1
|
Kamatsos F, Drosou M, Zarkadoulas A, Bethanis K, Mitsopoulou CA. Enhanced Homogeneous Photocatalytic Hydrogen Evolution in a Binuclear Bio-Inspired Ni-Ni Complex Bearing Phenanthroline and Sulfidophenolate Ligands. Chemistry 2025:e202404396. [PMID: 39868769 DOI: 10.1002/chem.202404396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 01/28/2025]
Abstract
The prominence of binuclear, bimetallic catalysts underlines the need for the design and development of diverse bifunctional ligand frameworks that exhibit tunable electronic and structural properties. Such strategies enable metal-metal and ligand-metal cooperation towards catalytic applications, improve catalytic activity, and are essential for advancing multi-electron transfers for catalytic application. In this work we present the synthesis, crystal structure, and photocatalytic properties of a binuclear Ni(II) complex, [Ni2(1,10-phenanthroline)2(2-sulfidophenolate)2] (1). Complex 1 crystallizes in the centrosymmetric triclinic system (P-1) showing extensive intra- and inter- non-coordinated interactions. 1 is employed as a catalyst for light driven hydrogen evolution. Its catalytic efficiency in a noble-metal-free photo-driven system using fluorescein as photosensitizer and triethanolamine as the electron donor, reaches TON 2900, threefold the efficiency of the corresponding homoleptic mononuclear complex [Ni(2-sulfidophenolate)2]. Efficiency rises up to 9000 TONs when thioglycolic-coated CdTe quantum dots are used as photosensitizers in the presence of ascorbic acid at pH 4.5. UV-Vis spectroscopy, dynamic light scattering techniques, and Hg-poisoning measurements reveal that 1 maintains its molecular structure during catalysis. Electrochemical studies in DMF with TFA as the proton source were also performed for the elucidation of the mechanism of its catalytic action and its stability, suggesting that the proximity of two nickel ions plays a part in the increased catalytic activity, facilitating hydrogen evolution.
Collapse
Affiliation(s)
- Fotios Kamatsos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou 15771, Athens, Greece
| | - Maria Drosou
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou 15771, Athens, Greece
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz1, 45470, Mülheiman der Ruhr, Germany
| | - Athanasios Zarkadoulas
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou 15771, Athens, Greece
| | - Kostas Bethanis
- Physics Laboratory, Department of Biotechnology, Agricultural University of Athens, 11855, Athens, Greece
| | - Christiana A Mitsopoulou
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou 15771, Athens, Greece
| |
Collapse
|
2
|
Thokala N, DMello ME, Valle K, Vankayala K, Kalidindi SB. Advancements in porous framework materials for chemiresistive hydrogen sensing: exploring MOFs and COFs. Dalton Trans 2025. [PMID: 39846971 DOI: 10.1039/d4dt02551b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Hydrogen is a zero-emissive fuel and has immense potential to replace carbon-emitting fuels in the future. The development of efficient H2 sensors is essential for preventing hazardous situations and facilitating the widespread usage of hydrogen. Chemiresistors are popular gas sensors owing to their attractive properties such as fast response, miniaturization, simple integration with electronics and low cost. Traditionally, semiconducting metal oxides (SMOs) and Pd-based materials have been widely investigated for chemiresistive H2 sensing applications. However, issues such as limited selectivity and poor reliability still hinder their use in real-time applications. Recent advancements have explored metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), offering new perspectives and potential applications in this field. MOFs and COFs belong to the crystalline framework (CF) family of materials and are highly porous, designable materials with tunable pore surfaces featuring sites for H2 interactions. They exhibit good selectivity towards H2 with quick response/recovery times at relatively low temperatures compared to SMOs. Furthermore, they provide an additional advantage of sensing H2 in the absence of oxygen, even at high concentrations of H2. In this perspective article, we summarize recent advancements and challenges in the development of H2 sensors employing MOFs, COFs, and their hybrid composites as sensing elements. Additionally, we discuss our perspective on hybridizing MOFs/COFs with SMOs and other nanomaterials for the future development of advanced H2 sensors.
Collapse
Affiliation(s)
- Nany Thokala
- Department of Chemistry, Andhra University, Visakhapatnam, 530003, India
| | | | - Krishnaveni Valle
- Department of Chemistry, Andhra University, Visakhapatnam, 530003, India
| | - Kiran Vankayala
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani, K. K. Birla Goa campus, Goa, 403726, India
| | - Suresh Babu Kalidindi
- Department of Chemistry, Central Tribal University of Andhra Pradesh (CTUAP), Andhra Pradesh, 535003, India.
| |
Collapse
|
3
|
Akin M, Kars H, Bekmezci M, Aygun A, Gul M, Kaya G, Sen F. Synthesis of MOF-supported Pt catalyst with high electrochemical oxidation activity for methanol oxidation. RSC Adv 2024; 14:36370-36377. [PMID: 39539537 PMCID: PMC11559627 DOI: 10.1039/d4ra06393g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Fuel cells, one of the clean energy sources, is quite remarkable for energy production. In this context, catalysts are needed for the electrochemical reactions of DMFCs (direct methanol fuel cells) to work efficiently. In this study, Pt and Pt@Ti-MOF (Pt@MIL-125) NPs (nanoparticles) catalysts were synthesized by chemical synthesis. The Ti-MOF (MIL-125) structure was synthesized using the solvothermal method, and the effect of Ti-MOF on methanol oxidation was investigated. The results showed that Pt@Ti-MOF NPs provided 9.45 times more electrocatalytic activity for methanol oxidation compared to Pt NPs. In addition, Ti-MOF doping was shown to increase the stability and durability by long-term tests. The study provides important results on how MOF-supported structures behave electrochemically. The results show that Ti-MOF provides very high potential in MOR applications and is promising for use as an anode catalyst in DMFC systems.
Collapse
Affiliation(s)
- Merve Akin
- Sen Research Group, Department of Biochemistry, Dumlupinar University Kutahya Turkey
- Department of Materials Science & Engineering, Faculty of Engineering, Dumlupinar University Kutahya Turkey
| | - Hatice Kars
- Sen Research Group, Department of Biochemistry, Dumlupinar University Kutahya Turkey
| | - Muhammed Bekmezci
- Sen Research Group, Department of Biochemistry, Dumlupinar University Kutahya Turkey
- Department of Materials Science & Engineering, Faculty of Engineering, Dumlupinar University Kutahya Turkey
| | - Aysenur Aygun
- Sen Research Group, Department of Biochemistry, Dumlupinar University Kutahya Turkey
| | - Mert Gul
- Sen Research Group, Department of Biochemistry, Dumlupinar University Kutahya Turkey
| | - Guray Kaya
- Department of Materials Science & Engineering, Faculty of Engineering, Dumlupinar University Kutahya Turkey
| | - Fatih Sen
- Sen Research Group, Department of Biochemistry, Dumlupinar University Kutahya Turkey
| |
Collapse
|
4
|
Vinu M, Chiang KY. Highly efficient oxygen carrier NiFeP (oxy) hydroxides nanoparticle embedded in N-doped porous carbon derived from bio-waste for bifunctional electrocatalysts. CHEMOSPHERE 2024; 366:143486. [PMID: 39401673 DOI: 10.1016/j.chemosphere.2024.143486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024]
Abstract
Developing cost-effective, readily available materials for efficient hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in water splitting is a crucial step toward enhancing the profitability and sustainability of energy conversion systems. This research introduces a novel synthesis method for NiFeP/NPC OHs from banana peel bio-waste, a method that could revolutionize the field of materials science and electrochemistry. The use of metallic phosphides, known for their excellent electrical conductivity and catalytic activity, as bifunctional catalysts, combined with the efficient synthesis of nanoporous carbons (NPC) from banana peel bio-waste (BPW), could pave the way for a new era of sustainable and cost-effective energy conversion. By chemically activating different porogens, such as nickel, iron, and phosphorus (NiFeP), to form (oxy) hydroxides (OHs), functional carbonaceous structures with a high density of pores and large specific surface areas can be achieved. The resulting materials, designated as NiFeP/NPC OHs, are characterized by their remarkable porosity, high conductivity, large surface area, and chemical stability. These properties make NiFeP/NPC OHs particularly suitable for electrocatalysis, where they exhibit outstanding activity in both HER and OER. The optimized NiFeP/NPC OHs material shows a very low overpotential of 93 mV for HER and 243 mV for OER at 10 mA cm⁻2 and high durability over 100 h. Moreover, the bifunctional NiFeP/NPC OHs electrode demonstrates exceptional catalytic activity and stability in alkaline solutions. This study not only highlights the innovative synthesis of NPC from BPW and the cost-effective fabrication of NiFeP/NPC OHs but also sparks curiosity about the potential of this novel synthesis method.
Collapse
Affiliation(s)
- Madhan Vinu
- Graduate Institute of Environmental Engineering, National Central University, Taiwan No. 300, Chung-Da Road., Chung-Li District, Tao-Yuan City 32001, Taiwan
| | - Kung-Yuh Chiang
- Graduate Institute of Environmental Engineering, National Central University, Taiwan No. 300, Chung-Da Road., Chung-Li District, Tao-Yuan City 32001, Taiwan.
| |
Collapse
|
5
|
Das K, Beyene BB, Massera C, Garribba E, El Fallah MS, Frontera A, Hung CH, Datta A. Magnetic study and DFT analysis of a doubly carboxylato-bridged Co(II) derivative anchored with a 'scorpionate' precursor as a potential electrocatalyst for heterogeneous H 2 evolution. Dalton Trans 2024; 53:9358-9368. [PMID: 38757183 DOI: 10.1039/d4dt00807c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
A new doubly carboxylato-bridged Co(II) dinuclear complex, [Co(bdtbpza)(NCS)]2 (1), was obtained in a satisfactory yield by employing a 'scorpionate'-type precursor, bdtbpza {bis-(3,5-di-tert-butylpyrazol-1-yl)acetate}, and was then structurally characterized. Single-crystal X-ray diffraction analysis revealed that, in 1, each Co(II) is penta-coordinated, leading to a distorted trigonal-bipyramidal geometry within the coordination environment of N3O2. Weak antiferromagnetic coupling within the Co(II) ions in 1 was found based on the isotropic spin Hamiltonian H = -J(S1·S2) for the Si = 3/2 system. For evaluating the spin density distribution and the mechanism for the magnetic exchange coupling, DFT analysis was performed, with the calculated result agreeing the experimental magnetic data. A study into electrochemical H2 evolution, involving cyclic voltammetry (CV), controlled potential electrolysis (CPE), and gas chromatographic (GC) analyses of the graphite electrode modified with the cobalt complex in a neutral aqueous solution revealed the high catalytic activity of the complex with a low overpotential toward H2O reduction. The faradaic efficiency of the catalyst was found to be 83.7% and the di-cobalt catalyst-modified electrode displayed quite an interesting H2-evolution activity compared with that of bare electrodes. These results are encouraging for the future potential application of 1 in water splitting.
Collapse
Affiliation(s)
- Kuheli Das
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata - 700009, India
- Institute of Chemistry, Academia Sinica, Nankang - 115, Taipei, Taiwan.
| | - Belete B Beyene
- Department of Chemistry, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia
- Institute of Chemistry, Academia Sinica, Nankang - 115, Taipei, Taiwan.
| | - Chiara Massera
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Viale delle Scienze 17/A, 43124 Parma, Italy
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy
| | - M S El Fallah
- Departament de Química Inorgànica i Orgànica, Secció Inorgànica and Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Martí i Franquès, 1-11, 08028-Barcelona, Spain
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | - Chen-Hsiung Hung
- Institute of Chemistry, Academia Sinica, Nankang - 115, Taipei, Taiwan.
| | - Amitabha Datta
- Institute of Chemistry, Academia Sinica, Nankang - 115, Taipei, Taiwan.
- Department of Chemistry, National Changhua University of Education, Changhua - 50058, Taiwan
| |
Collapse
|
6
|
Jain R, Panwar NL, Chitranjan Agarwal, Guta T. A comprehensive review on unleashing the power of hydrogen: revolutionizing energy systems for a sustainable future. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33541-1. [PMID: 38703313 DOI: 10.1007/s11356-024-33541-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Population growth and environmental degradation are major concerns for sustainable development worldwide. Hydrogen is a clean and eco-friendly alternative to fossil fuels, with a heating value almost three times higher than other fossil fuels. It also has a clean production process, which helps to reduce the emission of hazardous pollutants and save the environment. Among the various production methodologies described in this review, biochemical production of hydrogen is considered more suitable as it uses waste organic matter instead of fossil fuels. This technology not only produces clean energy but also helps to manage waste more efficiently. However, the production of hydrogen obtained from this method is currently more expensive due to its early stage of development. Nevertheless, various research projects are underway to develop this method on a commercial scale.
Collapse
Affiliation(s)
- Rupal Jain
- Department of Renewable Energy Engineering, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, 313001, India
| | - Narayan Lal Panwar
- Department of Renewable Energy Engineering, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, 313001, India.
| | - Chitranjan Agarwal
- Department of Mechanical Engineering, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, 313001, India
| | - Trilok Guta
- Department of Civil Engineering, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, 313001, India
| |
Collapse
|
7
|
Singh C, Meyerstein D, Shamish Z, Shamir D, Burg A. Unique activity of a Keggin POM for efficient heterogeneous electrocatalytic OER. iScience 2024; 27:109551. [PMID: 38595799 PMCID: PMC11001645 DOI: 10.1016/j.isci.2024.109551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/10/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
Polyoxometalates (POMs) have been well studied and explored in electro/photochemical water oxidation catalysis for over a decade. The high solubility of POMs in water has limited its use in homogeneous conditions. Over the last decade, different approaches have been used for the heterogenization of POMs to exploit their catalytic properties. This study focused on a Keggin POM, K6[CoW12O40], which was entrapped in a sol-gel matrix for heterogeneous electrochemical water oxidation. Its entrapment in the sol-gel matrix enables it to catalyze the oxygen evolution reaction at acidic pH, pH 2.0. Heterogenization of POMs using the sol-gel method aids in POM's recyclability and structural stability under electrochemical conditions. The prepared sol-gel electrode is robust and stable. It achieved electrochemical water oxidation at a current density of 2 mA/cm2 at a low overpotential of 300 mV with a high turnover frequency (TOF) of 1.76 [mol O2 (mol Co)-1s-1]. A plausible mechanism of the electrocatalytic process is presented.
Collapse
Affiliation(s)
- Chandani Singh
- Department of Chemical Engineering, Sami Shamoon College of Engineering, Beer-Sheva, Israel
- Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dan Meyerstein
- Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Chemical Sciences Department, Ariel University, Ariel, Israel
| | - Zorik Shamish
- Analytical Chemistry Department, Nuclear Research Center Negev, Beer-Sheva, Israel
| | - Dror Shamir
- Analytical Chemistry Department, Nuclear Research Center Negev, Beer-Sheva, Israel
| | - Ariela Burg
- Department of Chemical Engineering, Sami Shamoon College of Engineering, Beer-Sheva, Israel
| |
Collapse
|
8
|
Xiao JD, Li R, Jiang HL. Metal-Organic Framework-Based Photocatalysis for Solar Fuel Production. SMALL METHODS 2023; 7:e2201258. [PMID: 36456462 DOI: 10.1002/smtd.202201258] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs) represent a novel class of crystalline inorganic-organic hybrid materials with tunable semiconducting behavior. MOFs have potential for application in photocatalysis to produce sustainable solar fuels, owing to their unique structural advantages (such as clarity and modifiability) that can facilitate a deeper understanding of the structure-activity relationship in photocatalysis. This review takes the photocatalytic active sites as a particular perspective, summarizing the progress of MOF-based photocatalysis for solar fuel production; mainly including three categories of solar-chemical conversions, photocatalytic water splitting to hydrogen fuel, photocatalytic carbon dioxide reduction to hydrocarbon fuels, and photocatalytic nitrogen fixation to high-energy fuel carriers such as ammonia. This review focuses on the types of active sites in MOF-based photocatalysts and discusses their enhanced activity based on the well-defined structure of MOFs, offering deep insights into MOF-based photocatalysis.
Collapse
Affiliation(s)
- Juan-Ding Xiao
- Institutes of Physical Science and Information Technology, Anhui Graphene Materials Research Center, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Rui Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hai-Long Jiang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
9
|
Krishnaveni V, DMello ME, Basavaiah K, Samsonu D, Rambhia DA, Kalidindi SB. Hybridization of Palladium Nanoparticles with Aromatic‐rich SU‐101 Metal‐Organic Framework for Effective Transfer Hydrogenation. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | | | | | - Suresh Babu Kalidindi
- Andhra University Department of Inorganic and Analytical Chemistry 530003 VISAKHAPATNAM INDIA
| |
Collapse
|
10
|
Augustin A, Chuaicham C, Shanmugam M, Vellaichamy B, Rajendran S, Hoang TKA, Sasaki K, Sekar K. Recent development of organic-inorganic hybrid photocatalysts for biomass conversion into hydrogen production. NANOSCALE ADVANCES 2022; 4:2561-2582. [PMID: 36132286 PMCID: PMC9417503 DOI: 10.1039/d2na00119e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Over the last few years, photocatalysis using solar radiation has been explored extensively to investigate the possibilities of producing fuels. The production and systematic usage of solar fuels can reduce the use of fossil-based fuels, which are currently the primary source for the energy. It is time for us to exploit renewable sources for our energy needs to progress towards a low-carbon society. This can be achieved by utilizing green hydrogen as the future energy source. Solar light-assisted hydrogen evolution through photocatalytic water splitting is one of the most advanced approaches, but it is a non-spontaneous chemical process and restricted by a kinetically demanding oxidation evolution reaction. Sunlight is one of the essential sources for the photoreforming (PR) of biomass waste into solar fuels, or/and lucrative fine chemicals. Hydrogen production through photoreforming of biomass can be considered energy neutral as it requires only low energy to overcome the activation barrier and an alternate method for the water splitting reaction. Towards the perspective of sustainability and zero emission norms, hydrogen production from biomass-derived feedstocks is an affordable and efficient process. Widely used photocatalyst materials, such as metal oxides, sulphides and polymeric semiconductors, still possess challenges in terms of their performance and stability. Recently, a new class of materials has emerged as organic-inorganic hybrid (OIH) photocatalysts, which have the benefits of both components, with peculiar properties and outstanding energy conversion capability. This work examines the most recent progress in the photoreforming of biomass and its derivatives using OIHs as excellent catalysts for hydrogen evolution. The fundamental aspects of the PR mechanism and different methods of hydrogen production from biomass are discussed. Additionally, an interaction between both composite materials at the atomic level has been discussed in detail in the recent literature. Finally, the opportunities and future perspective for the synthesis and development of OIH catalysts are discussed briefly with regards to biomass photo-reforming.
Collapse
Affiliation(s)
- Ashil Augustin
- Sustainable Energy and Environmental Research Laboratory, Department of Chemistry, SRM Institute of Science and Technology Kattankulathur Tamil Nadu 603203 India
| | - Chitiphon Chuaicham
- Department of Earth Resources Engineering, Kyushu University Fukuoka 819-0395 Japan
| | - Mariyappan Shanmugam
- Sustainable Energy and Environmental Research Laboratory, Department of Chemistry, SRM Institute of Science and Technology Kattankulathur Tamil Nadu 603203 India
| | | | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá Avda. General Velásquez 1775 Arica Chile
| | - Tuan K A Hoang
- Institut de Recherche d'Hydro-Québec 1806, boul. Lionel-Boulet Varennes Québec J3X 1S1 Canada
| | - Keiko Sasaki
- Department of Earth Resources Engineering, Kyushu University Fukuoka 819-0395 Japan
| | - Karthikeyan Sekar
- Sustainable Energy and Environmental Research Laboratory, Department of Chemistry, SRM Institute of Science and Technology Kattankulathur Tamil Nadu 603203 India
| |
Collapse
|
11
|
He Y, Tan Y, Song M, Tu Q, Fu M, Long L, Wu J, Xu M, Liu X. Switching on photocatalytic NO oxidation and proton reduction of NH 2-MIL-125(Ti) by convenient linker defect engineering. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128468. [PMID: 35180523 DOI: 10.1016/j.jhazmat.2022.128468] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Photocatalysis technology has been widely adopted to abate typical air pollutants. Nevertheless, developing photocatalysts aimed at improving photocatalytic efficiency is a challenge. Herein, the linker-defect NH2-MIL-125(Ti) photocatalyst was synthesized through a convenient one-step heating-stirring method (just adjusting multiple temperatures) to firstly realize efficient photocatalytic performances of NO removal and hydrogen evolution. The optimal sample (named 65-NMIL) with a linker-defect content of 32.08% exhibited a NO removal ratio of 65.49%, which was 37.57% higher than that of pristine NH2-MIL-125(Ti), and displayed better H2-production activity. Through ESR, it was confirmed that 65-NMIL can generate more •O2- and •OH under visible light, and the radical trapping experiment further proved that •O2- played a more important role in photocatalytic activity. Moreover, the photocatalytic NO oxidation process was also monitored by in situ DRIFTS, it was found that the defective samples could promote the oxidation of NO and intermediates to the final product (NO3-). On the basis of the above-mentioned photocatalytic experimental results and characterization, a possible mechanism or pathway was proposed and illustrated. This work can provide a new strategy for the subsequent defect engineering for photocatalytic MOFs materials to further solve environmental and energy crises.
Collapse
Affiliation(s)
- Youzhou He
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yuwei Tan
- School of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou 635000, Sichuan, China.
| | - Mengyu Song
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Qingli Tu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Min Fu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Liangjun Long
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Jie Wu
- National-local Joint Engineering Laboratory for Road Engineering and Disaster Prevention and Mitigation Technology in Mountainous Areas, China Merchants Chongqing Communications Technology Research & Design Institute CO., LTD., Chongqing 400067, China.
| | - Mengmeng Xu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xingyan Liu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| |
Collapse
|
12
|
Synthesis, Structural Characterization, and Biological Activities of Organically Templated Cobalt Phosphite (H2DAB)[Co(H2PO3)4]·2H2O. SCI 2022. [DOI: 10.3390/sci4010005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A novel hybrid cobalt phosphite, (H2DAB)[Co(H2PO3)4] 2H2O, was synthesized by using a slow evaporation method in the presence of cobalt nitrate, phosphorous acid, and 1,4-diaminobutane (DAB = 1,4-diaminobutane) as a structure-directing agent. Single-crystal X-ray diffraction analysis showed that the compound crystallizes in the triclinic system (space group P-1(n.2)) with the following unit cell parameters (Å, °) a = 5.4814 (3), b = 7.5515 (4), c = 10.8548 (6), α = 88.001 (4), β = 88.707 (5), γ = 85.126 (5), and V = 447.33 (4) Å3. The crystal structure is built up from corner-sharing [CoO6] octahedra, forming chains parallel to [001], which are interconnected by H2PO3− pseudo-tetrahedral units. The diprotonated cations, residing between the parallel chains, interact with the inorganic moiety via hydrogen bonds, thus leading to the formation of the 3D crystal structure. The Fourier transform infrared spectrum showed characteristic bands corresponding to the phosphite group and the organic amine. The thermal behavior of the compound mainly consisted of the loss of its organic moiety and the water molecules. The biological tests exhibited significant activity against Candida albicans and Escherichia coli strains at different concentrations, while less inhibitory activity was pronounced against Staphylococcus epidermidis and Saccharomyces cerevisiae, and in the case of multi-cellular organisms, no activity against the nematode model Steinernema feltiae was detected.
Collapse
|
13
|
Fantuzzi F, Nascimento MAC, Ginovska B, Bullock RM, Raugei S. Splitting of multiple hydrogen molecules by bioinspired diniobium metal complexes: a DFT study. Dalton Trans 2021; 50:840-849. [PMID: 33237062 DOI: 10.1039/d0dt03411h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Splitting of molecular hydrogen (H2) into bridging and terminal hydrides is a common step in transition metal chemistry. Herein, we propose a novel organometallic platform for cleavage of multiple H2 molecules, which combines metal centers capable of stabilizing multiple oxidation states, and ligands bearing positioned pendant basic groups. Using quantum chemical modeling, we show that low-valent, early transition metal diniobium(ii) complexes with diphosphine ligands featuring pendant amines can favorably uptake up to 8 hydrogen atoms, and that the energetics are favored by the formation of intramolecular dihydrogen bonds. This result suggests new possible strategies for the development of hydrogen scavenger molecules that are able to perform reversible splitting of multiple H2 molecules.
Collapse
Affiliation(s)
- Felipe Fantuzzi
- Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, 21941.909, Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
14
|
Javed MS, Aslam MK, Asim S, Batool S, Idrees M, Hussain S, Shah SSA, Saleem M, Mai W, Hu C. High-performance flexible hybrid-supercapacitor enabled by pairing binder-free ultrathin Ni–Co–O nanosheets and metal-organic framework derived N-doped carbon nanosheets. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136384] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Medisetty VM, Kumar R, Ahmadi MH, Vo DVN, Ochoa AAV, Solanki R. Overview on the Current Status of Hydrogen Energy Research and Development in India. Chem Eng Technol 2020. [DOI: 10.1002/ceat.201900496] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
| | - Ravinder Kumar
- Lovely Professional UniversityDepartment of Mechanical Engineering 144411 Phagwara Punjab India
| | | | - Dai-Viet N. Vo
- Nguyen Tat Thanh UniversityCenter of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN) 300A Nguyen Tat Thanh, District 4 755414 Ho Chi Minh City Vietnam
| | - A. A. V. Ochoa
- Federal Institute of Technology PernambucoFaculty of Mechanical Engineering Av. Prof Luiz Freire, 500 50740-540 Recife Brazil
| | - Rajniesh Solanki
- Deenbandhu Chhotu Ram University of Science and TechnologyFaculty of Mechanical Engineering 131039 Murthal Haryana India
| |
Collapse
|
16
|
Zheng F, Zhang Z, Zhang C, Chen W. Advanced Electrocatalysts Based on Metal-Organic Frameworks. ACS OMEGA 2020; 5:2495-2502. [PMID: 32095674 PMCID: PMC7033666 DOI: 10.1021/acsomega.9b03295] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/16/2019] [Indexed: 05/13/2023]
Abstract
In recent years, metal-organic frameworks (MOFs) have been wildly studied as heterogeneous catalysts due to their diversity of structures and outstanding physical and chemical properties. Meanwhile, MOFs have also been regarded as promising templates for the synthesis of conductive and electrochemically active catalysts. However, in most of the studies, high-temperature annealing is needed to transform nonconductive or low-conductive MOFs to conductive materials for electrocatalyis, during which the unique structures and intrinsic active sites in MOFs can be easily destroyed. Therefore, in recent years, different strategies have been developed for improving the catalytic performances of MOF-based composites for electrochemical reactions with no need of post-treatment. This mini-review highlights the recent advances on MOF-based structures with improved conductivities and electrochemical activities for the application in electrocatalysis. Overall, the advanced MOF-based electrocatalysts include the highly conductive and electrochemically active pristine MOFs, MOFs combined with conductive substrates, and MOFs hybridized with active materials. Finally, we propose the direction for future works on MOF-based electrocatalysts.
Collapse
Affiliation(s)
- Fuqin Zheng
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- University
of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ziwei Zhang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- University
of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Chunmei Zhang
- Institute
of Materials Science and Devices, Suzhou
University of Science and Technology, Kerui Road, Suzhou 215009, PR China
| | - Wei Chen
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- University
of Science and Technology of China, Hefei, Anhui 230026, PR China
- E-mail:
| |
Collapse
|
17
|
Bakuru VR, Samanta D, Maji TK, Kalidindi SB. Transfer hydrogenation of alkynes into alkenes by ammonia borane over Pd-MOF catalysts. Dalton Trans 2020; 49:5024-5028. [DOI: 10.1039/d0dt00472c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ammonia borane with both hydridic and protic hydrogens in its structure acted as an efficient transfer hydrogenation agent for selective transformation of alkynes into alkenes in non-protic solvents.
Collapse
Affiliation(s)
- Vasudeva Rao Bakuru
- Materials Science Division
- Poornaprajna Institute of Scientific Research
- Bangalore Rural-562164
- India
- Manipal Academy of Higher Education
| | - Debabrata Samanta
- Chemistry and Physics of Materials Unit
- School of Advanced Materials (SAMat)
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR)
- Bangalore-560064
- India
| | - Tapas Kumar Maji
- Chemistry and Physics of Materials Unit
- School of Advanced Materials (SAMat)
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR)
- Bangalore-560064
- India
| | - Suresh Babu Kalidindi
- Materials Science Division
- Poornaprajna Institute of Scientific Research
- Bangalore Rural-562164
- India
| |
Collapse
|
18
|
Gugin NY, Virovets A, Peresypkina E, Davydova EI, Timoshkin AY. Structural variety of aluminium and gallium coordination polymers based on bis-pyridylethylene: from molecular complexes to ionic networks. CrystEngComm 2020. [DOI: 10.1039/d0ce00541j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diverse molecular (0D and 1D) as well as ionic (0D, 1D, 2D, mixed 1D–2D) crystal structures of complexes of aluminium and gallium trihalides with bis(4-pyridylethylene) were obtained by solvent-free melt reactions.
Collapse
Affiliation(s)
- Nikita Y. Gugin
- Institute of Chemistry
- Saint Petersburg State University
- 199034 St. Petersburg
- Russia
| | | | | | - Elena I. Davydova
- Institute of Chemistry
- Saint Petersburg State University
- 199034 St. Petersburg
- Russia
| | - Alexey Y. Timoshkin
- Institute of Chemistry
- Saint Petersburg State University
- 199034 St. Petersburg
- Russia
| |
Collapse
|
19
|
Drosou M, Kamatsos F, Mitsopoulou CA. Recent advances in the mechanisms of the hydrogen evolution reaction by non-innocent sulfur-coordinating metal complexes. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01113g] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review comments on the homogeneous HER mechanisms for catalysts carrying S-non-innocent ligands in the light of experimental and computational data.
Collapse
Affiliation(s)
- Maria Drosou
- Inorganic Chemistry Laboratory
- Department of Chemistry
- National and Kapodistrian University of Athens
- Panepistimiopolis
- Greece
| | - Fotios Kamatsos
- Inorganic Chemistry Laboratory
- Department of Chemistry
- National and Kapodistrian University of Athens
- Panepistimiopolis
- Greece
| | - Christiana A. Mitsopoulou
- Inorganic Chemistry Laboratory
- Department of Chemistry
- National and Kapodistrian University of Athens
- Panepistimiopolis
- Greece
| |
Collapse
|
20
|
Abdelhamid HN. UiO-66 as a catalyst for hydrogen production via the hydrolysis of sodium borohydride. Dalton Trans 2020; 49:10851-10857. [DOI: 10.1039/d0dt01688h] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The exploration of a highly efficient catalyst for the hydrolysis of sodium borohydride (NaBH4) is a valuable step toward a hydrogen economy.
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory
- Department of Chemistry
- Assiut University
- Assiut
- Egypt
| |
Collapse
|
21
|
Huo J, Zhang YB, Zou WY, Hu X, Deng Q, Chen D. Mini-review on an engineering approach towards the selection of transition metal complex-based catalysts for photocatalytic H2 production. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02581a] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Advances in transition-metal (Ru, Co, Cu, and Fe) complex-based catalysts since 2000 are briefly summarized in terms of catalyst selection and application for photocatalytic H2 evolution.
Collapse
Affiliation(s)
- Jingpei Huo
- Electrochemical Corrosion Institute
- College of Materials Science and Energy Engineering
- Foshan University
- Foshan
- P. R. China
| | - Yu-Bang Zhang
- Electrochemical Corrosion Institute
- College of Materials Science and Energy Engineering
- Foshan University
- Foshan
- P. R. China
| | - Wan-Ying Zou
- Electrochemical Corrosion Institute
- College of Materials Science and Energy Engineering
- Foshan University
- Foshan
- P. R. China
| | - Xiaohong Hu
- Electrochemical Corrosion Institute
- College of Materials Science and Energy Engineering
- Foshan University
- Foshan
- P. R. China
| | - Qianjun Deng
- Electrochemical Corrosion Institute
- College of Materials Science and Energy Engineering
- Foshan University
- Foshan
- P. R. China
| | - Dongchu Chen
- Electrochemical Corrosion Institute
- College of Materials Science and Energy Engineering
- Foshan University
- Foshan
- P. R. China
| |
Collapse
|