1
|
Hadki HE, Koziol KJ, Kabbaj OK, Komiha N, Kleiner I, Nguyen HVL. The Microwave Rotational Electric Resonance (RER) Spectrum of Benzothiazole. Molecules 2023; 28:molecules28083419. [PMID: 37110653 PMCID: PMC10146593 DOI: 10.3390/molecules28083419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The microwave spectra of benzothiazole were measured in the frequency range 2-26.5 GHz using a pulsed molecular jet Fourier transform microwave spectrometer. Hyperfine splittings arising from the quadrupole coupling of the 14N nucleus were fully resolved and analyzed simultaneously with the rotational frequencies. In total, 194 and 92 hyperfine components of the main species and the 34S isotopologue, respectively, were measured and fitted to measurement accuracy using a semi-rigid rotor model supplemented by a Hamiltonian accounting for the 14N nuclear quadrupole coupling effect. Highly accurate rotational constants, centrifugal distortion constants, and 14N nuclear quadrupole coupling constants were deduced. A large number of method and basis set combinations were used to optimize the molecular geometry of benzothiazole, and the calculated rotational constants were compared with the experimentally determined constants in the course of a benchmarking effort. The similar value of the χcc quadrupole coupling constant when compared to other thiazole derivatives indicates only very small changes of the electronic environment at the nitrogen nucleus in these compounds. The small negative inertial defect of -0.056 uÅ2 hints that low-frequency out-of-plane vibrations are present in benzothiazole, similar to the observation for some other planar aromatic molecules.
Collapse
Affiliation(s)
- Hamza El Hadki
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water, and Environment, Faculty of Sciences, Mohammed V University, Av Ibn Battouta, Rabat B.P. 1014, Morocco
- Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, 94010 Créteil, France
| | - Kenneth J Koziol
- Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, 94010 Créteil, France
| | - Oum Keltoum Kabbaj
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water, and Environment, Faculty of Sciences, Mohammed V University, Av Ibn Battouta, Rabat B.P. 1014, Morocco
| | - Najia Komiha
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water, and Environment, Faculty of Sciences, Mohammed V University, Av Ibn Battouta, Rabat B.P. 1014, Morocco
| | - Isabelle Kleiner
- Université Paris Cité and Univ Paris Est Creteil, CNRS, LISA, 75013 Paris, France
| | - Ha Vinh Lam Nguyen
- Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, 94010 Créteil, France
- Institut Universitaire de France (IUF), 75231 Paris, France
| |
Collapse
|
2
|
Ka S, Jang H, Peebles SA, Peebles RA, Oh JJ. Microwave spectrum, structure, and dipole moment of 2-fluorophenylacetylene. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
3
|
Baweja S, Antonelli E, Hussain S, Fernández-Ramos A, Kleiner I, Nguyen HVL, Sanz ME. Revealing Internal Rotation and 14N Nuclear Quadrupole Coupling in the Atmospheric Pollutant 4-Methyl-2-nitrophenol: Interplay of Microwave Spectroscopy and Quantum Chemical Calculations. Molecules 2023; 28:molecules28052153. [PMID: 36903397 PMCID: PMC10004196 DOI: 10.3390/molecules28052153] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
The structure and interactions of oxygenated aromatic molecules are of atmospheric interest due to their toxicity and as precursors of aerosols. Here, we present the analysis of 4-methyl-2-nitrophenol (4MNP) using chirped pulse and Fabry-Pérot Fourier transform microwave spectroscopy in combination with quantum chemical calculations. The rotational, centrifugal distortion, and 14N nuclear quadrupole coupling constants of the lowest-energy conformer of 4MNP were determined as well as the barrier to methyl internal rotation. The latter has a value of 106.4456(8) cm-1, significantly larger than those from related molecules with only one hydroxyl or nitro substituent in the same para or meta positions, respectively, as 4MNP. Our results serve as a basis to understand the interactions of 4MNP with atmospheric molecules and the influence of the electronic environment on methyl internal rotation barrier heights.
Collapse
Affiliation(s)
- Shefali Baweja
- Department of Chemistry, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - Eleonore Antonelli
- Université Paris Est Créteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France
| | - Safia Hussain
- Department of Chemistry, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - Antonio Fernández-Ramos
- Departamento de Química Física and Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Jenaro de la Fuente s/n, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Isabelle Kleiner
- Université Paris Cité and Université Paris Est Créteil, CNRS, LISA, F-75013 Paris, France
| | - Ha Vinh Lam Nguyen
- Université Paris Est Créteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France
- Institut Universitaire de France (IUF), 1 rue Descartes, F-75231 Paris, France
- Correspondence: (H.V.L.N.); (M.E.S.)
| | - M. Eugenia Sanz
- Department of Chemistry, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
- Correspondence: (H.V.L.N.); (M.E.S.)
| |
Collapse
|
4
|
Li M, Wang S, Song Y, Chen L. A fluorescent covalent organic framework for visual detection of p-benzoquinone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:122022. [PMID: 36308832 DOI: 10.1016/j.saa.2022.122022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/30/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
P-benzoquinone (PBQ) is toxic and harmful for health. The development of portable sensor to realize the detection of PBQ is of great significance. Herein, a novel covalent organic framework (COFML-TFPB) with intramolecular charge transfer and aggregation induced emission properties was proposed via condensation reaction of melem (ML) and 1,3,5-tris (4-formylphenyl) benzene (TFPB). COFML-TFPB shows strong fluorescence in both solution and solid state and can be used for the fluorescence detection of PBQ. Due to the internal filtration effect and photoinduced electron transfer effect, PBQ can quench the fluorescence of COFML-TFPB. The developed COFML-TFPB fluorescent sensor displayed a wide linear range for PBQ from 0.138 ng mL-1 - 35 μg mL-1, and the detection limit was 0.046 ng mL-1. In addition, fluorescent test paper for rapid and portable detection of PBQ was also developed by depositing COFML-TFPB on filter paper directly. It reduces the cost and time of detection and realizes the semiquantitative detection of PBQ. Moreover, the fluorescence color was converted into digital RGB value to calculate the concentration of PBQ accurately by a smartphone. This method realizes the portable qualitative and semiquantitative determination of PBQ.
Collapse
Affiliation(s)
- Mengyao Li
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine, Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Shiqi Wang
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine, Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Yonghai Song
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine, Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Lili Chen
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine, Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China.
| |
Collapse
|
5
|
Baweja S, Panchagnula S, Sanz ME, Evangelisti L, Pérez C, West C, Pate BH. Competition between In-Plane vs Above-Plane Configurations of Water with Aromatic Molecules: Non-Covalent Interactions in 1,4-Naphthoquinone-(H 2O) 1-3 Complexes. J Phys Chem Lett 2022; 13:9510-9516. [PMID: 36200782 PMCID: PMC9575146 DOI: 10.1021/acs.jpclett.2c02618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Non-covalent interactions between aromatic molecules and water are fundamental in many chemical and biological processes, and their accurate description is essential to understand molecular relative configurations. Here we present the rotational spectroscopy study of the water complexes of the polycyclic aromatic hydrocarbon 1,4-naphthoquinone (1,4-NQ). In 1,4-NQ-(H2O)1,2, water molecules bind through O-H···O and C-H···O hydrogen bonds and are located on the plane of 1,4-NQ. For 1,4-NQ-(H2O)3, in-plane and above-plane water configurations are observed exhibiting O-H···O, C-H···O, and lone pair···π-hole interactions. The observation of different water arrangements for 1,4-NQ-(H2O)3 allows benchmarking theoretical methods and shows that they have great difficulty in predicting energy orderings due to the strong competition of C-H···O binding with π and π-hole interactions. This study provides important insight into water interactions with aromatic systems and the challenges in their modeling.
Collapse
Affiliation(s)
- Shefali Baweja
- Department
of Chemistry, King’s College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Sanjana Panchagnula
- Department
of Chemistry, King’s College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - M. Eugenia Sanz
- Department
of Chemistry, King’s College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Luca Evangelisti
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, United States
| | - Cristóbal Pérez
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, United States
| | - Channing West
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, United States
| | - Brooks H. Pate
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, United States
| |
Collapse
|
6
|
Hernandez-Castillo AO, Calabrese C, Fritz SM, Uriarte I, Cocinero EJ, Zwier TS. Bond Length Alternation and Internal Dynamics in Model Aromatic Substituents of Lignin. Chemphyschem 2022; 23:e202100808. [PMID: 35102679 DOI: 10.1002/cphc.202100808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/20/2021] [Indexed: 11/07/2022]
Abstract
Broadband chirped-pulse microwave spectra were recorded over the 2-18 GHz frequency range for a series of four model aromatic components of lignin; namely, guaiacol ( ortho -methoxy phenol, G ), syringol (2,6-dimethoxy phenol, S ), 4-methyl guaiacol ( MG ), and 4-vinyl guaiacol ( VG ), under jet-cooled conditions in the gas phase. Using a combination of 13 C isotopic data and electronic structure calculations, distortions of the phenyl ring by the substituents on the ring are identified. In all four molecules, the r C(1)-C(6) bond between the two substituted C-atoms lengthens, leading to clear bond alternation that reflects an increase in the phenyl ring resonance structure with double bonds at r C(1)-C(2) , r C(3)-C(4) and r C(5)-C(6) . Syringol, with its symmetric methoxy substituents, possesses a microwave spectrum with tunneling doublets in the a -type transitions associated with H-atom tunneling. These splittings were fit to determine a barrier to hindered rotation of the OH group of 1975 cm -1 , a value nearly 50% greater than that in phenol, due to the presence of the intramolecular OH … OCH 3 H-bonds at the two equivalent planar geometries. In 4-methyl guaiacol, methyl rotor splittings are observed and used to confirm and refine an earlier measurement of the three-fold barrier V 3 = 67 cm -1 . Finally, 4-vinyl guaiacol shows transitions due to two conformers differing in the relative orientations of the vinyl and OH groups.
Collapse
Affiliation(s)
- A O Hernandez-Castillo
- Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin, Germany, 14195
| | - Camilla Calabrese
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena, S/N, Leioa, 48940, Spain
- Instituto Biofisika (UPV/EHU-CSIC), University of the Basque Country (UPV/EHU), B° Sarriena S/N, Leioa, 48940, Spain
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), E-48940, Leioa, Spain
| | - Sean M Fritz
- Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA
| | - Iciar Uriarte
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena, S/N, Leioa, 48940, Spain
| | - Emilio J Cocinero
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena, S/N, Leioa, 48940, Spain
- Instituto Biofisika (UPV/EHU-CSIC), University of the Basque Country (UPV/EHU), B° Sarriena S/N, Leioa, 48940, Spain
| | - Timothy S Zwier
- Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA
- Gas Phase Chemical Physics, Livermore, CA 94550, USA
| |
Collapse
|
7
|
Lima de Albuquerque Y, Berger E, Tomaz S, George C, Géloën A. Evaluation of the Toxicity on Lung Cells of By-Products Present in Naphthalene Secondary Organic Aerosols. Life (Basel) 2021; 11:life11040319. [PMID: 33917485 PMCID: PMC8067501 DOI: 10.3390/life11040319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 01/17/2023] Open
Abstract
In 2018, seven million people died prematurely due to exposure to pollution. Polycyclic aromatic hydrocarbons (PAHs) are a significant source of secondary organic aerosol (SOA) in urban areas. We investigated the toxic effects of by-products of naphthalene SOA on lung cells. These by-products were 1,4-naphthoquinone (1,4-NQ), 2-hydroxy-1,4-naphthoquinone (2-OH-NQ), phthalic acid (PA) and phthaldialdehyde (OPA). Two different assessment methodologies were used to monitor the toxic effects: real-time cell analysis (RTCA) and the Holomonitor, a quantitative phase contrast microscope. The chemicals were tested in concentrations of 12.5 to 100 µM for 1,4-NQ and 1 to 10 mM for 2-OH-NQ, PA and OPA. We found that 1,4-NQ is toxic to cells from 25 to 100 µM (EC50: 38.7 µM ± 5.2); 2-OH-NQ is toxic from 1 to 10mM (EC50: 5.3 mM ± 0.6); PA is toxic from 5 to 10 mM (EC50: 5.2 mM ± 0.3) and OPA is toxic from 2.5 to 10 mM (EC50: 4.2 mM ± 0.5). Only 1,4-NQ and OPA affected cell parameters (migration, motility, motility speed and optical volume). Furthermore, 1,4-NQ is the most toxic by-product of naphthalene, with an EC50 value that was one hundred times higher than those of the other compounds. RTCA and Holomonitor analysis showed a complementarity when studying the toxicity induced by chemicals.
Collapse
Affiliation(s)
- Yuri Lima de Albuquerque
- UMR Ecologie Microbienne, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France; (Y.L.d.A.); (E.B.)
| | - Emmanuelle Berger
- UMR Ecologie Microbienne, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France; (Y.L.d.A.); (E.B.)
| | - Sophie Tomaz
- Univ Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France; (S.T.); (C.G.)
| | - Christian George
- Univ Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France; (S.T.); (C.G.)
| | - Alain Géloën
- UMR Ecologie Microbienne, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France; (Y.L.d.A.); (E.B.)
- Correspondence:
| |
Collapse
|