1
|
Rode JE, Wasilczenko J, Górecki M. Differentiation of solvatomorphs of active pharmaceutical ingredients (API) by solid-state vibrational circular dichroism (VCD). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123851. [PMID: 38295593 DOI: 10.1016/j.saa.2024.123851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/04/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024]
Abstract
Here, we present the new application of solid-state Vibrational Circular Dichroism (VCD) spectroscopy to differentiate several dutasteride (DS) solvatomorphs - the model active pharmaceutical ingredient (API). Several crystalline DS hydrochloride hydrates solvated with methanol, ethanol, acetonitrile, acetone, and acetic acid were prepared. In contrast to almost identical IR spectra, the VCD ones were very sensitive to changes in the sample composition. We marked significant differences in the shape of VCD spectra of studied DS solvatomorphs, DS hydrates, and DS polymorphic forms. Our findings, supported by DFT calculations, show that VCD spectroscopy has the pronounced ability to distinguish their crystal arrangements. We believe that this contribution will extend the use of VCD in the pharmaceutical industry for developing and designing new chiral drug products for the identification, description, and in-depth probing of several pharmaceutical solvatomorphs in the future.
Collapse
Affiliation(s)
- Joanna E Rode
- Institute of Nuclear Chemistry and Technology, Dorodna 16 St., 03-195 Warsaw, Poland
| | - Justyna Wasilczenko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 St., 01-224 Warsaw, Poland
| | - Marcin Górecki
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 St., 01-224 Warsaw, Poland.
| |
Collapse
|
2
|
Rode JE, Łyczko K, Kaczorek D, Kawęcki R, Dobrowolski JC. VCD spectra of chiral naphthalene-1-carboxamides in the solid-state. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123939. [PMID: 38301569 DOI: 10.1016/j.saa.2024.123939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 02/03/2024]
Abstract
The VCD spectra of chiral 2,3-dihydro-1H-benzo[de]isoquinolin-1-one (8-substituted naphthalene-1-carboxamide, BIQ) were studied in KBr pellets. The X-ray diffractometry revealed that the Me, Ph, and pClPh BIQs crystalize in the monoclinic P21, while nBu, pMePh, and oMeOPh BIQs in the orthorhombic P212121 space group. Only the Me-BIQ crystal exhibits the presence of cyclic amide dimers, while the others contain chains of the amid group hydrogen bonds. For all BIQs, except pMePh, the most intense IR band in the 1750-1550 cm-1 region is located at ca. 1680 cm-1 and is accompanied by two weak ones at ca. 1618 and 1590 cm-1. For the pMePh derivative, four almost equally intense IR bands at 1662, 1639, 1614, and 1588 cm-1 are observed. This region of the IR spectra of BIQs, but pMePh, is well reproduced by calculations based on BIQ monomers. On the other hand, the complex IR pattern of pMePh is computationally reproduced when larger crystal fragments, like octamers, are considered. Registration of the VCD spectra enabled recognizing the complexity of IR contours at ca. 1680 cm-1 by the corresponding VCD motives. For (i) Me, Ph and pClPh (R)-enantiomers, two (+)(-) bands were distinguished and for (ii) nBu and pMePh ones, one VCD band with right-side asymmetry was found. For (iii) oMeOPh the VCD pattern cannot be unambiguously assigned. Thus, the VCD spectra in the ν(C=O) range diverse the studied compounds. Among the set of molecules, pMePh has exceptional crystal geometry. Therefore, its most intense ν(C=O) band position and shape can be connected with the geometry of the hydrogen bonds, interactions, and crystal packing. Interpretation of the VCD spectra is based on linear and packed BIQ octamers. This cluster model can reproduce the main features of the solid-state VCD of BIQs.
Collapse
Affiliation(s)
- Joanna E Rode
- Institute of Nuclear Chemistry and Technology, 16 Dorodna Street 03-195, Warsaw, Poland.
| | - Krzysztof Łyczko
- Institute of Nuclear Chemistry and Technology, 16 Dorodna Street 03-195, Warsaw, Poland
| | - Dorota Kaczorek
- University of Siedlce, Faculty of Science, 3 Maja Street No 54 08-110, Siedlce, Poland
| | - Robert Kawęcki
- University of Siedlce, Faculty of Science, 3 Maja Street No 54 08-110, Siedlce, Poland
| | - Jan Cz Dobrowolski
- Institute of Nuclear Chemistry and Technology, 16 Dorodna Street 03-195, Warsaw, Poland
| |
Collapse
|
3
|
Jähnigen S. Vibrational Circular Dichroism Spectroscopy of Chiral Molecular Crystals: Insights from Theory. Angew Chem Int Ed Engl 2023; 62:e202303595. [PMID: 37071543 DOI: 10.1002/anie.202303595] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/19/2023]
Abstract
Chirality is a curious phenomenon that appears in various forms. While the concept of molecular (RS-)chirality is ubiquitous in chemistry, there are also more intricate forms of structural chirality. One of them is the enantiomorphism of crystals, especially molecular crystals, that describes the lack of mirror symmetry in the unit cell. Its relation to molecular chirality is not obvious, but still an open question, which can be addressed with chiroptical tools. Vibrational circular dichroism (VCD) denotes chiral infrared (IR) spectroscopy that is susceptible to both, the molecular as well as the intermolecular space by means of vibrational transitions. When carried out in the solid state, VCD delivers a very rich set of non-local contributions that are determined by crystal packing and collective motion. Since its discovery in the 1970s, VCD has become the method of choice for the determination of absolute configurations, but its applicability reaches beyond towards the study of different crystal forms and polymorphism. This brief review summarises the theoretical concepts of crystal chirality and how computations of solid-state VCD can shed light into the intimate connection of chiral structure and vibrational optical activity.
Collapse
Affiliation(s)
- Sascha Jähnigen
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| |
Collapse
|
4
|
Mardjan MID, Hariadi MF, Mustika CR, Saifurofi' HS, Kunarti ES, Purwono B, Commeiras L. Ultrasound-assisted-one-pot synthesis and antiplasmodium evaluation of 3-substituted-isoindolin-1-ones. RSC Adv 2023; 13:25959-25967. [PMID: 37664198 PMCID: PMC10472802 DOI: 10.1039/d3ra02829a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
As the attempts to control malaria through chemotherapy strategies are restricted, we have prepared a small library of 3-substituted-isoindolinones from (Z)-3-benzylideneisobenzofuran-1(3H)-ones in one-pot fashion under ultrasound irradiation. The one-pot reaction was scalable and efficiently produced the desired products (1a-m) in high yields in a short reaction time. Evaluation of their in vitro antiplasmodium assay against the 3D7 (chloroquine-sensitive) and FCR3 (chloroquine-resistant) strains of Plasmodium falciparum demonstrated that they displayed moderate to strong antiplasmodium activities (the IC50 values ranging from 4.21-34.80 μM) and low resistance indices. The in silico prediction of ADME and physicochemical properties showed that the synthesized compounds met the drug-likeliness requirements and featured low toxicity effects. Based on the evaluation of the antiplasmodium profiles, 3-substituted-isoindolinone derivatives of 1a, 1d, 1h, and 1l may become potential antiplasmodium candidates.
Collapse
Affiliation(s)
| | - Muhamad Fadhly Hariadi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada Yogyakarta 55281 Indonesia
| | - Chessy Rima Mustika
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada Yogyakarta 55281 Indonesia
| | - Hamzah Shiddiq Saifurofi'
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada Yogyakarta 55281 Indonesia
| | - Eko Sri Kunarti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada Yogyakarta 55281 Indonesia
| | - Bambang Purwono
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada Yogyakarta 55281 Indonesia
| | | |
Collapse
|
5
|
Rode JE, Lyczko K, Kosińska K, Matalińska J, Dyniewicz J, Misicka A, Dobrowolski JC, Lipiński PFJ. The solid state VCD of a novel N-acylhydrazone trifluoroacetate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 269:120761. [PMID: 34954483 DOI: 10.1016/j.saa.2021.120761] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/23/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
A novel N-acylhydrazone with pharmaceutical importance was subject of structural and IR/VCD investigations in the solid state. In the crystal structure, dimers of anion-cation pairs are stabilized by H-bonding and ionic interactions. Some less common interaction types, like C=N···C-NH3+ (σ-hole) interactions, hydrazone-aromatic interactions and dispersive contacts of the CF3 groups are also present in the crystal. Satisfactory reproduction of the solid state IR and VCD spectra required that quantum-chemical calculations be done on a tetramer (four cation-anion pairs) cut out from the crystal structure, exhibiting key intermolecular interactions. Ten DFT functionals were assessed as to the agreement between the calculated and experimental spectra. Various approaches to scaling of the calculated frequencies were applied. The best results were yielded with individual (optimized) frequency scaling factors (FSFs) and band half-widths at half maximum-(HWHM) for four separate spectral subregions. The best matching between the experimental and theoretical spectra (according to SimIR, SimVCD and SimVDF indices) was found for the B3PW91 functional, however, a few other functionals follow closely in the ranking. Based on the quantum chemical calculations, spectral assignments have been made.
Collapse
Affiliation(s)
- Joanna E Rode
- Institute of Nuclear Chemistry and Technology, 16 Dorodna Street, PL 03-195 Warsaw, Poland
| | - Krzysztof Lyczko
- Institute of Nuclear Chemistry and Technology, 16 Dorodna Street, PL 03-195 Warsaw, Poland
| | - Katarzyna Kosińska
- Department of Neuropeptides, Mossakowski Medical Research Institute Polish Academy of Sciences, 5 Pawińskiego Street, PL 02-106 Warsaw, Poland
| | - Joanna Matalińska
- Department of Neuropeptides, Mossakowski Medical Research Institute Polish Academy of Sciences, 5 Pawińskiego Street, PL 02-106 Warsaw, Poland
| | - Jolanta Dyniewicz
- Department of Neuropeptides, Mossakowski Medical Research Institute Polish Academy of Sciences, 5 Pawińskiego Street, PL 02-106 Warsaw, Poland
| | - Aleksandra Misicka
- Department of Neuropeptides, Mossakowski Medical Research Institute Polish Academy of Sciences, 5 Pawińskiego Street, PL 02-106 Warsaw, Poland
| | - Jan Cz Dobrowolski
- Department for Medicines Biotechnology and Bioinformatics, National Medicines Institute, 30/34 Chełmska Street, PL 00-725 Warsaw, Poland
| | - Piotr F J Lipiński
- Department of Neuropeptides, Mossakowski Medical Research Institute Polish Academy of Sciences, 5 Pawińskiego Street, PL 02-106 Warsaw, Poland.
| |
Collapse
|
6
|
Le Barbu-Debus K, Zehnacker A. Competition between inter and intramolecular hydrogen bond evidenced by vibrational circular dichroism spectroscopy: The case of (1S,2R)-(-)-cis-1-amino-2-indanol. Chirality 2021; 33:858-874. [PMID: 34570370 DOI: 10.1002/chir.23362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 02/06/2023]
Abstract
The infrared (IR) absorption and vibrational circular dichroism (VCD) spectra of an intramolecularly hydrogen-bonded chiral amino-alcohol, (1S,2R)-(-)-cis-1-amino-2-indanol, are studied in DMSO-d6 . The spectra are simulated at the density functional theory (DFT) level within the frame of the cluster-in-the-liquid model. Both IR and VCD spectra show a clear signature of the formation of intermolecular hydrogen bonds at the detriment of the intramolecular OH … N interaction present in the isolated molecule. Two solvent molecules are necessary to reproduce the experimental spectra. Whereas the first DMSO molecule captures the main spectral modifications due to hydrogen bond formation between the solute and the solvent, the second DMSO molecule is necessary for a good description of the Boltzmann contribution of the different complexes, based on their Gibbs free energy.
Collapse
Affiliation(s)
- Katia Le Barbu-Debus
- Institut des Sciences Moléculaires d'Orsay, Université Paris-Saclay, Orsay, France
| | - Anne Zehnacker
- Institut des Sciences Moléculaires d'Orsay, Université Paris-Saclay, Orsay, France
| |
Collapse
|
7
|
Lyczko K, Rode JE, Dobrowolski JC. Chiral Lanthanide Complexes with l- and d-Alanine: An X-ray and Vibrational Circular Dichroism Study. Molecules 2020; 25:E2729. [PMID: 32545530 PMCID: PMC7357152 DOI: 10.3390/molecules25122729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/17/2023] Open
Abstract
A whole series of [Ln(H2O)4(Ala)2]26+ dimeric cationic lanthanide complexes with both L- and D-alanine enantiomers was synthesized. The single-crystal X-ray diffraction at 100 and 292 K shows the formation of two types of dimers (I and II) in crystals. Between the dimer centers, the alanine molecules behave as bridging (μ2-O,O'-) and chelating bridging (μ2-O,O,O'-) ligands. The first type of bridge is present in dimers I, while both bridge forms can be observed in dimers II. The IR and vibrational circular dichroism (VCD) spectra of all L- and D-alanine complexes were registered in the 1750-1250 cm-1 range as KBr pellets. Despite all the studied complexes are exhibiting similar crystal structures, the spectra reveal correlations or trends with the Ln-O1 distances which exemplify the lanthanide contraction effect in the IR spectra. This is especially true for the positions and intensities of some IR bands. Unexpectedly, the ν(C=O) VCD bands are quite intense and their composed shapes reveal the inequivalence of the C=O vibrators in the unit cell which vary with the lanthanide. Unlike in the IR spectra, the ν(C=O) VCD band positions are only weakly correlated with the change of Ln and the VCD intensities at most show some trends. Nevertheless, this is the first observation of the lanthanide contraction effect in the VCD spectra. Generally, for the heavier lanthanides (Ln: Dy-Lu), the VCD band maxima are very close to each other and the mirror reflection of the band of two enantiomers is usually better than that of the lighter Lns. DFT calculations show that the higher the multiplicity the higher the stability of the system. Actually, the molecular geometry in crystals (at 100 K) is well predicted based on the highest-spin structures. Also, the simulated IR and VCD spectra strongly depend on the Ln electron configuration but the best overall agreement was reached for the Lu complex, which is the only system with a fully filled f-shell.
Collapse
Affiliation(s)
- Krzysztof Lyczko
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (J.E.R.); (J.C.D.)
| | | | | |
Collapse
|
8
|
Declerck V, Pérez‐Mellor A, Guillot R, Aitken DJ, Mons M, Zehnacker A. Vibrational circular dichroism as a probe of solid‐state organisation of derivatives of cyclic β‐amino acids:
Cis
‐ and
trans
‐2‐aminocyclobutane‐1‐carboxylic acid. Chirality 2019; 31:547-560. [DOI: 10.1002/chir.23083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Valérie Declerck
- CP3A Organic Synthesis Group and Services Communs, ICMMO, UMR 8182Université Paris Sud, Université Paris‐Saclay Orsay France
| | - Ariel Pérez‐Mellor
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris‐SudUniversité Paris‐Saclay Orsay France
| | - Régis Guillot
- CP3A Organic Synthesis Group and Services Communs, ICMMO, UMR 8182Université Paris Sud, Université Paris‐Saclay Orsay France
| | - David J. Aitken
- CP3A Organic Synthesis Group and Services Communs, ICMMO, UMR 8182Université Paris Sud, Université Paris‐Saclay Orsay France
| | - Michel Mons
- Laboratoire Interactions Dynamiques et Lasers (LIDYL)Université Paris Saclay Paris France
| | - Anne Zehnacker
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris‐SudUniversité Paris‐Saclay Orsay France
| |
Collapse
|