1
|
Dal Poggetto G, DiCaprio A, Reibarkh M, Cohen RD. Ultra-clean pure shift NMR with optimal water suppression for analysis of aqueous pharmaceutical samples. Analyst 2024; 149:2227-2231. [PMID: 38517550 DOI: 10.1039/d3an02150e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Pure shift NMR experiments greatly enhance spectral resolution by collapsing multiplet structures into singlets and, with water suppression, can be used for aqueous samples. Here, we combine ultra-clean pure-shift NMR (SAPPHIRE) with two different internally encoded water suppression schemes to achieve optimal performance for small molecule and macrocyclic peptide pharmaceuticals in water and acetonitrile-water mixtures.
Collapse
Affiliation(s)
| | - Adam DiCaprio
- Merck & Co., Inc., 770 Sumneytown Pike, 19846, West Point, PA, USA
| | - Mikhail Reibarkh
- Merck & Co., Inc., 126 East Lincoln Avenue, 07065, Rahway, NJ, USA.
| | - Ryan D Cohen
- Merck & Co., Inc., 126 East Lincoln Avenue, 07065, Rahway, NJ, USA.
| |
Collapse
|
2
|
Serrano-Contreras JI, Lindon JC, Frost G, Holmes E, Nicholson JK, Garcia-Perez I. Implementation of pure shift 1 H NMR in metabolic phenotyping for structural information recovery of biofluid metabolites with complex spin systems. NMR IN BIOMEDICINE 2024; 37:e5060. [PMID: 37937465 DOI: 10.1002/nbm.5060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 11/09/2023]
Abstract
NMR spectroscopy is a mainstay of metabolic profiling approaches to investigation of physiological and pathological processes. The one-dimensional proton pulse sequences typically used in phenotyping large numbers of samples generate spectra that are rich in information but where metabolite identification is often compromised by peak overlap. Recently developed pure shift (PS) NMR spectroscopy, where all J-coupling multiplicities are removed from the spectra, has the potential to simplify the complex proton NMR spectra that arise from biosamples and hence to aid metabolite identification. Here we have evaluated two complementary approaches to spectral simplification: the HOBS (band-selective with real-time acquisition) and the PSYCHE (broadband with pseudo-2D interferogram acquisition) pulse sequences. We compare their relative sensitivities and robustness for deconvolving both urine and serum matrices. Both methods improve resolution of resonances ranging from doublets, triplets and quartets to more complex signals such as doublets of doublets and multiplets in highly overcrowded spectral regions. HOBS is the more sensitive method and takes less time to acquire in comparison with PSYCHE, but can introduce unavoidable artefacts from metabolites with strong couplings, whereas PSYCHE is more adaptable to these types of spin system, although at the expense of sensitivity. Both methods are robust and easy to implement. We also demonstrate that strong coupling artefacts contain latent connectivity information that can be used to enhance metabolite identification. Metabolite identification is a bottleneck in metabolic profiling studies. In the case of NMR, PS experiments can be included in metabolite identification workflows, providing additional capability for biomarker discovery.
Collapse
Affiliation(s)
- Jose Ivan Serrano-Contreras
- Department of Metabolism, Digestion and Reproduction, Division of Digestive Diseases, Section of Nutrition, Faculty of Medicine, Imperial College London, London, UK
| | - John C Lindon
- Department of Metabolism, Digestion and Reproduction, Division of Systems Medicine, Imperial College London, London, UK
| | - Gary Frost
- Department of Metabolism, Digestion and Reproduction, Division of Digestive Diseases, Section of Nutrition, Faculty of Medicine, Imperial College London, London, UK
| | - Elaine Holmes
- Department of Metabolism, Digestion and Reproduction, Division of Digestive Diseases, Section of Nutrition, Faculty of Medicine, Imperial College London, London, UK
- Australian National Phenome Centre, Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia
- Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia
| | - Jeremy K Nicholson
- Australian National Phenome Centre, Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia
- Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia
- Imperial College London, Institute of Global Health Innovation, London, UK
| | - Isabel Garcia-Perez
- Department of Metabolism, Digestion and Reproduction, Division of Digestive Diseases, Section of Nutrition, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
3
|
Mycroft C, Smith MJ, Nilsson M, Morris GA, Castañar L. Pure shift FESTA: An ultra-high resolution NMR tool for the analysis of complex fluorine-containing spin systems. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:606-614. [PMID: 37688573 DOI: 10.1002/mrc.5393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/11/2023]
Abstract
NMR measurements of molecules containing sparse fluorine atoms are becoming increasingly common due to their prevalence in medicinal chemistry. However, the presence of both homonuclear and heteronuclear scalar couplings severely complicates their analysis by NMR. In complex systems, FESTA, a heteronuclear spectral editing method, allows simplified 1 H NMR spectra to be obtained containing only 1 H signals from the same spin system as a chosen 19 F. Despite spectral simplification, signal overlap due to the presence of scalar couplings is often a problem in FESTA spectra. Here, we report a new experiment that combines FESTA and pure shift methods to provide fully decoupled ultra-high resolution FESTA spectra showing a single signal for each 1 H chemical environment. The utility of the method is demonstrated for the analysis of two complex fluorine-containing mixtures of pharmaceutical and biochemical interest.
Collapse
Affiliation(s)
- Coral Mycroft
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Marshall J Smith
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Mathias Nilsson
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Gareth A Morris
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Laura Castañar
- Department of Chemistry, University of Manchester, Manchester, UK
- Department of Organic Chemistry, Faculty of Chemical Science, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
4
|
Dumez JN. NMR methods for the analysis of mixtures. Chem Commun (Camb) 2022; 58:13855-13872. [PMID: 36458684 PMCID: PMC9753098 DOI: 10.1039/d2cc05053f] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/19/2022] [Indexed: 07/31/2023]
Abstract
NMR spectroscopy is a powerful approach for the analysis of mixtures. Its usefulness arises in large part from the vast landscape of methods, and corresponding pulse sequences, that have been and are being designed to tackle the specific properties of mixtures of small molecules. This feature article describes a selection of methods that aim to address the complexity, the low concentrations, and the changing nature that mixtures can display. These notably include pure-shift and diffusion NMR methods, hyperpolarisation methods, and fast 2D NMR methods such as ultrafast 2D NMR and non-uniform sampling. Examples or applications are also described, in fields such as reaction monitoring and metabolomics, to illustrate the relevance and limitations of different methods.
Collapse
|
5
|
Timári I, Bagi P, Keglevich G, E. Kövér K. Ultrahigh-Resolution Homo- and Heterodecoupled 1H and TOCSY NMR Experiments. ACS OMEGA 2022; 7:43283-43289. [PMID: 36467931 PMCID: PMC9713892 DOI: 10.1021/acsomega.2c06102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
The original homonuclear decoupled (pure shift) experiments provide ultrahigh-resolution 1H spectra of compounds containing NMR-active heteronuclei of low natural isotopic abundance (e.g., 13C or 15N). In contrast, molecules containing highly abundant heteronuclei (like 31P or 19F) give doublets or a multiple of doublets in their homonuclear decoupled spectra, depending on the number of heteronuclear coupling partners and the magnitude of the respective coupling constants. In these cases, the complex and frequently overlapping signals may hamper the unambiguous assignment of resonances. Here, we present new heteronuclear decoupled (HD) PSYCHE 1H and TOCSY experiments, which result in simplified spectra with significantly increased resolution, allowing the reliable assessment of individual resonances. The utility of the experiments has been demonstrated on a challenging stereoisomeric mixture of a platinum-phosphine complex, where ultrahigh resolution of the obtained HD PSYCHE spectra made the structure elucidation of the chiral products feasible. HD PSYCHE methods can be potentially applied to other important 31P- or 19F-containing compounds in medicinal chemistry and metabolomics.
Collapse
Affiliation(s)
- István Timári
- Department
of Organic Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Péter Bagi
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - György Keglevich
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Katalin E. Kövér
- Department
of Inorganic and Analytical Chemistry, University
of Debrecen, Egyetem
tér 1, H-4032 Debrecen, Hungary
- ELKH-DE
Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| |
Collapse
|