pregnant women and children in Africa and South East Asia. For global elimination, testing methods that are ultrasensitive to low-level ring-staged parasitemia are urgently required. In this study, we used a novel approach for diagnosis of malaria infection by combining both electronic ultraviolet-visible (UV/vis) spectroscopy and near infrared (NIR) spectroscopy to detect and quantify low-level (1-0.000001%) ring-staged malaria-infected whole blood under physiological conditions uisng Multiclass classification using logistic regression, which showed that the best results were achieved using the extended wavelength range, providing an accuracy of 100% for most parasitemia classes. Likewise, partial least-squares regression (PLS-R) analysis showed a higher quantification sensitivity (R2 = 0.898) for the extended spectral region compared to UV/vis and NIR (R2 = 0.806 and 0.556, respectively). For quantifying different-stage blood parasites, the extended wavelength range was able to detect and quantify all thePlasmodium falciparum accurately compared to testing each spectral component separately. These results demonstrate the potential of a combined UV/vis-NIR spectroscopy to accurately diagnose malaria-infected patients without the need for elaborate sample preparation associated with the existing mid-IR approaches.
Collapse
Affiliation(s)
- John A Adegoke
- Centre for Biospectroscopy, School of Chemistry, Faculty of Science, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Amanda De Paoli
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Isaac O Afara
- Department of Applied Physics, University of Eastern Finland, Yliopistonranta, Kuopio 70210, Finland.,School of Information Technology and Electrical Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4062, Australia
| | - Kamila Kochan
- Centre for Biospectroscopy, School of Chemistry, Faculty of Science, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Philip Heraud
- Centre for Biospectroscopy, School of Chemistry, Faculty of Science, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.,Department of Microbiology and the Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Bayden R Wood
- Centre for Biospectroscopy, School of Chemistry, Faculty of Science, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
6
|
Dybas J, Chiura T, Marzec KM, Mak PJ. Probing Heme Active Sites of Hemoglobin in Functional Red Blood Cells Using Resonance Raman Spectroscopy. J Phys Chem B 2021; 125:3556-3565. [PMID: 33787265 PMCID: PMC8154613 DOI: 10.1021/acs.jpcb.1c01199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
![]()
The UV–vis absorption, Raman
imaging, and resonance Raman
(rR) spectroscopy methods were employed to study cyanohemoglobin (HbCN)
adducts inside living functional red blood cells (RBCs). The cyanide
ligands are especially optically sensitive probes of the active site
environment of heme proteins. The rR studies of HbCN and its isotopic
analogues (13CN–, C15N–, and 13C15N–), as well as a careful deconvolution of spectral data, revealed
that the ν(Fe–CN) stretching, δ(Fe–CN) bending,
and ν(C≡N) stretching modes occur at 454, 382, and 2123
cm–1, respectively. Interestingly, while the ν(Fe–CN)
modes exhibit the same frequencies in both the isolated and RBC-enclosed
hemoglobin molecules, small frequency differences are observed in
the δ(Fe–CN) bending modes and the values of their isotopic
shifts. These studies show that even though the overall tilted conformation
of the Fe–C≡N fragment in the isolated HbCN is preserved
in the HbCN enclosed within living cells, there is a small difference
in the degree of distortion of the Fe–C≡N fragment.
The slight changes in the ligand geometry can be reasonably attributed
to the high ordering and tight packing of Hb molecules inside RBCs.
Collapse
Affiliation(s)
- Jakub Dybas
- Chemistry Department, Saint Louis University, 3501 Laclede Avenue, Saint Louis 63103, Missouri, United States.,Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzyńskiego Str., Krakow 30-348, Poland
| | - Tapiwa Chiura
- Chemistry Department, Saint Louis University, 3501 Laclede Avenue, Saint Louis 63103, Missouri, United States
| | - Katarzyna M Marzec
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzyńskiego Str., Krakow 30-348, Poland
| | - Piotr J Mak
- Chemistry Department, Saint Louis University, 3501 Laclede Avenue, Saint Louis 63103, Missouri, United States
| |
Collapse
|
7
|
Lenzi E, Dinarelli S, Longo G, Girasole M, Mussi V. Multivariate analysis of mean Raman spectra of erythrocytes for a fast analysis of the biochemical signature of ageing. Talanta 2021; 221:121442. [PMID: 33076067 DOI: 10.1016/j.talanta.2020.121442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022]
Abstract
Ageing of red blood cells (RBC) is a physiological process, fundamental to ensure a proper blood homeostasis that, in vivo, balances the production of new cells and the removal of senescent erythrocytes. A detailed characterization at the cellular level of the progression of the ageing phenomenon can reveal biological, biophysical and biochemical fingerprints for diseases related to misbalances of the cell turnover and for blood pathologies. We applied Principal Components Analysis (PCA) to mean Raman spectra of single cells at different ageing times to rapidly highlight subtle spectral differences associated with conformational and biochemical modifications. Our results demonstrate a two-step ageing process characterized by a first phase in which proteins plays a relevant role, followed by a further cellular evolution driven by alterations in the membrane lipid contribution. Moreover, we used the same approach to directly analyse relevant spectral effects associated to reduction in Haemoglobin oxygenation level and membrane fluidity induced by the ageing. The method is robust and effective, allowing to classify easily the studied cells based on their age and morphology, and consequently to evaluate the biological quality of a blood sample.
Collapse
Affiliation(s)
- E Lenzi
- Physics Department, University of Rome Tor Vergata, Rome, Italy
| | - S Dinarelli
- Institute of Structure of Matter, National Research Council, Rome, Italy
| | - G Longo
- Institute of Structure of Matter, National Research Council, Rome, Italy
| | - M Girasole
- Institute of Structure of Matter, National Research Council, Rome, Italy
| | - V Mussi
- Institute of Microelectronics and Microsystems, National Research Council, Rome, Italy.
| |
Collapse
|
8
|
Dybas J, Bokamper MJ, Marzec KM, Mak PJ. Probing the structure-function relationship of hemoglobin in living human red blood cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 239:118530. [PMID: 32498028 DOI: 10.1016/j.saa.2020.118530] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/14/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Hemoglobin (Hb) is a key component of respiratory system and as such plays important role in human physiology. The studies of Hb's structure and functions are usually performed on cell-free protein; however, it has been shown that there are functionally relevant differences between isolated Hb and Hb present inside red blood cells (RBCs). It is clear that new experimental approaches are needed to understand the origin of these differences and to gain insight into the structure-function relationship of Hb within intact living cells. In this work we present a novel application of Resonance Raman spectroscopy to study heme active site of different forms of human Hb within living RBCs using laser excitation lines in resonance with their Soret absorption bands. These studies revealed that there are no significant changes in the disposition of the Fe-O-O fragment or the Fe-NHis linkage for Hb molecules enclosed in RBCs and these in free isolated states. However, some changes in the orientation of the heme vinyl groups were observed which might account for the differences in the protein activity and ligand affinity. This work highlights importance of protein-based studies and presents a new opportunity to translate these results to physiological cell systems.
Collapse
Affiliation(s)
- Jakub Dybas
- Saint Louis University, Chemistry Department, 3501 Laclede Ave., 63103 Saint Louis, MO, United States; Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), 14 Bobrzyńskiego Str., 30-348 Krakow, Poland
| | - Matthew J Bokamper
- Saint Louis University, Chemistry Department, 3501 Laclede Ave., 63103 Saint Louis, MO, United States
| | - Katarzyna M Marzec
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), 14 Bobrzyńskiego Str., 30-348 Krakow, Poland.
| | - Piotr J Mak
- Saint Louis University, Chemistry Department, 3501 Laclede Ave., 63103 Saint Louis, MO, United States.
| |
Collapse
|
9
|
Szczesny-Malysiak E, Dybas J, Blat A, Bulat K, Kus K, Kaczmarska M, Wajda A, Malek K, Chlopicki S, Marzec KM. Irreversible alterations in the hemoglobin structure affect oxygen binding in human packed red blood cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118803. [PMID: 32738251 DOI: 10.1016/j.bbamcr.2020.118803] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/02/2020] [Accepted: 07/24/2020] [Indexed: 01/06/2023]
Abstract
The ability of hemoglobin (Hb) to transport respiratory gases is directly linked to its quaternary structure properties and reversible changes between T (tense) and R (relax) state. In this study we demonstrated that packed red blood cells (pRBCs) storage resulted in a gradual increase in the irreversible changes in the secondary and quaternary structures of Hb, with subsequent impairment of the T↔R transition. Such alteration was associated with the presence of irreversibly settled in the relaxed form, quaternary structure of Hb, which we termed R'. On the secondary structure level, disordered protein organization involved formation of β-sheets and a decrease in α-helices related to the aggregation process stabilized by strong intermolecular hydrogen bonding. Compensatory changes in RBCs metabolism launched to preserve reductive microenvironment were disclosed as an activation of nicotinamide adenine dinucleotide phosphate (NADPH) production and increased reduced to oxidized glutathione (GSH/GSSG) ratio. For the first time we showed the relationship between secondary structure changes and the occurrence of newly discovered R', which through an artificial increase in oxyhemoglobin level altered Hb ability to bind and release oxygen.
Collapse
Affiliation(s)
- Ewa Szczesny-Malysiak
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland.
| | - Jakub Dybas
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland.
| | - Aneta Blat
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland.
| | - Katarzyna Bulat
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland.
| | - Kamil Kus
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland.
| | - Magdalena Kaczmarska
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland.
| | - Aleksandra Wajda
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland; Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland.
| | - Kamilla Malek
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland.
| | - Stefan Chlopicki
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland; Chair of Pharmacology, Jagiellonian University Medical College, Grzegorzecka 16, 31-531 Krakow, Poland.
| | - Katarzyna M Marzec
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland.
| |
Collapse
|
10
|
Slatinskaya OV, Luneva OG, Deev LI, Orlov SN, Maksimov GV. Conformational Changes that occur in Heme and Globin upon Temperature Variations and Normobaric Hypoxia. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920020220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Dybas J, Berkowicz P, Proniewski B, Dziedzic-Kocurek K, Stanek J, Baranska M, Chlopicki S, Marzec KM. Spectroscopy-based characterization of Hb-NO adducts in human red blood cells exposed to NO-donor and endothelium-derived NO. Analyst 2019; 143:4335-4346. [PMID: 30109873 DOI: 10.1039/c8an00302e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The work presents the complementary approach to characterize the formation of various Hb species inside isolated human RBCs exposed to NO, with a focus on the formed Hb-NO adducts. This work presents a complementary approach based on Resonance Raman Spectroscopy (RRS) supported by Blood Gas Analysis, Electron Paramagnetic Resonance Spectroscopy, UV-Vis Absorption Spectroscopy and Mössbauer Spectroscopy to characterize the formation of various Hb species, with a focus on the Hb-NO adducts formed inside isolated human RBCs exposed to NO, under the experimental conditions of low and high levels of oxygen Hb saturation. In the present work, we induced Hb-NO adducts using PAPA-NONOate, a NO-donor with known chemistry and kinetics of NO release, and confirmed the formation of Hb-NO adducts in RBCs incubated with Human Aortic Endothelial Cells (HAECs) stimulated to produce NO. Our results provide a new insight into the formation of Hb-NO adducts after the exposure of RBCs with high oxyHb content to exogenous NO with special attention to the formation of LSHbIIINO in addition to LSHbIINO and metHb (HS/LSHbIIIH2O). We also point out that reliable characterization of Hb-NO adducts requires complementary techniques. Among them, RRS, as a label-free and non-destructive tool, appears to be an important discrimination technique in the studies of Hb-NO adducts inside intact RBCs.
Collapse
Affiliation(s)
- Jakub Dybas
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Dybas J, Grosicki M, Baranska M, Marzec KM. Raman imaging of heme metabolism in situ in macrophages and Kupffer cells. Analyst 2019; 143:3489-3498. [PMID: 29951676 DOI: 10.1039/c8an00282g] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, we provide the Raman imaging results for different stages of erythrophagocytosis of senescent red blood cells executed by isolated murine primary Kupffer cells and a murine macrophage cell line (RAW 264.7). Images were recorded with the use of 488 and 532 nm excitation lines. The use of Resonance Raman spectroscopy allowed the visualization of the heme metabolism and tracking of the systemic iron recycling process inside isolated murine Kupffer cells and RAW.264 cells. Because of the application of the different experimental assays, the erythrophagocytosis in two types of cells was presented and associated with the presence of different forms of oxidized and degradative derivatives of hemoglobin species. Moreover, we observed an increase of lipid level and later formation of lipid droplets during the erythrophagocytosis process inside RAW 264.7 macrophages and murine Kupffer cells.
Collapse
Affiliation(s)
- J Dybas
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), 14 Bobrzyńskiego Str., 30-348 Krakow, Poland.
| | | | | | | |
Collapse
|
13
|
Verma RS, Ahlawat S, Uppal A. Optical guiding-based cell focusing for Raman flow cell cytometer. Analyst 2019; 143:2648-2655. [PMID: 29756139 DOI: 10.1039/c8an00037a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the use of an optical guiding arrangement generated in a microfluidic channel to produce a stream of single cells in a line for single-cell Raman spectroscopic analysis. The optical guiding arrangement consisted of dual-line optical tweezers, generated using a 1064 nm laser, aligned in the shape of a '' symbol. By controlling the laser power in the tweezers and the flow rate in the microfluidic channel, a single line flow of cells could be produced in the tail of the guiding arrangement, where the 514.5 nm Raman excitation beam was also located. Furthermore, by resonantly exciting the Raman spectrum, a good-quality Raman spectrum could be recorded from the flowing single cells as they passed through the Raman excitation focal spot without the need to trap the cells. As a proof of concept, it was shown that red blood cells (RBCs) could be guided to the tail of the optical guide and the Raman spectra of the resonantly excited cells could be recorded in a continuous manner without trapping the cells at a cell flow rate of ∼500 cells per h. From the recorded spectra, we were able to distinguish between RBCs containing hemoglobin in the normal form (normal-RBCs) and the met form (met-RBCs) from a mixture of RBCs comprising met-RBCs and normal-RBCs in a ratio of 1 : 9.
Collapse
|
14
|
Perez-Guaita D, Marzec KM, Hudson A, Evans C, Chernenko T, Matthäus C, Miljkovic M, Diem M, Heraud P, Richards JS, Andrew D, Anderson DA, Doerig C, Garcia-Bustos J, McNaughton D, Wood BR. Parasites under the Spotlight: Applications of Vibrational Spectroscopy to Malaria Research. Chem Rev 2018; 118:5330-5358. [DOI: 10.1021/acs.chemrev.7b00661] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- David Perez-Guaita
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Katarzyna M. Marzec
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzyńskiego 14, Kraków 30-348, Poland
- Center for Medical Genomics (OMICRON), Jagiellonian University, Kopernika 7C, Krakow 31-034, Poland
| | - Andrew Hudson
- Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Corey Evans
- Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Tatyana Chernenko
- Becton Dickinson and Company, 2350 Qume Drive, San Jose, California 95131, United States
| | - Christian Matthäus
- Leibniz Institute of Photonic Technology, Albert Einstein Straße 9, Jena 07745, Germany
- Institute of Physical Chemistry and Abbe School of Photonics, Friedrich Schiller University, Helmholtz Weg 4, Jena 07743, Germany
| | - Milos Miljkovic
- Department of Mechanical Engineering, Tufts University, 200 Boston Avenue, Medford, Massachusetts 02155, United States
| | - Max Diem
- Laboratory for Spectral Diagnosis (LSpD), Department of Chemistry and Chemical Biology, Northeastern University, 316 Hurtig Hall, 360 Huntington Avenue, Boston, Massachusetts 02155, United States
| | - Philip Heraud
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Jack S. Richards
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Dean Andrew
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - David A. Anderson
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Christian Doerig
- Department of Microbiology and the Biomedical Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Jose Garcia-Bustos
- Department of Microbiology and the Biomedical Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Don McNaughton
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Bayden R. Wood
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
15
|
Perez-Guaita D, Andrew D, Heraud P, Beeson J, Anderson D, Richards J, Wood BR. High resolution FTIR imaging provides automated discrimination and detection of single malaria parasite infected erythrocytes on glass. Faraday Discuss 2018; 187:341-52. [PMID: 27071693 DOI: 10.1039/c5fd00181a] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New highly sensitive tools for malaria diagnostics are urgently needed to enable the detection of infection in asymptomatic carriers and patients with low parasitemia. In pursuit of a highly sensitive diagnostic tool that can identify parasite infections at the single cell level, we have been exploring Fourier transform infrared (FTIR) microscopy using a Focal Plane Array (FPA) imaging detector. Here we report for the first time the application of a new optic configuration developed by Agilent that incorporates 25× condenser and objective Cassegrain optics with a high numerical aperture (NA = 0.81) along with additional high magnification optics within the microscope to provide 0.66 micron pixel resolution (total IR system magnification of 61×) to diagnose malaria parasites at the single cell level on a conventional glass microscope slide. The high quality images clearly resolve the parasite's digestive vacuole demonstrating sub-cellular resolution using this approach. Moreover, we have developed an algorithm that first detects the cells in the infrared image, and secondly extracts the average spectrum. The average spectrum is then run through a model based on Partial Least Squares-Discriminant Analysis (PLS-DA), which diagnoses unequivocally the infected from normal cells. The high quality images, and the fact this measurement can be achieved without a synchrotron source on a conventional glass slide, shows promise as a potential gold standard for malaria detection at the single cell level.
Collapse
Affiliation(s)
- David Perez-Guaita
- Centre for Biospectroscopy, Monash University, Clayton, 3800, Victoria, Australia.
| | - Dean Andrew
- Centre for Biomedical Research, Burnet Institute, Melbourne, 3004, Victoria, Australia
| | - Philip Heraud
- Centre for Biospectroscopy, Monash University, Clayton, 3800, Victoria, Australia.
| | - James Beeson
- Centre for Biomedical Research, Burnet Institute, Melbourne, 3004, Victoria, Australia and Department of Microbiology, Monash University, Clayton, 3800, Victoria, Australia and Department of Medicine, University of Melbourne, Parkville, 3050, Victoria, Australia
| | - David Anderson
- Centre for Biomedical Research, Burnet Institute, Melbourne, 3004, Victoria, Australia
| | - Jack Richards
- Centre for Biomedical Research, Burnet Institute, Melbourne, 3004, Victoria, Australia and Department of Microbiology, Monash University, Clayton, 3800, Victoria, Australia and Department of Medicine, University of Melbourne, Parkville, 3050, Victoria, Australia
| | - Bayden R Wood
- Centre for Biospectroscopy, Monash University, Clayton, 3800, Victoria, Australia.
| |
Collapse
|
16
|
|
17
|
Helbing C, Deckert-Gaudig T, Firkowska-Boden I, Wei G, Deckert V, Jandt KD. Protein Handshake on the Nanoscale: How Albumin and Hemoglobin Self-Assemble into Nanohybrid Fibers. ACS NANO 2018; 12:1211-1219. [PMID: 29298383 DOI: 10.1021/acsnano.7b07196] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Creating and establishing proof of hybrid protein nanofibers (hPNFs), i.e., PNFs that contain more than one protein, is a currently unsolved challenge in bioinspired materials science. Such hPNFs could serve as universal building blocks for the bottom-up preparation of functional materials with bespoke properties. Here, inspired by the protein assemblies occurring in nature, we introduce hPNFs created via a facile self-assembly route and composed of human serum albumin (HSA) and human hemoglobin (HGB) proteins. Our circular dichroism results shed light on the mechanism of the proteins' self-assembly into hybrid nanofibers, which is driven by electrostatic/hydrophobic interactions between similar amino acid sequences (protein handshake) exposed to ethanol-triggered protein denaturation. Based on nanoscale characterization with tip-enhanced Raman spectroscopy (TERS) and immunogold labeling, our results demonstrate the existence and heterogenic nature of the hPNFs and reveal the high HSA/HGB composition ratio, which is attributed to the fast self-assembling kinetics of HSA. The self-assembled hPNFs with a high aspect ratio of over 100 can potentially serve as biocompatible units to create larger bioactive structures, devices, and sensors.
Collapse
Affiliation(s)
- Christian Helbing
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich Schiller University Jena , Löbdergraben 32, 07743 Jena, Germany
| | - Tanja Deckert-Gaudig
- Leibnitz Institute of Photonic Technology IPHT , Albert-Einstein-Strasse 9, 07745 Jena, Germany
| | - Izabela Firkowska-Boden
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich Schiller University Jena , Löbdergraben 32, 07743 Jena, Germany
| | - Gang Wei
- Faculty of Production Engineering, University of Bremen , Am Fallturm 1, 28359 Bremen, Germany
| | - Volker Deckert
- Leibnitz Institute of Photonic Technology IPHT , Albert-Einstein-Strasse 9, 07745 Jena, Germany
- Institute for Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena , Helmholtzweg 4, 07743 Jena, Germany
| | - Klaus D Jandt
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich Schiller University Jena , Löbdergraben 32, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena , Humboldtstraße 10, 07743 Jena, Germany
- Jena School for Microbial Communication (JSMC), Friedrich Schiller University , 07743 Jena, Germany
| |
Collapse
|
18
|
|
19
|
The Role of Free Radicals in Hemolytic Toxicity Induced by Atmospheric-Pressure Plasma Jet. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1289041. [PMID: 28694913 PMCID: PMC5488234 DOI: 10.1155/2017/1289041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/23/2017] [Accepted: 04/05/2017] [Indexed: 12/05/2022]
Abstract
Atmospheric-pressure plasma (APP) has received attention due to its generation of various kinds of reactive oxygen/nitrogen species (ROS/RNS). The controllability, as well as the complexity, is one of the strong points of APP in various applications. For biological applications of this novel method, the cytotoxicity should be estimated at various levels. Herein, we suggest red blood cell (RBC) as a good cell model that is simpler than nucleated cells but much more complex than other lipid model systems. Air and N2 gases were compared to verify the main ROS/RNS in cytotoxicity, and microscopic and spectroscopic analyses were performed to estimate the damages induced on RBCs. The results shown here will provide basic information on APP-induced cytotoxicity at cellular and molecular levels.
Collapse
|
20
|
Atkins CG, Buckley K, Blades MW, Turner RFB. Raman Spectroscopy of Blood and Blood Components. APPLIED SPECTROSCOPY 2017; 71:767-793. [PMID: 28398071 DOI: 10.1177/0003702816686593] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Blood is a bodily fluid that is vital for a number of life functions in animals. To a first approximation, blood is a mildly alkaline aqueous fluid (plasma) in which a large number of free-floating red cells (erythrocytes), white cells (leucocytes), and platelets are suspended. The primary function of blood is to transport oxygen from the lungs to all the cells of the body and move carbon dioxide in the return direction after it is produced by the cells' metabolism. Blood also carries nutrients to the cells and brings waste products to the liver and kidneys. Measured levels of oxygen, nutrients, waste, and electrolytes in blood are often used for clinical assessment of human health. Raman spectroscopy is a non-destructive analytical technique that uses the inelastic scattering of light to provide information on chemical composition, and hence has a potential role in this clinical assessment process. Raman spectroscopic probing of blood components and of whole blood has been on-going for more than four decades and has proven useful in applications ranging from the understanding of hemoglobin oxygenation, to the discrimination of cancerous cells from healthy lymphocytes, and the forensic investigation of crime scenes. In this paper, we review the literature in the field, collate the published Raman spectroscopy studies of erythrocytes, leucocytes, platelets, plasma, and whole blood, and attempt to draw general conclusions on the state of the field.
Collapse
Affiliation(s)
- Chad G Atkins
- 1 Michael Smith Laboratories, The University of British Columbia, Canada
- 2 Department of Chemistry, The University of British Columbia, Canada
| | - Kevin Buckley
- 1 Michael Smith Laboratories, The University of British Columbia, Canada
- 3 Nanoscale Biophotonics Laboratory, National University of Ireland, Ireland
| | - Michael W Blades
- 2 Department of Chemistry, The University of British Columbia, Canada
| | - Robin F B Turner
- 1 Michael Smith Laboratories, The University of British Columbia, Canada
- 2 Department of Chemistry, The University of British Columbia, Canada
- 4 Department of Electrical and Computer Engineering, The University of British Columbia, Canada
| |
Collapse
|
21
|
Krafft C, Schmitt M, Schie IW, Cialla-May D, Matthäus C, Bocklitz T, Popp J. Markerfreie molekulare Bildgebung biologischer Zellen und Gewebe durch lineare und nichtlineare Raman-spektroskopische Ansätze. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201607604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Christoph Krafft
- Leibniz-Institut für Photonische Technologien; Albert-Einstein-Straße 9 07745 Jena Deutschland
| | - Michael Schmitt
- Institut für Physikalische Chemie und Abbe Center of Photonics; Friedrich-Schiller-Universität Jena; Helmholtzweg 4 07743 Jena Deutschland
| | - Iwan W. Schie
- Leibniz-Institut für Photonische Technologien; Albert-Einstein-Straße 9 07745 Jena Deutschland
| | - Dana Cialla-May
- Leibniz-Institut für Photonische Technologien; Albert-Einstein-Straße 9 07745 Jena Deutschland
- Institut für Physikalische Chemie und Abbe Center of Photonics; Friedrich-Schiller-Universität Jena; Helmholtzweg 4 07743 Jena Deutschland
| | - Christian Matthäus
- Leibniz-Institut für Photonische Technologien; Albert-Einstein-Straße 9 07745 Jena Deutschland
- Institut für Physikalische Chemie und Abbe Center of Photonics; Friedrich-Schiller-Universität Jena; Helmholtzweg 4 07743 Jena Deutschland
| | - Thomas Bocklitz
- Leibniz-Institut für Photonische Technologien; Albert-Einstein-Straße 9 07745 Jena Deutschland
- Institut für Physikalische Chemie und Abbe Center of Photonics; Friedrich-Schiller-Universität Jena; Helmholtzweg 4 07743 Jena Deutschland
| | - Jürgen Popp
- Leibniz-Institut für Photonische Technologien; Albert-Einstein-Straße 9 07745 Jena Deutschland
- Institut für Physikalische Chemie und Abbe Center of Photonics; Friedrich-Schiller-Universität Jena; Helmholtzweg 4 07743 Jena Deutschland
| |
Collapse
|
22
|
Krafft C, Schmitt M, Schie IW, Cialla-May D, Matthäus C, Bocklitz T, Popp J. Label-Free Molecular Imaging of Biological Cells and Tissues by Linear and Nonlinear Raman Spectroscopic Approaches. Angew Chem Int Ed Engl 2017; 56:4392-4430. [PMID: 27862751 DOI: 10.1002/anie.201607604] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/04/2016] [Indexed: 12/20/2022]
Abstract
Raman spectroscopy is an emerging technique in bioanalysis and imaging of biomaterials owing to its unique capability of generating spectroscopic fingerprints. Imaging cells and tissues by Raman microspectroscopy represents a nondestructive and label-free approach. All components of cells or tissues contribute to the Raman signals, giving rise to complex spectral signatures. Resonance Raman scattering and surface-enhanced Raman scattering can be used to enhance the signals and reduce the spectral complexity. Raman-active labels can be introduced to increase specificity and multimodality. In addition, nonlinear coherent Raman scattering methods offer higher sensitivities, which enable the rapid imaging of larger sampling areas. Finally, fiber-based imaging techniques pave the way towards in vivo applications of Raman spectroscopy. This Review summarizes the basic principles behind medical Raman imaging and its progress since 2012.
Collapse
Affiliation(s)
- Christoph Krafft
- Leibniz-Institut für Photonische Technologien, Albert-Einstein-Strasse 9, 07745, Jena, Germany
| | - Michael Schmitt
- Institut für Physikalische Chemie und Abbe Center für Photonics, Friedrich Schiller Universität Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Iwan W Schie
- Leibniz-Institut für Photonische Technologien, Albert-Einstein-Strasse 9, 07745, Jena, Germany
| | - Dana Cialla-May
- Leibniz-Institut für Photonische Technologien, Albert-Einstein-Strasse 9, 07745, Jena, Germany.,Institut für Physikalische Chemie und Abbe Center für Photonics, Friedrich Schiller Universität Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Christian Matthäus
- Leibniz-Institut für Photonische Technologien, Albert-Einstein-Strasse 9, 07745, Jena, Germany.,Institut für Physikalische Chemie und Abbe Center für Photonics, Friedrich Schiller Universität Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Thomas Bocklitz
- Leibniz-Institut für Photonische Technologien, Albert-Einstein-Strasse 9, 07745, Jena, Germany.,Institut für Physikalische Chemie und Abbe Center für Photonics, Friedrich Schiller Universität Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Jürgen Popp
- Leibniz-Institut für Photonische Technologien, Albert-Einstein-Strasse 9, 07745, Jena, Germany.,Institut für Physikalische Chemie und Abbe Center für Photonics, Friedrich Schiller Universität Jena, Helmholtzweg 4, 07743, Jena, Germany
| |
Collapse
|
23
|
Ahlawat S, Kumar N, Uppal A, Kumar Gupta P. Visible Raman excitation laser induced power and exposure dependent effects in red blood cells. JOURNAL OF BIOPHOTONICS 2017; 10:415-422. [PMID: 26990235 DOI: 10.1002/jbio.201500325] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/11/2016] [Accepted: 02/26/2016] [Indexed: 05/28/2023]
Abstract
We present results of Raman spectroscopic studies carried out on optically trapped red blood cells with Raman excitation wavelength in Q-band region of the hemoglobin (Hb) absorption spectrum. The results obtained suggest that when exposed to the Raman excitation laser the RBCs get deoxygenated due to photo-dissociation of oxygen from hemoglobin. For smaller exposure durations (5 s) the level of deoxygenation increases with an increase in power. However, for longer exposure durations the deoxygenated hemoglobin in the cells gets irreversibly oxidized to form a low spin ferric derivative of hemoglobin. The rate of oxidation depends upon the initial level of deoxygenation; higher the initial level of deoxygenation, higher is the rate of oxidation. However, the RBCs deoxygenated via oxygen deprivation (i.e. N2 purging) were found to be very stable against any laser induced effect. These observations suggests that in case of laser induced deoxygenation of RBCs the free oxygen generated by photo-dissociation acts as the oxidizing agent and leads to oxidative damage of the RBCs.
Collapse
Affiliation(s)
- Sunita Ahlawat
- Laser Biomedical Applications and Instrumentation Division, Raja Ramanna Centre for Advanced Technology, Indore, 452013, India
| | - Nitin Kumar
- Laser Biomedical Applications and Instrumentation Division, Raja Ramanna Centre for Advanced Technology, Indore, 452013, India
| | - Abha Uppal
- Laser Biomedical Applications and Instrumentation Division, Raja Ramanna Centre for Advanced Technology, Indore, 452013, India
| | - Pradeep Kumar Gupta
- Laser Biomedical Applications and Instrumentation Division, Raja Ramanna Centre for Advanced Technology, Indore, 452013, India
| |
Collapse
|
24
|
Dybas J, Marzec KM, Pacia MZ, Kochan K, Czamara K, Chrabaszcz K, Staniszewska-Slezak E, Malek K, Baranska M, Kaczor A. Raman spectroscopy as a sensitive probe of soft tissue composition – Imaging of cross-sections of various organs vs. single spectra of tissue homogenates. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.08.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Marzec KM, Dybas J, Chlopicki S, Baranska M. Resonance Raman in Vitro Detection and Differentiation of the Nitrite-Induced Hemoglobin Adducts in Functional Human Red Blood Cells. J Phys Chem B 2016; 120:12249-12260. [PMID: 27934219 DOI: 10.1021/acs.jpcb.6b08359] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work presents in vitro studies of the functional, isolated human red blood cells (RBCs) treated with various concentrations of Na14NO2 and Na15NO2 with the use of resonance Raman spectroscopy (RRS) at two different laser excitations supported by absorption spectrophotometry (UV-vis). The products of the reaction between oxyhemoglobin (oxyHb) in isolated RBCs with NaNO2 were analyzed and identified in situ. The metHb-H2O was found to be the major product of this reaction; however, additional adducts were also clearly observed. Vibrational analysis allowed identification of various Hb3+NO2 species (Fe3+-O-N=O with O-binding mode of nitrite ion to the Fe3+ core and nitrovinyl adducts with 2-vinyl nitration favored over 4-vinyl nitration) as well as the Fe3+-NO adduct. In addition, we were able to visualize in situ the Hb-NO2 species inside functional RBCs with the use of Raman imaging.
Collapse
Affiliation(s)
- Katarzyna M Marzec
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University , Bobrzynskiego 14, Krakow 30-348, Poland
| | - Jakub Dybas
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University , Bobrzynskiego 14, Krakow 30-348, Poland.,Faculty of Chemistry, Jagiellonian University , Ingardena 3, Krakow 30-060, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University , Bobrzynskiego 14, Krakow 30-348, Poland.,Department of Experimental Pharmacology, Jagiellonian University Medical College , Grzegorzecka 16, Krakow 31-531, Poland
| | - Malgorzata Baranska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University , Bobrzynskiego 14, Krakow 30-348, Poland.,Faculty of Chemistry, Jagiellonian University , Ingardena 3, Krakow 30-060, Poland
| |
Collapse
|
26
|
Zito G, Rusciano G, Pesce G, Dochshanov A, Sasso A. Surface-enhanced Raman imaging of cell membrane by a highly homogeneous and isotropic silver nanostructure. NANOSCALE 2015; 7:8593-606. [PMID: 25898990 DOI: 10.1039/c5nr01341k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Label-free chemical imaging of live cell membranes can shed light on the molecular basis of cell membrane functionalities and their alterations under membrane-related diseases. In principle, this can be done by surface-enhanced Raman scattering (SERS) in confocal microscopy, but requires engineering plasmonic architectures with a spatially invariant SERS enhancement factor G(x, y) = G. To this end, we exploit a self-assembled isotropic nanostructure with characteristics of homogeneity typical of the so-called near-hyperuniform disorder. The resulting highly dense, homogeneous and isotropic random pattern consists of clusters of silver nanoparticles with limited size dispersion. This nanostructure brings together several advantages: very large hot spot density (∼10(4) μm(-2)), superior spatial reproducibility (SD < 1% over 2500 μm(2)) and single-molecule sensitivity (Gav ∼ 10(9)), all on a centimeter scale transparent active area. We are able to reconstruct the label-free SERS-based chemical map of live cell membranes with confocal resolution. In particular, SERS imaging is here demonstrated on red blood cells in vitro in order to use the Raman-resonant heme of the cell as a contrast medium to prove spectroscopic detection of membrane molecules. Numerical simulations also clarify the SERS characteristics of the substrate in terms of electromagnetic enhancement and distance sensitivity range consistently with the experiments. The large SERS-active area is intended for multi-cellular imaging on the same substrate, which is important for spectroscopic comparative analysis of complex organisms like cells. This opens new routes for in situ quantitative surface analysis and dynamic probing of living cells exposed to membrane-targeting drugs.
Collapse
Affiliation(s)
- Gianluigi Zito
- Department of Physics, University of Naples Federico II, via Cintia, 80126-I Naples, Italy.
| | | | | | | | | |
Collapse
|