1
|
Otlyotov AA, Moshchenkov AD, Rozov TP, Tuma AA, Ryzhako AS, Minenkov Y. A comprehensive guide for accurate conformational energies of microsolvated Li + clusters with organic carbonates. Phys Chem Chem Phys 2024; 26:29121-29132. [PMID: 39558743 DOI: 10.1039/d4cp03487b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Organic carbonates and their mixtures are frequently used in electrolyte solutions in lithium-ion batteries. Rationalization and tuning of the related Li+ solvation processes are rooted in the proper identification of the representative low-energy spatial structures of the microsolvated Li+(S)n clusters. In this study, we introduce an automatically generated database of conformational energies (CEs), LICARBCONF806, comprising 806 diverse conformers of Li+ clusters with 7 common organic carbonates. A number of standard and composite density functional theory (DFT) approaches and fast semi-empirical methods are examined to reproduce the reference CEs obtained at the RI-SCS-MP2/CBS level of theory. A hybrid PBE0-D4 functional paired with the def2-QZVP basis set is the most robust in reproducing the reference values while composite B97-3c demonstrates the best cost-benefit ratio. Contemporary tight-binding semi-empirical methods GFNn-xTB can be used for the filtering of high-energy structures, but their performance worsens significantly when the limited number of low-energy (CE < 3 kcal mol-1) conformers are to be sorted. Thermal corrections used to convert electronic energies to respective Gibbs free energies and especially corrections imposed by a continuum solvation model can significantly influence both the conformer ranking and the width of the CE distribution. These should be appropriately taken into account to identify lowest energy conformers in solution and at non-zero temperatures. The almost black-box conformation generation workflow used in this work successfully predicts representitative low-energy four-coordinated conformers of Li+ clusters with cyclic carbonates and unravels the complex conformational nature of the clusters with flexible linear carbonates.
Collapse
Affiliation(s)
- Arseniy A Otlyotov
- N.N. Semenov Federal Research Center for Chemical Physics RAS, Kosygina Street 4, 119991 Moscow, Russia.
| | - Andrey D Moshchenkov
- N.N. Semenov Federal Research Center for Chemical Physics RAS, Kosygina Street 4, 119991 Moscow, Russia.
| | - Timofey P Rozov
- N.N. Semenov Federal Research Center for Chemical Physics RAS, Kosygina Street 4, 119991 Moscow, Russia.
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Bld. 3, 119991 Moscow, Russia
| | - Anna A Tuma
- N.N. Semenov Federal Research Center for Chemical Physics RAS, Kosygina Street 4, 119991 Moscow, Russia.
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Bld. 3, 119991 Moscow, Russia
| | - Alexander S Ryzhako
- N.N. Semenov Federal Research Center for Chemical Physics RAS, Kosygina Street 4, 119991 Moscow, Russia.
- Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047, Russia
| | - Yury Minenkov
- N.N. Semenov Federal Research Center for Chemical Physics RAS, Kosygina Street 4, 119991 Moscow, Russia.
| |
Collapse
|
2
|
Karatrantos AV, Middendorf M, Nosov DR, Cai Q, Westermann S, Hoffmann K, Nürnberg P, Shaplov AS, Schönhoff M. Diffusion and structure of propylene carbonate-metal salt electrolyte solutions for post-lithium-ion batteries: From experiment to simulation. J Chem Phys 2024; 161:054502. [PMID: 39087537 DOI: 10.1063/5.0216222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
The diffusion of cations in organic solvent solutions is important for the performance of metal-ion batteries. In this article, pulsed field gradient nuclear magnetic resonance experiments and fully atomistic molecular dynamic simulations were employed to study the temperature-dependent diffusive behavior of various liquid electrolytes representing 1M propylene carbonate solutions of metal salts with bis(trifluoromethylsulfonyl)imide (TFSI-) or hexafluorophosphate (PF6-) anions commonly used in lithium-ion batteries and beyond. The experimental studies revealed the temperature dependence of the diffusion coefficients for the propylene carbonate (PC) solvent and for the anions following an Arrhenius type of behavior. It was observed that the PC molecules are the faster species. For the monovalent cations (Li+, Na+, K+), the PC solvent diffusion was enhanced as the cation size increased, while for the divalent cations (Mg2+, Ca2+, Sr2+, Ba2+), the opposite trend was observed, i.e., the diffusion coefficients decreased as the cation size increased. The anion diffusion in LiTFSI and NaTFSI solutions was found to be similar, while in electrolytes with divalent cations, a decrease in anion diffusion with increasing cation size was observed. It was shown that non-polarizable charge-scaled force fields could correspond perfectly to the experimental values of the anion and PC solvent diffusion coefficients in salt solutions of both monovalent (Li+, Na+, K+) and divalent (Mg2+, Ca2+, Sr2+, Ba2+) cations at a range of operational temperatures. Finally, after calculating the radial distribution functions between cations, anions, and solvent molecules, the increase in the PC diffusion coefficient established with the increase in cation size for monovalent cations was clearly explained by the large hydration shell of small Li+ cations, due to their strong interaction with the PC solvent. In solutions with larger monovalent cations, such as Na+, and with a smaller solvation shell of PC, the PC diffusion is faster due to more liberated solvent molecules. In the salt solutions with divalent cations, both the anion and the PC diffusion coefficients decreased as the cation size increased due to an enhanced cation-anion coordination, which was accompanied by an increase in the amount of PC in the cation solvation shell due to the presence of anions.
Collapse
Affiliation(s)
- Argyrios V Karatrantos
- Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
- School of Chemistry and Chemical Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7EX, United Kingdom
| | - Maleen Middendorf
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
- International Graduate School on Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), Münster, Germany
| | - Daniil R Nosov
- Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
- Department of Physics and Materials Science, University of Luxembourg, 2 Avenue de l'Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Qiong Cai
- School of Chemistry and Chemical Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7EX, United Kingdom
| | - Stephan Westermann
- Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Katja Hoffmann
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Pinchas Nürnberg
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Alexander S Shaplov
- Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Monika Schönhoff
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
| |
Collapse
|
3
|
Allen JP, Szczuka C, Smith HE, Jónsson E, Eichel RA, Granwehr J, Grey CP. Coordination of dissolved transition metals in pristine battery electrolyte solutions determined by NMR and EPR spectroscopy. Phys Chem Chem Phys 2024; 26:19505-19520. [PMID: 38979604 PMCID: PMC11253248 DOI: 10.1039/d4cp01663g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/30/2024] [Indexed: 07/10/2024]
Abstract
The solvation of dissolved transition metal ions in lithium-ion battery electrolytes is not well-characterised experimentally, although it is important for battery degradation mechanisms governed by metal dissolution, deposition, and reactivity in solution. This work identifies the coordinating species in the Mn2+ and Ni2+ solvation spheres in LiPF6/LiTFSI-carbonate electrolyte solutions by examining the electron-nuclear spin interactions, which are probed by pulsed EPR and paramagnetic NMR spectroscopy. These techniques investigate solvation in frozen electrolytes and in the liquid state at ambient temperature, respectively, also probing the bound states and dynamics of the complexes involving the ions. Mn2+ and Ni2+ are shown to primarily coordinate to ethylene carbonate (EC) in the first coordination sphere, while PF6- is found primarily in the second coordination sphere, although a degree of contact ion pairing does appear to occur, particularly in electrolytes with low EC concentrations. NMR results suggest that Mn2+ coordinates more strongly to PF6- than to TFSI-, while the opposite is true for Ni2+. This work provides a framework to experimentally determine the coordination spheres of paramagnetic metals in battery electrolyte solutions.
Collapse
Affiliation(s)
- Jennifer P Allen
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, Cambridge, UK.
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, UK
| | - Conrad Szczuka
- Institute of Energy and Climate Research (IEK-9), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Holly E Smith
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, Cambridge, UK.
| | - Erlendur Jónsson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, Cambridge, UK.
| | - Rüdiger-A Eichel
- Institute of Energy and Climate Research (IEK-9), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Josef Granwehr
- Institute of Energy and Climate Research (IEK-9), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Clare P Grey
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, Cambridge, UK.
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, UK
| |
Collapse
|
4
|
Phelan CE, Björklund E, Singh J, Fraser M, Didwal PN, Rees GJ, Ruff Z, Ferrer P, Grinter DC, Grey CP, Weatherup RS. Role of Salt Concentration in Stabilizing Charged Ni-Rich Cathode Interfaces in Li-Ion Batteries. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:3334-3344. [PMID: 38617803 PMCID: PMC11008099 DOI: 10.1021/acs.chemmater.4c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 04/16/2024]
Abstract
The cathode-electrolyte interphase (CEI) in Li-ion batteries plays a key role in suppressing undesired side reactions while facilitating Li-ion transport. Ni-rich layered cathode materials offer improved energy densities, but their high interfacial reactivities can negatively impact the cycle life and rate performance. Here we investigate the role of electrolyte salt concentration, specifically LiPF6 (0.5-5 m), in altering the interfacial reactivity of charged LiN0.8Mn0.1Co0.1O2 (NMC811) cathodes in standard carbonate-based electrolytes (EC/EMC vol %/vol % 3:7). Extended potential holds of NMC811/Li4Ti5O12 (LTO) cells reveal that the parasitic electrolyte oxidation currents observed are strongly dependent on the electrolyte salt concentration. X-ray photoelectron and absorption spectroscopy (XPS/XAS) reveal that a thicker LixPOyFz-/LiF-rich CEI is formed in the higher concentration electrolytes. This suppresses reactions with solvent molecules resulting in a thinner, or less-dense, reduced surface layer (RSL) with lower charge transfer resistance and lower oxidation currents at high potentials. The thicker CEI also limits access of acidic species to the RSL suppressing transition-metal dissolution into the electrolyte, as confirmed by nuclear magnetic resonance (NMR) spectroscopy and inductively coupled plasma optical emission spectroscopy (ICP-OES). This provides insight into the main degradation processes occurring at Ni-rich cathode interfaces in contact with carbonate-based electrolytes and how electrolyte formulation can help to mitigate these.
Collapse
Affiliation(s)
- Conor
M. E. Phelan
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.
| | - Erik Björklund
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.
- The
Faraday Institution, Quad One, Harwell Science
and Innovation Campus, Didcot OX11 0RA, U.K.
| | - Jasper Singh
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.
| | - Michael Fraser
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.
- The
Faraday Institution, Quad One, Harwell Science
and Innovation Campus, Didcot OX11 0RA, U.K.
| | - Pravin N. Didwal
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.
- The
Faraday Institution, Quad One, Harwell Science
and Innovation Campus, Didcot OX11 0RA, U.K.
| | - Gregory J. Rees
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.
- The
Faraday Institution, Quad One, Harwell Science
and Innovation Campus, Didcot OX11 0RA, U.K.
| | - Zachary Ruff
- The
Faraday Institution, Quad One, Harwell Science
and Innovation Campus, Didcot OX11 0RA, U.K.
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Pilar Ferrer
- Diamond
Light Source, Didcot, Oxfordshire OX11 0DE, U.K.
| | | | - Clare P. Grey
- The
Faraday Institution, Quad One, Harwell Science
and Innovation Campus, Didcot OX11 0RA, U.K.
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Robert S. Weatherup
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.
- The
Faraday Institution, Quad One, Harwell Science
and Innovation Campus, Didcot OX11 0RA, U.K.
- Diamond
Light Source, Didcot, Oxfordshire OX11 0DE, U.K.
- Research
Complex at Harwell, Didcot, Oxfordshire OX11 0DE, U.K.
| |
Collapse
|
5
|
Cheng Z, Huang YJ, Zahiri B, Kwon P, Braun PV, Cahill DG. Ionic Peltier effect in Li-ion electrolytes. Phys Chem Chem Phys 2024; 26:6708-6716. [PMID: 38321982 DOI: 10.1039/d3cp05998g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The coupled transport of charge and heat provide fundamental insights into the microscopic thermodynamics and kinetics of materials. We describe a sensitive ac differential resistance bridge that enables measurements of the temperature difference on two sides of a coin cell with a resolution of better than 10 μK. We use this temperature difference metrology to determine the ionic Peltier coefficients of symmetric Li-ion electrochemical cells as a function of Li salt concentration, solvent composition, electrode material, and temperature. The Peltier coefficients Π are negative, i.e., heat flows in the direction opposite to the drift of Li ions in the applied electric field, large, -Π > 30 kJ mol-1, and increase with increasing temperature at T > 300 K. The Peltier coefficient is approximately constant on time scales that span the characteristic time for mass diffusion across the thickness of the electrolyte, suggesting that heat of transport plays a minor role in comparison to the changes in partial molar entropy of Li at the interface between the electrode and electrolyte. Our work demonstrates a new platform for studying the non-equilibrium thermodynamics of electrochemical cells and provides a window into the transport properties of electrochemical materials through measurements of temperature differences and heat currents that complement traditional measurements of voltages and charge currents.
Collapse
Affiliation(s)
- Zhe Cheng
- Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Yu-Ju Huang
- Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Beniamin Zahiri
- Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Patrick Kwon
- Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Paul V Braun
- Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - David G Cahill
- Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
6
|
Luo L, Chen K, Chen H, Li H, Cao R, Feng X, Chen W, Fang Y, Cao Y. Enabling Ultralow-Temperature (-70 °C) Lithium-Ion Batteries: Advanced Electrolytes Utilizing Weak-Solvation and Low-Viscosity Nitrile Cosolvent. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308881. [PMID: 37921499 DOI: 10.1002/adma.202308881] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Indexed: 11/04/2023]
Abstract
Low-temperature performance of lithium-ion batteries (LIBs) has always posed a significant challenge, limiting their wide application in cold environments. In this work, the high-performance LIBs working under ultralow-temperature conditions, which is achieved by employing the weak-solvation and low-viscosity isobutyronitrile as a cosolvent to tame the affinity between solvents and lithium ions, is reported. The as-prepared electrolytes exhibit a sufficiently high conductivity (1.152 mS cm-1 ) at -70 °C. The electrolytes enable LiCoO2 cathode and graphite anode to achieve high Coulombic efficiency of >99.9% during long-term cycling at room temperature, and to respectively achieve 75.8% and 100.0% of their room-temperature capacities at -40 °C. Even the LiCoO2 //graphite pouch cells can retain 68.7% of the room-temperature capacity when discharged at -70 °C, and present stable cycling performance at -40 and 60 °C. This work provides a solution for the development of advanced electrolytes to enable LIBs working at wide-temperatures range.
Collapse
Affiliation(s)
- Laibing Luo
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| | - Kean Chen
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| | - Hui Chen
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| | - Hui Li
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| | - Ruoyu Cao
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xiangming Feng
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Weihua Chen
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yongjin Fang
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| | - Yuliang Cao
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| |
Collapse
|
7
|
Chen K, Shen X, Luo L, Chen H, Cao R, Feng X, Chen W, Fang Y, Cao Y. Correlating the Solvating Power of Solvents with the Strength of Ion-Dipole Interaction in Electrolytes of Lithium-ion Batteries. Angew Chem Int Ed Engl 2023; 62:e202312373. [PMID: 37806968 DOI: 10.1002/anie.202312373] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/07/2023] [Accepted: 10/07/2023] [Indexed: 10/10/2023]
Abstract
The solvation structure of Li+ plays a significant role in determining the physicochemical properties of electrolytes. However, to date, there is still no clear definition of the solvating power of different electrolyte solvents, and even the solvents that preferentially participate in the solvation structure remain controversial. In this study, we comprehensively discuss the solvating power and solvation process of Li+ ions using both experimental characterizations and theoretical calculations. Our findings reveal that the solvating power is dependent on the strength of the Li+ -solvent (ion-dipole) interaction. Additionally, we uncover that the anions tend to enter the solvation sheath in most electrolyte systems through Li+ -anion (ion-ion) interaction, which is weakened by the shielding effect of solvents. The competition between the Li+ -solvent and Li+ -anion interactions ultimately determines the final solvation structures. This insight into the fundamental understanding of the solvation structure of Li+ provides inspiration for the design of multifunctional mixed-solvent electrolytes for advanced batteries.
Collapse
Affiliation(s)
- Kean Chen
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, China
| | - Xiaohui Shen
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, China
| | - Laibing Luo
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, China
| | - Hui Chen
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, China
| | - Ruoyu Cao
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiangming Feng
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Weihua Chen
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongjin Fang
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, China
| | - Yuliang Cao
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, China
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China
| |
Collapse
|
8
|
Choi J, Shin KH, Han YK. Origin of Li + Solvation Ability of Electrolyte Solvent: Ring Strain. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6995. [PMID: 37959592 PMCID: PMC10650738 DOI: 10.3390/ma16216995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
Developing new organic solvents to support the use of Li metal anodes in secondary batteries is an area of great interest. In particular, research is actively underway to improve battery performance by introducing fluorine to ether solvents, as these are highly compatible with Li metal anodes because fluorine imparts high oxidative stability and relatively low Li-ion solvation ability. However, theoretical analysis of the solvation ability of organic solvents mostly focuses on the electron-withdrawing capability of fluorine. Herein, we analyze the effect of the structural characteristics of solvents on their Li+ ion solvation ability from a computational chemistry perspective. We reveal that the structural constraints imposed on the oxygen binding sites in solvent molecules vary depending on the structural characteristics of the N-membered ring formed by the interaction between the organic solvent and Li+ ions and the internal ring containing the oxygen binding sites. We demonstrate that the structural strain of the organic solvents has a comparable effect on Li+ solvation ability seen for the electrical properties of fluorine elements. This work emphasizes the importance of understanding the structural characteristics and strain when attempting to understand the interactions between solvents and metal cations and effectively control the solvation ability of solvents.
Collapse
Affiliation(s)
- Jihoon Choi
- Department of Energy and Materials Engineering, Advanced Energy and Electronic Materials Research Center, Dongguk University-Seoul, Seoul 04620, Republic of Korea;
| | - Kyoung-Hee Shin
- ESS Laboratory, Korea Institute of Energy Research, 102 Gajeong-ro, Daejeon 34129, Republic of Korea;
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Advanced Energy and Electronic Materials Research Center, Dongguk University-Seoul, Seoul 04620, Republic of Korea;
| |
Collapse
|
9
|
Allen J, O’Keefe CA, Grey CP. Quantifying Dissolved Transition Metals in Battery Electrolyte Solutions with NMR Paramagnetic Relaxation Enhancement. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:9509-9521. [PMID: 37255924 PMCID: PMC10226131 DOI: 10.1021/acs.jpcc.3c01396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/20/2023] [Indexed: 06/01/2023]
Abstract
Transition metal dissolution is an important contributor to capacity fade in lithium-ion cells. NMR relaxation rates are proportional to the concentration of paramagnetic species, making them suitable to quantify dissolved transition metals in battery electrolytes. In this work, 7Li, 31P, 19F, and 1H longitudinal and transverse relaxation rates were measured to study LiPF6 electrolyte solutions containing Ni2+, Mn2+, Co2+, or Cu2+ salts and Mn dissolved from LiMn2O4. Sensitivities were found to vary by nuclide and by transition metal. 19F (PF6-) and 1H (solvent) measurements were more sensitive than 7Li and 31P measurements due to the higher likelihood that the observed species are in closer proximity to the metal center. Mn2+ induced the greatest relaxation enhancement, yielding a limit of detection of ∼0.005 mM for 19F and 1H measurements. Relaxometric analysis of a sample containing Mn dissolved from LiMn2O4 at ∼20 °C showed good sensitivity and accuracy (suggesting dissolution of Mn2+), but analysis of a sample stored at 60 °C showed that the relaxometric quantification is less accurate for heat-degraded LiPF6 electrolytes. This is attributed to degradation processes causing changes to the metal solvation shell (changing the fractions of PF6-, EC, and EMC coordinated to Mn2+), such that calibration measurements performed with pristine electrolyte solutions are not applicable to degraded solutions-a potential complication for efforts to quantify metal dissolution during operando NMR studies of batteries employing widely-used LiPF6 electrolytes. Ex situ nondestructive quantification of transition metals in lithium-ion battery electrolytes is shown to be possible by NMR relaxometry; further, the method's sensitivity to the metal solvation shell also suggests potential use in assessing the coordination spheres of dissolved transition metals.
Collapse
Affiliation(s)
- Jennifer
P. Allen
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- The
Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, U.K.
| | - Christopher A. O’Keefe
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- The
Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, U.K.
| | - Clare P. Grey
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- The
Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, U.K.
| |
Collapse
|
10
|
Eriksson T, Gudla H, Manabe Y, Yoneda T, Friesen D, Zhang C, Inokuma Y, Brandell D, Mindemark J. Carbonyl-Containing Solid Polymer Electrolyte Host Materials: Conduction and Coordination in Polyketone, Polyester, and Polycarbonate Systems. Macromolecules 2022; 55:10940-10949. [PMID: 36590372 PMCID: PMC9798856 DOI: 10.1021/acs.macromol.2c01683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/04/2022] [Indexed: 12/12/2022]
Abstract
Research on solid polymer electrolytes (SPEs) is now moving beyond the realm of polyethers that have dominated the field for several decades. A promising alternative group of candidates for SPE host materials is carbonyl-containing polymers. In this work, SPE properties of three different types of carbonyl-coordinating polymers are compared: polycarbonates, polyesters, and polyketones. The investigated polymers were chosen to be as structurally similar as possible, with only the functional group being different, thereby giving direct insights into the role of the noncoordinating main-chain oxygens. As revealed by experimental measurements as well as molecular dynamics simulations, the polyketone possesses the lowest glass transition temperature, but the ion transport is limited by a high degree of crystallinity. The polycarbonate, on the other hand, displays a relatively low coordination strength but is instead limited by its low molecular flexibility. The polyester performs generally as an intermediate between the other two, which is reasonable when considering its structural relation to the alternatives. This work demonstrates that local changes in the coordinating environment of carbonyl-containing polymers can have a large effect on the overall ion conduction, thereby also showing that desired transport properties can be achieved by fine-tuning the polymer chemistry of carbonyl-containing systems.
Collapse
Affiliation(s)
- Therese Eriksson
- Department
of Chemistry − Ångström Laboratory, Uppsala University, Box 538, SE-751 21Uppsala, Sweden
| | - Harish Gudla
- Department
of Chemistry − Ångström Laboratory, Uppsala University, Box 538, SE-751 21Uppsala, Sweden
| | - Yumehiro Manabe
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido060-8628, Japan
| | - Tomoki Yoneda
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido060-8628, Japan
| | - Daniel Friesen
- Department
of Chemistry − Ångström Laboratory, Uppsala University, Box 538, SE-751 21Uppsala, Sweden
| | - Chao Zhang
- Department
of Chemistry − Ångström Laboratory, Uppsala University, Box 538, SE-751 21Uppsala, Sweden
| | - Yasuhide Inokuma
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido060-8628, Japan
| | - Daniel Brandell
- Department
of Chemistry − Ångström Laboratory, Uppsala University, Box 538, SE-751 21Uppsala, Sweden
| | - Jonas Mindemark
- Department
of Chemistry − Ångström Laboratory, Uppsala University, Box 538, SE-751 21Uppsala, Sweden,E-mail:
| |
Collapse
|
11
|
Yao N, Chen X, Fu ZH, Zhang Q. Applying Classical, Ab Initio, and Machine-Learning Molecular Dynamics Simulations to the Liquid Electrolyte for Rechargeable Batteries. Chem Rev 2022; 122:10970-11021. [PMID: 35576674 DOI: 10.1021/acs.chemrev.1c00904] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rechargeable batteries have become indispensable implements in our daily life and are considered a promising technology to construct sustainable energy systems in the future. The liquid electrolyte is one of the most important parts of a battery and is extremely critical in stabilizing the electrode-electrolyte interfaces and constructing safe and long-life-span batteries. Tremendous efforts have been devoted to developing new electrolyte solvents, salts, additives, and recipes, where molecular dynamics (MD) simulations play an increasingly important role in exploring electrolyte structures, physicochemical properties such as ionic conductivity, and interfacial reaction mechanisms. This review affords an overview of applying MD simulations in the study of liquid electrolytes for rechargeable batteries. First, the fundamentals and recent theoretical progress in three-class MD simulations are summarized, including classical, ab initio, and machine-learning MD simulations (section 2). Next, the application of MD simulations to the exploration of liquid electrolytes, including probing bulk and interfacial structures (section 3), deriving macroscopic properties such as ionic conductivity and dielectric constant of electrolytes (section 4), and revealing the electrode-electrolyte interfacial reaction mechanisms (section 5), are sequentially presented. Finally, a general conclusion and an insightful perspective on current challenges and future directions in applying MD simulations to liquid electrolytes are provided. Machine-learning technologies are highlighted to figure out these challenging issues facing MD simulations and electrolyte research and promote the rational design of advanced electrolytes for next-generation rechargeable batteries.
Collapse
Affiliation(s)
- Nan Yao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiang Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhong-Heng Fu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Gabriel Vera de la Garza C, Daniel Solis Rodriguez L, Fomine S, Vallejo Narváez WE. Lithium complexes of doped phosphorene nanoflakes with aluminum, silicon and sulfur. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Rasheev H, Stoyanova R, Tadjer A. Dual-Metal Electrolytes for Hybrid-Ion Batteries: Synergism or Antagonism? Chemphyschem 2021; 22:1110-1123. [PMID: 33826193 DOI: 10.1002/cphc.202100066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/19/2021] [Indexed: 11/09/2022]
Abstract
The construction of hybrid metal-ion batteries faces a plethora of challenges. A critical one is to unveil the solvation/desolvation processes at the molecular level in electrolytes that ensure efficient transfer of several types of charge carriers. This study reports first results on simulations of mixed-ion electrolytes. All combinations of homo- and hetero-binuclear complexes of Li+ , Na+ and Mg2+ , solvated with varying number of ethylene carbonate (EC) molecules are modeled in non-polar and polar environment by means of first principles calculations and compared to the mononuclear analogues in terms of stability, spatial organization, charge distribution and solvation/desolvation behavior. The used PF6 - counterion is shown to have minor impact on the geometry of the complexes. The desolvation energy penalty of binuclear complexes can be lowered by the fluoride ions, emerging upon the PF6 - decay. These model investigations could be extended to rationalize the solvation structure and ionic mobility in dual-ion electrolytes.
Collapse
Affiliation(s)
- Hristo Rasheev
- Institute of General and Inorganic Chemistry (IGIC), Bulgarian Academy of Science, 1113, Sofia, Bulgaria.,Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Blvd, 1164, Sofia, Bulgaria
| | - Radostina Stoyanova
- Institute of General and Inorganic Chemistry (IGIC), Bulgarian Academy of Science, 1113, Sofia, Bulgaria
| | - Alia Tadjer
- Institute of General and Inorganic Chemistry (IGIC), Bulgarian Academy of Science, 1113, Sofia, Bulgaria.,Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Blvd, 1164, Sofia, Bulgaria
| |
Collapse
|
14
|
Melemed AM, Khurram A, Gallant BM. Current Understanding of Nonaqueous Electrolytes for Calcium-Based Batteries. BATTERIES & SUPERCAPS 2020; 3:570-580. [PMID: 33688622 PMCID: PMC7939050 DOI: 10.1002/batt.201900219] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Indexed: 05/12/2023]
Abstract
Calcium metal batteries are receiving growing research attention due to significant breakthroughs in recent years that have indicated reversible Ca plating/stripping with attractive Coulombic efficiencies (90-95%), once thought to be out of reach. While the Ca anode is often described as being surface film-controlled, the ability to access reversible Ca electrochemistry is highly electrolyte-dependent in general, which affects both interfacial chemistry on plated Ca along with more fundamental Ca2+/Ca redox properties. This mini-review describes recent progress towards a reversible Ca anode from the point of view of the most successful electrolyte chemistries identified to date. This includes, centrally, what is currently known about the Ca2+ solvation environment in these systems. Experimental (physico-chemical and spectroscopy) and computational results are summarized for the two major solvent classes - carbonates and ethers - that have yielded promising results so far. Current knowledge gaps and opportunities to improve fundamental understanding of Ca2+/Ca redox are also identified.
Collapse
Affiliation(s)
- Aaron M. Melemed
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Aliza Khurram
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Betar M. Gallant
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
15
|
Tatara R, Yu Y, Karayaylali P, Chan AK, Zhang Y, Jung R, Maglia F, Giordano L, Shao-Horn Y. Enhanced Cycling Performance of Ni-Rich Positive Electrodes (NMC) in Li-Ion Batteries by Reducing Electrolyte Free-Solvent Activity. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34973-34988. [PMID: 31433154 DOI: 10.1021/acsami.9b11942] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The interfacial (electro)chemical reactions between electrode and electrolyte dictate the cycling stability of Li-ion batteries. Previous experimental and computational results have shown that replacing Mn and Co with Ni in layered LiNixMnyCo1-x-yO2 (NMC) positive electrodes promotes the dehydrogenation of carbonate-based electrolytes on the oxide surface, which generates protic species to decompose LiPF6 in the electrolyte. In this study, we utilized this understanding to stabilize LiNi0.8Mn0.1Co0.1O2 (NMC811) by decreasing free-solvent activity in the electrolyte through controlling salt concentration and salt dissociativity. Infrared spectroscopy revealed that highly concentrated electrolytes with low free-solvent activity had no dehydrogenation of ethylene carbonate, which could be attributed to slow kinetics of dissociative adsorption of Li+-coordinated solvents on oxide surfaces. The increased stability of the concentrated electrolyte against solvent dehydrogenation gave rise to high capacity retention of NMC811 with capacities greater than 150 mA h g-1 (77% retention) after 500 cycles without oxide-coating and Ni-concentration gradients or electrolyte additives.
Collapse
Affiliation(s)
| | | | | | - Averey K Chan
- Department of Materials , Imperial College London , Royal School of Mines Building, Prince Consort Road , London SW7 2AZ , U.K
| | | | - Roland Jung
- BMW Group , Petuelring 130 80788 Munich , Germany
| | | | | | | |
Collapse
|
16
|
Kushwaha AK, Sahoo MR, Nayak SK. Understanding the Role of Fluorination on the Interaction of Electrolytic Carbonates with Li+
through an Electronic Structure Approach. ChemistrySelect 2019. [DOI: 10.1002/slct.201803372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anoop Kumar Kushwaha
- School of Basic Sciences; Indian Institute of Technology, Bhubaneswar; Bhubaneswar 752050 India
| | - Mihir Ranjan Sahoo
- School of Basic Sciences; Indian Institute of Technology, Bhubaneswar; Bhubaneswar 752050 India
| | - Saroj Kumar Nayak
- School of Basic Sciences; Indian Institute of Technology, Bhubaneswar; Bhubaneswar 752050 India
| |
Collapse
|
17
|
Yang G, Ivanov IN, Ruther RE, Sacci RL, Subjakova V, Hallinan DT, Nanda J. Electrolyte Solvation Structure at Solid-Liquid Interface Probed by Nanogap Surface-Enhanced Raman Spectroscopy. ACS NANO 2018; 12:10159-10170. [PMID: 30226745 DOI: 10.1021/acsnano.8b05038] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding the fundamental factors that drive ion solvation structure and transport is key to design high-performance, stable battery electrolytes. Reversible ion solvation and desolvation are critical to the interfacial charge-transfer process across the solid-liquid interface as well as the resulting stability of the solid electrolyte interphase. Herein, we report the study of Li+ salt solvation structure in aprotic solution in the immediate vicinity (∼20 nm) of the solid electrode-liquid interface using surface-enhanced Raman spectroscopy (SERS) from a gold nanoparticle (Au NP) monolayer. The plasmonic coupling between Au NPs produces strong electromagnetic field enhancement in the gap region, leading to a 5 orders of magnitude increase in Raman intensity for electrolyte components and their mixtures namely, lithium hexafluorophosphate, fluoroethylene carbonate, ethylene carbonate, and diethyl carbonate. Further, we estimate and compare the lithium-ion solvation number derived from SERS, standard Raman spectroscopy, and Fourier transform infrared spectroscopy experiments to monitor and ascertain the changes in the solvation shell diameter in the confined nanogap region where there is maximum enhancement of the electric field. Our findings provide a multimodal spectroscopic approach to gain fundamental insights into the molecular structure of the electrolyte at the solid-liquid interface.
Collapse
Affiliation(s)
- Guang Yang
- Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Ilia N Ivanov
- Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Rose E Ruther
- Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Robert L Sacci
- Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Veronika Subjakova
- Department of Nuclear Physics and Biophysics , Comenius University , Mlynska dolina F1 , Bratislava 84248 , Slovakia
| | - Daniel T Hallinan
- Department of Chemical and Biomedical Engineering , Florida A&M University-Florida State University College of Engineering , 2525 Pottsdamer Street , Tallahassee , Florida 32310 , United States
| | - Jagjit Nanda
- Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| |
Collapse
|
18
|
Tulibaeva GZ, Shestakov AF, Volkov VI, Yarmolenko OV. Structure of LiBF4 Solvate Complexes in Ethylene Carbonate, Based on High-Resolution NMR and Quantum-Chemical Data. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2018. [DOI: 10.1134/s0036024418040313] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Levin EE, Vassiliev SY, Nikitina VA. Solvent effect on the kinetics of lithium ion intercalation into LiCoO2. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.01.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|