1
|
Bondar OA, Moustafa GAI, Robertson TBR. Hyperpolarised [2- 13C]-pyruvate by 13C SABRE in an acetone/water mixture. Analyst 2024. [PMID: 39485096 PMCID: PMC11529384 DOI: 10.1039/d4an01005a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024]
Abstract
Signal Amplification By Reversible Exchange (SABRE) can provide strong signal enhancement (SE) to an array of molecules through reversible exchange of parahydrogen (pH2) derived hydrides and a suitable substrate coordinated to a transition metal. Among the substrates that can be used as a probe for hyperpolarised NMR and MRI, pyruvate has gained much attention. SABRE can hyperpolarise pyruvate in a low cost, fast, and reversible fashion that does not involve technologically demanding equipment. Most SABRE polarization studies have been done using methanol-d4 as a solvent, which is not suitable for in vivo application. The main goal of this work was to obtain hyperpolarized pyruvate in a solvent other than methanol which may open the door to further purification steps and enable a method to polarize pyruvate in water in future. This work demonstrates hyperpolarization of the [2-13C]pyruvate as well as [1-13C]pyruvate by SABRE in an acetone/water solvent system at room temperature as an alternative to methanol, which is commonly used. NMR signals are detected using a 1.1 T benchtop NMR spectrometer. In this work we have primarily focused on the study of [2-13C]pyruvate and investigated the effect of catalyst concentration, DMSO presence and water vs. acetone solvent concentration on the signal enhancement. The relaxation times for [2-13C]-pyruvate solutions are reported in the hope of informing the development of future purification methods.
Collapse
Affiliation(s)
- Oksana A Bondar
- School of Chemistry, Highfield Campus, Southampton, SO17 1BJ, UK.
| | - Gamal A I Moustafa
- ATDBio (Now Part of Biotage), Highfield Campus, Southampton, SO17 1BJ, UK
| | | |
Collapse
|
2
|
Min S, Baek J, Kim J, Jeong HJ, Chung J, Jeong K. Water-Compatible and Recyclable Heterogeneous SABRE Catalyst for NMR Signal Amplification. JACS AU 2023; 3:2912-2917. [PMID: 37885596 PMCID: PMC10598823 DOI: 10.1021/jacsau.3c00487] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023]
Abstract
A water-compatible and recyclable catalyst for nuclear magnetic resonance (NMR) hyperpolarization via signal amplification by reversible exchange (SABRE) was developed. The [Ir(COD)(IMes)Cl] catalyst was attached to a polymeric resin of bis(2-pyridyl)amine (heterogeneous SABRE catalyst, HET-SABRE catalyst), and it amplified the 1H NMR signal of pyridine up to (-) 4455-fold (43.2%) at 1.4 T in methanol and (-) 50-fold (0.5%) in water. These are the highest amplification factors ever reported among HET-SABRE catalysts and for the first time in aqueous media. Moreover, the HET-SABRE catalyst demonstrated recyclability by retaining its activity in water after more than three uses. This newly designed polymeric resin-based heterogeneous catalyst shows great promise for NMR signal amplification for biomedical NMR and MRI applications in the future.
Collapse
Affiliation(s)
- Sein Min
- Department
of Chemistry, Seoul Women’s University, Seoul 01797, South Korea
| | - Juhee Baek
- Department
of Chemistry, Seoul Women’s University, Seoul 01797, South Korea
| | - Jisu Kim
- Department
of Chemistry, Seoul Women’s University, Seoul 01797, South Korea
| | - Hye Jin Jeong
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jean Chung
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Keunhong Jeong
- Department
of Chemistry, Korea Military Academy, Seoul 01805, South Korea
| |
Collapse
|
3
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
4
|
Rapid SABRE Catalyst Scavenging Using Functionalized Silicas. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020332. [PMID: 35056646 PMCID: PMC8778821 DOI: 10.3390/molecules27020332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
In recent years the NMR hyperpolarisation method signal amplification by reversible exchange (SABRE) has been applied to multiple substrates of potential interest for in vivo investigation. Unfortunately, SABRE commonly requires an iridium-containing catalyst that is unsuitable for biomedical applications. This report utilizes inductively coupled plasma-optical emission spectroscopy (ICP-OES) to investigate the potential use of metal scavengers to remove the iridium catalytic species from the solution. The most sensitive iridium emission line at 224.268 nm was used in the analysis. We report the effects of varying functionality, chain length, and scavenger support identity on iridium scavenging efficiency. The impact of varying the quantity of scavenger utilized is reported for the three scavengers with the highest iridium removed from initial investigations: 3-aminopropyl (S1), 3-(imidazole-1-yl)propyl (S4), and 2-(2-pyridyl) (S5) functionalized silica gels. Exposure of an activated SABRE sample (1.6 mg mL-1 of iridium catalyst) to 10 mg of the most promising scavenger (S5) resulted in <1 ppm of iridium being detectable by ICP-OES after 2 min of exposure. We propose that combining the approach described herein with other recently reported approaches, such as catalyst separated-SABRE (CASH-SABRE), would enable the rapid preparation of a biocompatible SABRE hyperpolarized bolus.
Collapse
|
5
|
Kiryutin AS, Yurkovskaya AV, Petrov PA, Ivanov KL. Simultaneous 15 N polarization of several biocompatible substrates in ethanol-water mixtures by signal amplification by reversible exchange (SABRE) method. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:1216-1224. [PMID: 34085303 DOI: 10.1002/mrc.5184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Signal amplification by reversible exchange (SABRE) is a popular method for generating strong signal enhancements in nuclear magnetic resonance (NMR). In SABRE experiments, the source of polarization is provided by the nonthermal spin order of parahydrogen (pH2 , the H2 molecule in its nuclear singlet spin state). Polarization formation requires that both pH2 and a substrate molecule bind to an Ir-based complex where polarization transfer occurs. Subsequently, the complex dissociates and free polarized substrate molecules are formed. In this work, we present approaches towards biocompatible SABRE, meaning that several small biomolecules are simultaneously polarized by using the SABRE method in water-ethanol solutions at room temperature. We are able to demonstrate significant 15 N-NMR signal enhancements in water-ethanol solutions for biomolecules like nicotinamide, metronidazole, adenosine-5'-monophosphate, and 4-methylimidazole and found that the first three substrates are polarized at the same level as a well-known pyridine. We show that simultaneous polarization of several molecules is indeed feasible when the reactions are carried out at an ultralow field of about 400-500 nT. The achieved enhancements are between 100-fold and 15,000-fold. The resulting 15 N polarization (maximal value about 4% achieved for metronidazole and pyridine at 45°C) strongly depends on the sample temperature, pH2 bubbling pressure, and pH2 flow. One more parameter, which is important for optimizing the enhancement, is the solvent pH. Hence, this study presents a step in developing biocompatible SABRE polarization and gives a clue on how such SABRE experiments should be optimized to achieve the highest NMR signal enhancement.
Collapse
Affiliation(s)
- Alexey S Kiryutin
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Alexandra V Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Pavel A Petrov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Konstantin L Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
6
|
Rayner PJ, Gillions JP, Hannibal VD, John RO, Duckett SB. Hyperpolarisation of weakly binding N-heterocycles using signal amplification by reversible exchange. Chem Sci 2021; 12:5910-5917. [PMID: 34168816 PMCID: PMC8179664 DOI: 10.1039/d0sc06907h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/22/2021] [Indexed: 12/23/2022] Open
Abstract
Signal Amplification by Reversible Exchange (SABRE) is a catalytic method for improving the detection of molecules by magnetic resonance spectroscopy. It achieves this by simultaneously binding the target substrate (sub) and para-hydrogen to a metal centre. To date, sterically large substrates are relatively inaccessible to SABRE due to their weak binding leading to catalyst destabilisation. We overcome this problem here through a simple co-ligand strategy that allows the hyperpolarisation of a range of weakly binding and sterically encumbered N-heterocycles. The resulting 1H NMR signal size is increased by up to 1400 times relative to their more usual Boltzmann controlled levels at 400 MHz. Hence, a significant reduction in scan time is achieved. The SABRE catalyst in these systems takes the form [IrX(H)2(NHC)(sulfoxide)(sub)] where X = Cl, Br or I. These complexes are shown to undergo very rapid ligand exchange and lower temperatures dramatically improve the efficiency of these SABRE catalysts.
Collapse
Affiliation(s)
- Peter J Rayner
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM), Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Joseph P Gillions
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM), Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Valentin D Hannibal
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM), Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Richard O John
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM), Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Simon B Duckett
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM), Department of Chemistry, University of York Heslington York YO10 5DD UK
| |
Collapse
|
7
|
Linnik IV, Rayner PJ, Stow RA, Duckett SB, Cheetham GMT. Pharmacokinetics of the SABRE agent 4,6-d 2-nicotinamide and also nicotinamide in rats following oral and intravenous administration. Eur J Pharm Sci 2019; 135:32-37. [PMID: 31077749 PMCID: PMC6556870 DOI: 10.1016/j.ejps.2019.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 01/14/2023]
Abstract
To prepare the way for using the isotopically labelled SABRE hyperpolarized 4,6-d2-nicotinamide as an MRI agent in humans we have performed an in-vivo study to measure its pharmacokinetics in the plasma of healthy rats after intravenous and oral administration. Male Han Wistar rats were dosed with either 4,6-d2-nicotinamide or the corresponding control, non-labelled nicotinamide, and plasma samples were obtained at eight time points for up to 24 h after administration. Pharmacokinetic parameters were determined from agent concentration-versus-time data for both 4,6-d2-nicotinamide and nicotinamide. 4,6-d2-Nicotinamide proved to be well tolerated regardless of route of administration at the concentrations used (20, 80 and 120 mg/kg). Pharmacokinetic parameters were similar after oral and intravenous administration and similar to those obtained for nicotinamide. Analysis of nicotinamide plasma concentrations after dosing 4,6-d2-nicotinamide intravenously demonstrates a reversible exchange of endogenous nicotinamide by this labelled agent over the time-course of our assays. Supported by a large body of evidence for the safety of nicotinamide when dosed orally in humans, we conclude that 4,6-d2-nicotinamide can also be safely administered intravenously, which will provide significant benefit when using this agent for planned imaging studies in humans.
Collapse
Affiliation(s)
- Inna V Linnik
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM), Department of Chemistry, University of York, Heslington YO10 5DD, UK
| | - Peter J Rayner
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM), Department of Chemistry, University of York, Heslington YO10 5DD, UK
| | - Ruth A Stow
- Covance Laboratories, Harrogate, North Yorkshire HG3 1PY, UK
| | - Simon B Duckett
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM), Department of Chemistry, University of York, Heslington YO10 5DD, UK
| | - Graham M T Cheetham
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM), Department of Chemistry, University of York, Heslington YO10 5DD, UK.
| |
Collapse
|
8
|
Papp G, Horváth H, Joó F. A Simple and Efficient Procedure for Rh(I)‐ and Ir(I)‐complex Catalyzed
Para
‐hydrogenation of Alkynes and Alkenes in Aqueous Media Resulting in Strong PHIP Effects. ChemCatChem 2019. [DOI: 10.1002/cctc.201900602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gábor Papp
- Department of Physical ChemistryUniversity of Debrecen Debrecen P.O. Box 400 4002 Hungary
| | - Henrietta Horváth
- MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research GroupUniversity of Debrecen Debrecen P.O. Box 400 4002 Hungary
| | - Ferenc Joó
- Department of Physical ChemistryUniversity of Debrecen Debrecen P.O. Box 400 4002 Hungary
- MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research GroupUniversity of Debrecen Debrecen P.O. Box 400 4002 Hungary
| |
Collapse
|
9
|
Semenova O, Richardson PM, Parrott AJ, Nordon A, Halse ME, Duckett SB. Reaction Monitoring Using SABRE-Hyperpolarized Benchtop (1 T) NMR Spectroscopy. Anal Chem 2019; 91:6695-6701. [PMID: 30985110 PMCID: PMC6892580 DOI: 10.1021/acs.analchem.9b00729] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
![]()
The
conversion of [IrCl(COD)(IMes)] (COD = cis,cis-1,5-cyclooctadiene, IMes = 1,3-bis(2,4,6-trimethyl-phenyl)imidazole-2-ylidene)
in the presence of an excess of para-hydrogen (p-H2) and a substrate (4-aminopyridine (4-AP) or 4-methylpyridine (4-MP)) into [Ir(H)2(IMes)(substrate)3]Cl is monitored by 1H NMR spectroscopy using a benchtop (1 T) spectrometer in conjunction
with the p-H2-based hyperpolarization
technique signal amplification by reversible exchange (SABRE). A series
of single-shot 1H NMR measurements are used to monitor
the chemical changes that take place in solution through the lifetime
of the hyperpolarized response. Non-hyperpolarized high-field 1H NMR control measurements were also undertaken to confirm
that the observed time-dependent changes relate directly to the underlying
chemical evolution. The formation of [Ir(H)2(IMes)(substrate)3]Cl is further linked to the hydrogen isotope exchange (HIE)
reaction, which leads to the incorporation of deuterium into the ortho positions of 4-AP, where the source of
deuterium is the solvent, methanol-d4.
Comparable reaction monitoring results are achieved at both high-field
(9.4 T) and low-field (1 T). It is notable that the low sensitivity
of the benchtop (1 T) NMR enables the use of protio solvents, which when used here allows the effects of catalyst formation
and substrate deuteration to be separated. Collectively, these methods illustrate how low-cost low-field NMR
measurements provide unique insight into a complex catalytic process
through a combination of hyperpolarization and relaxation data.
Collapse
Affiliation(s)
- Olga Semenova
- Centre for Hyperpolarisation in Magnetic Resonance, Chemistry , The University of York , York YO10 5NY , U.K
| | - Peter M Richardson
- Centre for Hyperpolarisation in Magnetic Resonance, Chemistry , The University of York , York YO10 5NY , U.K
| | - Andrew J Parrott
- WestCHEM, Department of Pure and Applied Chemistry and CPACT , University of Strathclyde , Glasgow G11XQ , U.K
| | - Alison Nordon
- WestCHEM, Department of Pure and Applied Chemistry and CPACT , University of Strathclyde , Glasgow G11XQ , U.K
| | - Meghan E Halse
- Centre for Hyperpolarisation in Magnetic Resonance, Chemistry , The University of York , York YO10 5NY , U.K
| | - Simon B Duckett
- Centre for Hyperpolarisation in Magnetic Resonance, Chemistry , The University of York , York YO10 5NY , U.K
| |
Collapse
|