1
|
Czernek J, Brus J, Czerneková V. A Cost Effective Scheme for the Highly Accurate Description of Intermolecular Binding in Large Complexes. Int J Mol Sci 2022; 23:15773. [PMID: 36555413 PMCID: PMC9780852 DOI: 10.3390/ijms232415773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
There has been a growing interest in quantitative predictions of the intermolecular binding energy of large complexes. One of the most important quantum chemical techniques capable of such predictions is the domain-based local pair natural orbital (DLPNO) scheme for the coupled cluster theory with singles, doubles, and iterative triples [CCSD(T)], whose results are extrapolated to the complete basis set (CBS) limit. Here, the DLPNO-based focal-point method is devised with the aim of obtaining CBS-extrapolated values that are very close to their canonical CCSD(T)/CBS counterparts, and thus may serve for routinely checking a performance of less expensive computational methods, for example, those based on the density-functional theory (DFT). The efficacy of this method is demonstrated for several sets of noncovalent complexes with varying amounts of the electrostatics, induction, and dispersion contributions to binding (as revealed by accurate DFT-based symmetry-adapted perturbation theory (SAPT) calculations). It is shown that when applied to dimeric models of poly(3-hydroxybutyrate) chains in its two polymorphic forms, the DLPNO-CCSD(T) and DFT-SAPT computational schemes agree to within about 2 kJ/mol of an absolute value of the interaction energy. These computational schemes thus should be useful for a reliable description of factors leading to the enthalpic stabilization of extended systems.
Collapse
Affiliation(s)
- Jiří Czernek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Square 2, 162 00 Prague, Czech Republic
| | - Jiří Brus
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Square 2, 162 00 Prague, Czech Republic
| | - Vladimíra Czerneková
- Institute of Physics, Czech Academy of Science, Na Slovance 2, 182 21 Prague, Czech Republic
| |
Collapse
|
2
|
Vermeeren P, Dalla Tiezza M, Wolf ME, Lahm ME, Allen WD, Schaefer HF, Hamlin TA, Bickelhaupt FM. Pericyclic reaction benchmarks: hierarchical computations targeting CCSDT(Q)/CBS and analysis of DFT performance. Phys Chem Chem Phys 2022; 24:18028-18042. [PMID: 35861164 PMCID: PMC9348522 DOI: 10.1039/d2cp02234f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022]
Abstract
Hierarchical, convergent ab initio benchmark computations were performed followed by a systematic analysis of DFT performance for five pericyclic reactions comprising Diels-Alder, 1,3-dipolar cycloaddition, electrocyclic rearrangement, sigmatropic rearrangement, and double group transfer prototypes. Focal point analyses (FPA) extrapolating to the ab initio limit were executed via explicit quantum chemical computations with electron correlation treatments through CCSDT(Q) and correlation-consistent Gaussian basis sets up to aug'-cc-pV5Z. Optimized geometric structures and vibrational frequencies of all stationary points were obtained at the CCSD(T)/cc-pVTZ level of theory. The FPA reaction barriers and energies exhibit convergence to within a few tenths of a kcal mol-1. The FPA benchmarks were used to evaluate the performance of 60 density functionals (eight dispersion-corrected), covering the local-density approximation (LDA), generalized gradient approximations (GGAs), meta-GGAs, hybrids, meta-hybrids, double-hybrids, and range-separated hybrids. The meta-hybrid M06-2X functional provided the best overall performance [mean absolute error (MAE) of 1.1 kcal mol-1] followed closely by the double-hybrids B2K-PLYP, mPW2K-PLYP, and revDSD-PBEP86 [MAE of 1.4-1.5 kcal mol-1]. The regularly used GGA functional BP86 gave a higher MAE of 5.8 kcal mol-1, but it qualitatively described the trends in reaction barriers and energies. Importantly, we established that accurate yet efficient meta-hybrid or double-hybrid DFT potential energy surfaces can be acquired based on geometries from the computationally efficient and robust BP86/DZP level.
Collapse
Affiliation(s)
- Pascal Vermeeren
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
| | - Marco Dalla Tiezza
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
| | - Mark E Wolf
- Center for Computational Quantum Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Mitchell E Lahm
- Center for Computational Quantum Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Wesley D Allen
- Center for Computational Quantum Chemistry, University of Georgia, Athens, GA 30602, USA.
- Allen Heritage Foundation, Dickson, TN 37055, USA
| | - Henry F Schaefer
- Center for Computational Quantum Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Trevor A Hamlin
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
| | - F Matthias Bickelhaupt
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
- Institute for Molecules and Materials (IMM), Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
3
|
Hockey EK, Vlahos K, Howard T, Palko J, Dodson LG. Weakly Bound Complex Formation between HCN and CH 3Cl: A Matrix-Isolation and Computational Study. J Phys Chem A 2022; 126:3110-3123. [PMID: 35583384 DOI: 10.1021/acs.jpca.2c00716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The matrix-isolated infrared spectrum of a hydrogen cyanide-methyl chloride complex was investigated in a solid argon matrix. HCN and CH3Cl were co-condensed onto a substrate held at 10 K with an excess of argon gas, and the infrared spectrum was measured using Fourier-transform infrared spectroscopy. Quantum chemical geometry optimization, harmonic frequency, and natural bonding orbital calculations indicate stabilized hydrogen- and halogen-bonded structures. The two resulting weakly bound complexes are both composed of one CH3Cl molecule bound to a (HCN)3 subunit, where the three HCN molecules are bound head-to-tail in a ring formation. Our study suggests that─in the presence of CH3Cl─the formation of (HCN)3 is promoted through complexation. Since HCN aggregates are an important precursor to prebiotic monomers (amino acids and nucleobases) and other life-bearing polymers, this study has astrophysical implications toward the search for life in space.
Collapse
Affiliation(s)
- Emily K Hockey
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Korina Vlahos
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Thomas Howard
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Jessica Palko
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Leah G Dodson
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
4
|
Mihrin D, Jakobsen PW, Voute A, Manceron L, Wugt Larsen R. High-Resolution Infrared Synchrotron Investigation of (HCN) 2 and a Semi-Experimental Determination of the Dissociation Energy D 0. Chemphyschem 2019; 20:3238-3244. [PMID: 31702872 PMCID: PMC6916300 DOI: 10.1002/cphc.201900811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Indexed: 11/27/2022]
Abstract
The high‐resolution infrared absorption spectrum of the donor bending fundamental band ν61
of the homodimer (HCN)2 has been collected by long‐path static gas‐phase Fourier transform spectroscopy at 207 K employing the highly brilliant 2.75 GeV electron storage ring source at Synchrotron SOLEIL. The rovibrational structure of the ν61
transition has the typical appearance of a perpendicular type band associated with a Σ–Π transition for a linear polyatomic molecule. The total number of 100 assigned transitions are fitted employing a standard semi‐rigid linear molecule Hamiltonian, providing the band origin ν0 of 779.05182(50) cm−1 together with spectroscopic parameters for the degenerate excited state. This band origin, blue‐shifted by 67.15 cm−1 relative to the HCN monomer, provides the final significant contribution to the change of intra‐molecular vibrational zero‐point energy upon HCN dimerization. The combination with the vibrational zero‐point energy contribution determined recently for the class of large‐amplitude inter‐molecular fundamental transitions then enables a complete determination of the total change of vibrational zero‐point energy of 3.35±0.30 kJ mol−1. The new spectroscopic findings together with previously reported benchmark CCSDT(Q)/CBS electronic energies [Hoobler et al. ChemPhysChem. 19, 3257–3265 (2018)] provide the best semi‐experimental estimate of 16.48±0.30 kJ mol−1 for the dissociation energy D0 of this prototypical homodimer.
Collapse
Affiliation(s)
- D Mihrin
- Department of Chemistry, Technical University of Denmark, Kemitorvet 206, 2800, Kgs. Lyngby, Denmark
| | - P W Jakobsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 206, 2800, Kgs. Lyngby, Denmark
| | - A Voute
- Department of Chemistry, Technical University of Denmark, Kemitorvet 206, 2800, Kgs. Lyngby, Denmark
| | - L Manceron
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin-BP 48, 91192, Gif-sur-Yvette Cedex, France.,Lab. MONARIS, CNRS-UPMC UMR8233, 4 Place Jussieu, 75230, Paris Cedex, France
| | - R Wugt Larsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 206, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
5
|
Proton acceptor response in hydrogen-bonded XH…WZ (X = F, Cl, Br, FAr, FKr, NC, FCC; WZ = CO, FH, N2) complexes. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.03.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|