1
|
Dresser L, Hunter P, Yendybayeva F, Hargreaves AL, Howard JAL, Evans GJO, Leake MC, Quinn SD. Amyloid-β oligomerization monitored by single-molecule stepwise photobleaching. Methods 2020; 193:80-95. [PMID: 32544592 PMCID: PMC8336786 DOI: 10.1016/j.ymeth.2020.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 01/19/2023] Open
Abstract
Method enables investigation of amyloid-β oligomer stoichiometry without requiring extrinsic fluorescent probes. Uses single-molecule stepwise photobleaching in vitro. Unveils heterogeneity within populations of oligomers. Assays oligomer-induced dysregulation of intracellular Ca2+ homeostasis in living cells.
A major hallmark of Alzheimer’s disease is the misfolding and aggregation of the amyloid- β peptide (Aβ). While early research pointed towards large fibrillar- and plaque-like aggregates as being the most toxic species, recent evidence now implicates small soluble Aβ oligomers as being orders of magnitude more harmful. Techniques capable of characterizing oligomer stoichiometry and assembly are thus critical for a deeper understanding of the earliest stages of neurodegeneration and for rationally testing next-generation oligomer inhibitors. While the fluorescence response of extrinsic fluorescent probes such as Thioflavin-T have become workhorse tools for characterizing large Aβ aggregates in solution, it is widely accepted that these methods suffer from many important drawbacks, including an insensitivity to oligomeric species. Here, we integrate several biophysics techniques to gain new insight into oligomer formation at the single-molecule level. We showcase single-molecule stepwise photobleaching of fluorescent dye molecules as a powerful method to bypass many of the traditional limitations, and provide a step-by-step guide to implementing the technique in vitro. By collecting fluorescence emission from single Aβ(1–42) peptides labelled at the N-terminal position with HiLyte Fluor 555 via wide-field total internal reflection fluorescence (TIRF) imaging, we demonstrate how to characterize the number of peptides per single immobile oligomer and reveal heterogeneity within sample populations. Importantly, fluorescence emerging from Aβ oligomers cannot be easily investigated using diffraction-limited optical microscopy tools. To assay oligomer activity, we also demonstrate the implementation of another biophysical method involving the ratiometric imaging of Fura-2-AM loaded cells which quantifies the rate of oligomer-induced dysregulation of intracellular Ca2+ homeostasis. We anticipate that the integrated single-molecule biophysics approaches highlighted here will develop further and in principle may be extended to the investigation of other protein aggregation systems under controlled experimental conditions.
Collapse
Affiliation(s)
- Lara Dresser
- Department of Physics, University of York, Heslington YO10 5DD, UK
| | - Patrick Hunter
- Department of Physics, University of York, Heslington YO10 5DD, UK
| | | | - Alex L Hargreaves
- Department of Physics, University of York, Heslington YO10 5DD, UK; Department of Biology, University of York, Heslington YO10 5DD, UK
| | - Jamieson A L Howard
- Department of Physics, University of York, Heslington YO10 5DD, UK; Department of Biology, University of York, Heslington YO10 5DD, UK
| | - Gareth J O Evans
- Department of Biology, University of York, Heslington YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington YO10 5DD, UK
| | - Mark C Leake
- Department of Physics, University of York, Heslington YO10 5DD, UK; Department of Biology, University of York, Heslington YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington YO10 5DD, UK
| | - Steven D Quinn
- Department of Physics, University of York, Heslington YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington YO10 5DD, UK.
| |
Collapse
|
2
|
Jeanneret RA, Dalton CE, Gardiner JM. Synthesis of Heparan Sulfate- and Dermatan Sulfate-Related Oligosaccharides via Iterative Chemoselective Glycosylation Exploiting Conformationally Disarmed [2.2.2] l-Iduronic Lactone Thioglycosides. J Org Chem 2019; 84:15063-15078. [PMID: 31674785 DOI: 10.1021/acs.joc.9b01594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Heparan sulfate (HS) and dermatan sulfate (DS) are l-iduronic acid containing glycosaminoglycans (GAGs) which are implicated in a number of biological processes and conditions including cancer and viral infection. Chemical synthesis of HS and DS is required to generate structurally defined oligosaccharides for a biological study. Herein, we present a new synthetic approach to HS and DS oligosaccharides using chemoselective glycosylation which relies on a disarmed [2.2.2] l-ido lactone motif. The strategy provides a general approach for iterative-reducing end chain extension, using only shelf-stable thioglycoside building blocks, exploiting a conformational switch to control reactivity, and thus requires no anomeric manipulation steps between glycosylations.
Collapse
Affiliation(s)
- Robin A Jeanneret
- School of Chemistry and Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Charlotte E Dalton
- School of Chemistry and Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - John M Gardiner
- School of Chemistry and Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| |
Collapse
|
3
|
Zhang M, Zhang Z, He K, Wu J, Li N, Zhao R, Yuan J, Xiao H, Zhang Y, Fang X. Quantitative Characterization of the Membrane Dynamics of Newly Delivered TGF-β Receptors by Single-Molecule Imaging. Anal Chem 2018; 90:4282-4287. [PMID: 29509006 DOI: 10.1021/acs.analchem.7b03448] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The dynamics and stoichiometry of receptors newly delivered on the plasma membrane play a vital role in cell signal transduction, yet knowledge of this process is limited because of the lack of suitable analytical methods. Here we developed a new strategy that combines single-molecule imaging (SMI) and fluorescence recovery after photobleaching (FRAP), named FRAP-SMI, to monitor and quantify individual newly delivered and inserted transmembrane receptors on plasma membranes of living cells. Transforming-growth-factor-β type II receptor (TβRII), a typical serine/threoninekinase receptor, was studied with this method. We first eliminated the fluorescence signals from the pre-existing EGFP-labeled TβRII molecules on the plasma membrane, and then we recorded the individual newly appeared TβRII-GFP by total-internal-reflection fluorescence imaging. The fluorescence-intensity distributions, photobleaching steps, and diffusion rates of the single TβRII-GFP molecules were analyzed. We reported, for the first time, that TβRII was transported to the plasma membrane mainly in the monomeric form in both resting and TGF-β1stimulated cells. This strongly supported our former discovery that TβRII could exist as a monomer on the cell membrane. We also found that ligand stimulation resulted in enhanced delivery rates and prolonged membrane-association times for the TβRII molecules. On the basis of these observations, we proposed a mechanism of TGF-β1-induced TβRII dimerization for receptor activation. Our method provides a useful tool for the real-time quantification of the spatial arrangement, mobility, and oligomerization of cell-surface proteins in living cells, thus providing a better understanding of cell signaling.
Collapse
Affiliation(s)
- Mingliang Zhang
- Institute of Vascular Medicine of Third Hospital, Ministry of Health Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors and Academy for Advanced Interdisciplinary Studies , Peking University , Beijing 100191 , P. R. China.,CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Zhen Zhang
- CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Kangmin He
- Institute of Vascular Medicine of Third Hospital, Ministry of Health Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors and Academy for Advanced Interdisciplinary Studies , Peking University , Beijing 100191 , P. R. China.,CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Jimin Wu
- Institute of Vascular Medicine of Third Hospital, Ministry of Health Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors and Academy for Advanced Interdisciplinary Studies , Peking University , Beijing 100191 , P. R. China
| | - Nan Li
- CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Rong Zhao
- CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Jinghe Yuan
- CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Han Xiao
- Institute of Vascular Medicine of Third Hospital, Ministry of Health Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors and Academy for Advanced Interdisciplinary Studies , Peking University , Beijing 100191 , P. R. China
| | - Youyi Zhang
- Institute of Vascular Medicine of Third Hospital, Ministry of Health Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors and Academy for Advanced Interdisciplinary Studies , Peking University , Beijing 100191 , P. R. China
| | - Xiaohong Fang
- CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
4
|
Quinn SD, Magennis SW. Optical detection of gadolinium(iii) ions via quantum dot aggregation. RSC Adv 2017; 7:24730-24735. [PMID: 29308186 PMCID: PMC5735353 DOI: 10.1039/c7ra03969g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 04/28/2017] [Indexed: 11/21/2022] Open
Abstract
A rapid, sensitive and selective optical readout of the presence of gadolinium(iii) ions would have a wide range of applications for clinical and environmental monitoring. We demonstrate that water-soluble CdTe quantum dots (QDs) are induced to aggregate by Gd3+ ions in aqueous solution. By using a combination of photoluminescence spectroscopy, dynamic light scattering and fluorescence correlation spectroscopy (FCS) to monitor quantum dot aggregation kinetics, we correlate the efficiency of the self-quenching process with the degree of aggregation across a broad range of conditions, including different sizes of QDs. We attribute the aggregation to metal binding to the QD's surface ligands and the quenching to intra-aggregate energy transfer between QDs. When the strategy was applied to additional trivalent ions, the aggregation rate varied according to the particular trivalent metal ion used, suggesting that the selectivity can be enhanced and controlled by appropriate design of the capping ligands and solution conditions.
Collapse
Affiliation(s)
- Steven D Quinn
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK.
| | - Steven W Magennis
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK.
| |
Collapse
|
5
|
Dalton CE, Quinn SD, Rafferty A, Morten MJ, Gardiner JM, Magennis SW. Single-Molecule Fluorescence Detection of a Synthetic Heparan Sulfate Disaccharide. Chemphyschem 2016; 17:3442-3446. [PMID: 27538128 PMCID: PMC5111599 DOI: 10.1002/cphc.201600750] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Indexed: 11/11/2022]
Abstract
The first single-molecule fluorescence detection of a structurally-defined synthetic carbohydrate is reported: a heparan sulfate (HS) disaccharide fragment labeled with Alexa488. Single molecules have been measured whilst freely diffusing in solution and controlled encapsulation in surface-tethered lipid vesicles has allowed extended observations of carbohydrate molecules down to the single-molecule level. The diverse and dynamic nature of HS-protein interactions means that new tools to investigate pure HS fragments at the molecular level would significantly enhance our understanding of HS. This work is a proof-of-principle demonstration of the feasibility of single-molecule studies of synthetic carbohydrates which offers a new approach to the study of pure glycosaminoglycan (GAG) fragments.
Collapse
Affiliation(s)
- Charlotte E Dalton
- The School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Steven D Quinn
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, UK
| | - Aidan Rafferty
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, UK
| | - Michael J Morten
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, UK
| | - John M Gardiner
- The School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Steven W Magennis
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, UK
| |
Collapse
|