1
|
Stasyuk OA, Voityuk AA, Stasyuk AJ, Solà M. Photoinduced Electron Transfer in Inclusion Complexes of Carbon Nanohoops. Acc Chem Res 2024; 57:37-46. [PMID: 38103043 PMCID: PMC10765372 DOI: 10.1021/acs.accounts.3c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023]
Abstract
ConspectusPhotoinduced electron transfer (PET) in carbon materials is a process of great importance in light energy conversion. Carbon materials, such as fullerenes, graphene flakes, carbon nanotubes, and cycloparaphenylenes (CPPs), have unusual electronic properties that make them interesting objects for PET research. These materials can be used as electron-hole transport layers, electrode materials, or passivation additives in photovoltaic devices. Moreover, their appropriate combination opens up new possibilities for constructing photoactive supramolecular systems with efficient charge transfer between the donor and acceptor parts. CPPs build a class of molecules consisting of para-linked phenylene rings. CPPs and their numerous derivatives are appealing building blocks in supramolecular chemistry, acting as suitable concave receptors with strong host-guest interactions for the convex surfaces of fullerenes. Efficient PET in donor-acceptor systems can be observed when charge separation occurs faster than charge recombination. This Account focuses on selected inclusion complexes of carbon nanohoops studied by our group. We modeled charge separation and charge recombination in both previously synthesized and computationally designed complexes to identify how various modifications of host and guest molecules affect the PET efficiency in these systems. A consistent computational protocol we used includes a time-dependent density-functional theory (TD-DFT) formalism with the Tamm-Dancoff approximation (TDA) and CAM-B3LYP functional to carry out excited state calculations and the nonadiabatic electron transfer theory to estimate electron-transfer rates. We show how the photophysical properties of carbon nanohoops can be modified by incorporating additional π-conjugated fragments and antiaromatic units, multiple fluorine substitutions, and extending the overall π-electron system. Incorporating π-conjugated groups or linkers is accompanied by the appearance of new charge transfer states. Perfluorination of the nanohoops radically changes their role in charge separation from an electron donor to an electron acceptor. Vacancy defects in π-extended nanohoops are shown to hinder PET between host and guest molecules, while large fully conjugated π-systems improve the electron-donor properties of nanohoops. We also highlight the role of antiaromatic structural units in tuning the electronic properties of nanohoops. Depending on the aromaticity degree of monomeric units in nanohoops, the direction of electron transfer in their complexes with C60 fullerene can be altered. Nanohoops with aromatic units usually act as electron donors, while those with antiaromatic monomers serve as electron acceptors. Finally, we discuss why charged fullerenes are better electron acceptors than neutral C60 and how the charge location allows for the design of more efficient donor-acceptor systems with an unusual hypsochromic shift of the charge transfer band in polar solvents.
Collapse
Affiliation(s)
- Olga A. Stasyuk
- Institute of Computational
Chemistry and Catalysis and Department of Chemistry, University of Girona, C/ M. Aurèlia Capmany, 69, 17003 Girona, Catalonia, Spain
| | - Alexander A. Voityuk
- Institute of Computational
Chemistry and Catalysis and Department of Chemistry, University of Girona, C/ M. Aurèlia Capmany, 69, 17003 Girona, Catalonia, Spain
| | - Anton J. Stasyuk
- Institute of Computational
Chemistry and Catalysis and Department of Chemistry, University of Girona, C/ M. Aurèlia Capmany, 69, 17003 Girona, Catalonia, Spain
| | - Miquel Solà
- Institute of Computational
Chemistry and Catalysis and Department of Chemistry, University of Girona, C/ M. Aurèlia Capmany, 69, 17003 Girona, Catalonia, Spain
| |
Collapse
|
2
|
Shudo H, Kuwayama M, Segawa Y, Yagi A, Itami K. Half-substituted fluorocycloparaphenylenes with high symmetry: synthesis, properties and derivatization to densely substituted carbon nanorings. Chem Commun (Camb) 2023; 59:13494-13497. [PMID: 37882201 DOI: 10.1039/d3cc04887j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Fluorinated cycloparaphenylenes (FCPPs) have attracted attention as electron-accepting CPPs as well as strained fluoroarenes. Herein, we report the synthesis and properties of novel FCPPs; F16[8]CPP and F12[6]CPP. Furthermore, the derivatization of F16[8]CPP afforded a new carbon nanoring where sixteen pyrrole rings are densely substituted on the CPP framework.
Collapse
Affiliation(s)
- Hiroki Shudo
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.
| | - Motonobu Kuwayama
- JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Yasutomo Segawa
- JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Institute for Molecular Science, Myodaiji, Okazaki, 444-8787, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Myodaiji, Okazaki, 444-8787, Japan
| | - Akiko Yagi
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kenichiro Itami
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.
- JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
3
|
George G, Stasyuk OA, Solà M, Stasyuk AJ. A step towards rational design of carbon nanobelts with tunable electronic properties. NANOSCALE 2023; 15:17373-17385. [PMID: 37791958 DOI: 10.1039/d3nr04045c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Belt-shaped aromatic compounds are among the most attractive classes of radial π-conjugated nanocarbon molecules with unique physical and chemical properties. In this work, we computationally studied a number of all-carbon and heteroatom-bridged nanobelts, as well as their inclusion complexes with fullerene C60. Our results provide a useful guide for modulating the electronic properties of the nanobelts. An in-depth analysis of the ground and excited state properties of their complexes has allowed us to establish structure-property relationships and propose simple principles for the design of nanobelts with improved electron-donating properties suitable for photovoltaic applications.
Collapse
Affiliation(s)
- G George
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Spain.
| | - O A Stasyuk
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Spain.
| | - M Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Spain.
| | - A J Stasyuk
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Spain.
| |
Collapse
|
4
|
George G, Stasyuk OA, Voityuk AA, Stasyuk AJ, Solà M. Aromaticity controls the excited-state properties of host-guest complexes of nanohoops. NANOSCALE 2023; 15:1221-1229. [PMID: 36537223 DOI: 10.1039/d2nr04037a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
π-Conjugated organic molecules have exciting applications as materials for batteries, solar cells, light-emitting diodes, etc. Among these systems, antiaromatic compounds are of particular interest because of their smaller HOMO-LUMO energy gap compared to aromatic compounds. A small HOMO-LUMO gap is expected to facilitate charge transfer in the systems. Here we report the ground and excited-state properties of two model nanohoops that are nitrogen-doped analogs of recently synthesized [4]cyclodibenzopentalenes - tetramers of benzene-fused aromatic 1,4-dihydropyrrolo[3,2-b]pyrrole ([4]DHPP) and antiaromatic pyrrolo[3,2-b]pyrrole ([4]PP). Their complexes with C60 fullerene show different behavior upon photoexcitation, depending on the degree of aromaticity. [4]DHPP acts as an electron donor, whereas [4]PP is a stronger electron acceptor than C60. The ultrafast charge separation combined with the slow charge recombination that we found for [4]PP⊃C60 indicates a long lifetime of the charge transfer state.
Collapse
Affiliation(s)
- G George
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
| | - O A Stasyuk
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
| | - A A Voityuk
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
| | - A J Stasyuk
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - M Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
| |
Collapse
|
5
|
Shudo H, Kuwayama M, Shimasaki M, Nishihara T, Takeda Y, Mitoma N, Kuwabara T, Yagi A, Segawa Y, Itami K. Perfluorocycloparaphenylenes. Nat Commun 2022; 13:3713. [PMID: 35764634 PMCID: PMC9240036 DOI: 10.1038/s41467-022-31530-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/16/2022] [Indexed: 11/09/2022] Open
Abstract
Perfluorinated aromatic compounds, the so-called perfluoroarenes, are widely used in materials science owing to their high electron affinity and characteristic intermolecular interactions. However, methods to synthesize highly strained perfluoroarenes are limited, which greatly limits their structural diversity. Herein, we report the synthesis and isolation of perfluorocycloparaphenylenes (PFCPPs) as a class of ring-shaped perfluoroarenes. Using macrocyclic nickel complexes, we succeeded in synthesizing PF[n]CPPs (n = 10, 12, 14, 16) in one-pot without noble metals. The molecular structures of PF[n]CPPs (n = 10, 12, 14) were determined by X-ray crystallography to confirm their tubular alignment. Photophysical and electrochemical measurements revealed that PF[n]CPPs (n = 10, 12, 14) exhibited wide HOMO–LUMO gaps, high reduction potentials, and strong phosphorescence at low temperature. PFCPPs are not only useful as electron-accepting organic materials but can also be used for accelerating the creation of topologically unique molecular nanocarbon materials. Synthetic methods for the preparation of perfluorinated aromatic compounds are desirable in materials science. Here, the authors synthesize perfluorocycloparaphenylenes, fully fluorinated carbon nanorings, through a nickel-mediated one-pot method.
Collapse
Affiliation(s)
- Hiroki Shudo
- Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Motonobu Kuwayama
- JST, ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Nagoya, 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University, Nagoya, 464-8602, Japan
| | | | - Taishi Nishihara
- Institute of Advanced Energy, Kyoto University, Kyoto, 611-0011, Japan
| | - Youhei Takeda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Nobuhiko Mitoma
- RIKEN Center for Emergent Matter Science, Wako, 351-0198, Japan
| | - Takuya Kuwabara
- Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan.,JST, ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Nagoya, 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University, Nagoya, 464-8602, Japan
| | - Akiko Yagi
- Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University, Nagoya, 464-8602, Japan
| | - Yasutomo Segawa
- Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan. .,JST, ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Nagoya, 464-8602, Japan. .,Institute for Molecular Science, Myodaiji, Okazaki, 444-8787, Japan. .,Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, 444-8787, Japan.
| | - Kenichiro Itami
- Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan. .,JST, ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Nagoya, 464-8602, Japan. .,Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University, Nagoya, 464-8602, Japan.
| |
Collapse
|