1
|
Gates EL, Bradley JP, Berry DBG, Nilsson M, Morris GA, Adams RW, Castañar L. Solvent Suppression in Pure Shift NMR. Anal Chem 2024; 96:3879-3885. [PMID: 38380610 PMCID: PMC10918619 DOI: 10.1021/acs.analchem.3c05379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
Intense solvent signals in 1H solution-state NMR experiments typically cause severe distortion of spectra and mask nearby solute signals. It is often infeasible or undesirable to replace a solvent with its perdeuterated form, for example, when analyzing formulations in situ, when exchangeable protons are present, or for practical reasons. Solvent signal suppression techniques are therefore required. WATERGATE methods are well-known to provide good solvent suppression while enabling retention of signals undergoing chemical exchange with the solvent signal. Spectra of mixtures, such as pharmaceutical formulations, are often complicated by signal overlap, high dynamic range, the narrow spectral width of 1H NMR, and signal multiplicity. Here, we show that by combining WATERGATE solvent suppression with pure shift NMR, ultrahigh-resolution 1H NMR spectra can be acquired while suppressing intense solvent signals and retaining exchangeable 1H signals. The new method is demonstrated in the analysis of cyanocobalamin, a vitamin B12 supplement, and of an eye-drop formulation of atropine.
Collapse
Affiliation(s)
- Emma L. Gates
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Jonathan P. Bradley
- Johnson
Matthey Technology Centre, Blounts Court Road, Sonning
Common RG4 9NH, U.K.
| | - Daniel B. G. Berry
- Johnson
Matthey Technology Centre, Blounts Court Road, Sonning
Common RG4 9NH, U.K.
| | - Mathias Nilsson
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Gareth A. Morris
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Ralph W. Adams
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Laura Castañar
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Department
of Organic Chemistry, Faculty of Chemical Science, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
2
|
Migues I, Rivas F, Moyna G, Kelly SD, Heinzen H. Predicting Mandarin Fruit Acceptability: From High-Field to Benchtop NMR Spectroscopy. Foods 2022; 11:foods11162384. [PMID: 36010384 PMCID: PMC9407331 DOI: 10.3390/foods11162384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
Recent advances in nuclear magnetic resonance (NMR) have led to the development of low-field benchtop NMR systems with improved sensitivity and resolution suitable for use in research and quality-control laboratories. Compared to their high-resolution counterparts, their lower purchase and running costs make them a good alternative for routine use. In this article, we show the adaptation of a method for predicting the consumer acceptability of mandarins, originally reported using a high-field 400 MHz NMR spectrometer, to benchtop 60 MHz NMR systems. Our findings reveal that both instruments yield comparable results regarding sugar and citric acid levels, leading to the development of virtually identical predictive linear models. However, the lower cost of benchtop NMR systems would allow cultivators to implement this chemometric-based method as an additional tool for the selection of new cultivars.
Collapse
Affiliation(s)
- Ignacio Migues
- Laboratorio de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay
- Programa de Posgrados de la Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay
| | - Fernando Rivas
- Programa Nacional de Investigación en Producción Citrícola, Instituto Nacional de Investigación Agropecuaria (INIA), Salto 50000, Uruguay
| | - Guillermo Moyna
- Laboratorio de Espectroscopía y Fisicoquímica Orgánica, Departamento de Química del Litoral, CENUR Litoral Norte, Universidad de la República, Paysandú 60000, Uruguay
| | - Simon D. Kelly
- Food Safety Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, 1400 Vienna, Austria
| | - Horacio Heinzen
- Laboratorio de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay
- Correspondence: ; Tel.: +598-2924-4068
| |
Collapse
|
3
|
Bertho G, Lordello L, Chen X, Lucas-Torres C, Oumezziane IE, Caradeuc C, Baudin M, Nuan-Aliman S, Thieblemont C, Baud V, Giraud N. Ultrahigh-Resolution NMR with Water Signal Suppression for a Deeper Understanding of the Action of Antimetabolic Drugs on Diffuse Large B-Cell Lymphoma. J Proteome Res 2022; 21:1041-1051. [PMID: 35119866 DOI: 10.1021/acs.jproteome.1c00914] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ultrahigh-resolution NMR has recently attracted considerable attention in the field of complex samples analysis. Indeed, the implementation of broadband homonuclear decoupling techniques has allowed us to greatly simplify crowded 1H spectra, yielding singlets for almost every proton site from the analyzed molecules. Pure shift methods have notably shown to be particularly suitable for deciphering mixtures of metabolites in biological samples. Here, we have successfully implemented a new pure shift pulse sequence based on the PSYCHE method, which incorporates a block for solvent suppression that is suitable for metabolomics analysis. The resulting experiment allows us to record ultrahigh-resolution 1D NOESY 1H spectra of biofluids with suppression of the water signal, which is a crucial step for highlighting metabolite mixtures in an aqueous phase. We have successfully recorded pure shift spectra on extracellular media of diffuse large B-cell lymphoma (DLBCL) cells. Despite a lower sensitivity, the resolution of pure shift data was found to be better than that of the standard approach, which provides a more detailed vision of the exo-metabolome. The statistical analyses carried out on the resulting metabolic profiles allow us to successfully highlight several metabolic pathways affected by these drugs. Notably, we show that Kidrolase plays a major role in the metabolic pathways of this DLBCL cell line.
Collapse
Affiliation(s)
- Gildas Bertho
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université de Paris, CNRS, F-75006 Paris, France
| | - Leonardo Lordello
- NF-κB, Différenciation et Cancer, Université de Paris, F-75006 Paris, France
| | - Xi Chen
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université de Paris, CNRS, F-75006 Paris, France
| | - Covadonga Lucas-Torres
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université de Paris, CNRS, F-75006 Paris, France
| | - Imed Eddine Oumezziane
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université de Paris, CNRS, F-75006 Paris, France
| | - Cédric Caradeuc
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université de Paris, CNRS, F-75006 Paris, France
| | - Mathieu Baudin
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université de Paris, CNRS, F-75006 Paris, France.,Laboratoire des Biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | | | - Catherine Thieblemont
- NF-κB, Différenciation et Cancer, Université de Paris, F-75006 Paris, France.,AP-HP, Hôpital Saint-Louis, Service Hémato-Oncologie, F-75010 Paris, France
| | - Véronique Baud
- NF-κB, Différenciation et Cancer, Université de Paris, F-75006 Paris, France
| | - Nicolas Giraud
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université de Paris, CNRS, F-75006 Paris, France
| |
Collapse
|
4
|
Hammer AS, Leonov AI, Bell NL, Cronin L. Chemputation and the Standardization of Chemical Informatics. JACS AU 2021; 1:1572-1587. [PMID: 34723260 PMCID: PMC8549037 DOI: 10.1021/jacsau.1c00303] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Indexed: 05/11/2023]
Abstract
The explosion in the use of machine learning for automated chemical reaction optimization is gathering pace. However, the lack of a standard architecture that connects the concept of chemical transformations universally to software and hardware provides a barrier to using the results of these optimizations and could cause the loss of relevant data and prevent reactions from being reproducible or unexpected findings verifiable or explainable. In this Perspective, we describe how the development of the field of digital chemistry or chemputation, that is the universal code-enabled control of chemical reactions using a standard language and ontology, will remove these barriers allowing users to focus on the chemistry and plug in algorithms according to the problem space to be explored or unit function to be optimized. We describe a standard hardware (the chemical processing programming architecture-the ChemPU) to encompass all chemical synthesis, an approach which unifies all chemistry automation strategies, from solid-phase peptide synthesis, to HTE flow chemistry platforms, while at the same time establishing a publication standard so that researchers can exchange chemical code (χDL) to ensure reproducibility and interoperability. Not only can a vast range of different chemistries be plugged into the hardware, but the ever-expanding developments in software and algorithms can also be accommodated. These technologies, when combined will allow chemistry, or chemputation, to follow computation-that is the running of code across many different types of capable hardware to get the same result every time with a low error rate.
Collapse
|